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Abstract The rapid development of high-throughput sequencing technologies has generated mas-

sive valuable brain transcriptome atlases, providing great opportunities for systematically investigat-

ing gene expression characteristics across various brain regions throughout a series of

developmental stages. Recent studies have revealed that the transcriptional architecture is the

key to interpreting the molecular mechanisms of brain complexity. However, our knowledge of

brain transcriptional characteristics remains very limited. With the immense efforts to generate

high-quality brain transcriptome atlases, new computational approaches to analyze these high-

dimensional multivariate data are greatly needed. In this review, we summarize some public

resources for brain transcriptome atlases and discuss the general computational pipelines that are

commonly used in this field, which would aid in making new discoveries in brain development

and disorders.
Introduction

The mammalian brain is an evolutionary miracle that contains
well-organized molecules, cell types, and neuronal circuits in
each subregion; some of these features are closely connected
at both the structural and functional levels. Moreover, brain

development is an intricate, highly regulated process that con-
tinues throughout embryonic growth, and these lifespan pro-
gram codes are conserved among species [1]. The

complicated properties of the brain are mainly reflected in
the complexity of its transcriptomic architecture, including
highly ordered gene expression and elaborate transcriptional
regulation. For example, the majority of genes (>80%) are

expressed in the mammalian brain [2], and the expression pro-
files of these genes show great variability during development,
with the most remarkable changes occurring during develop-

ment in prenatal and postnatal stages [3�7]. On the other
hand, brain tissues exhibit the smallest transcriptomic changes
compared with other organs [8,9]. Therefore, understanding

the spatiotemporal characteristics of gene expression can offer
valuable insights into brain functional specialization and the
nces and
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roles of key genes during brain development. Furthermore,
analyzing the transcriptomic architecture of normal brain
development and function is of vital importance to determine

the causes of a variety of complicated neurological disorders.
In the last decade, many quantitative methods have been

applied to explore the expression of individual genes, particu-

larly the spatial and temporal patterns across the brain. The
development of microarray analysis and various high-
throughput sequencing technologies has made it possible to

investigate the expression of genes in a high-throughput man-
ner, yielding large datasets. Specifically, single-cell sequencing
can be used to quantify the transcriptome of a single cell, pro-
viding major opportunities to parse the complex cellular com-

position of the brain. However, analysis of such high-
dimensional data remains substantially complex and requires
more effective and sophisticated computational methods and

models. Recent progress in computational and systems biology
fields has facilitated transcriptomic studies with high precision
to obtain new insights into the transcriptional characteristics

of the brain.
In this review, we introduce a variety of brain transcrip-

tome atlases and discuss how to apply computational methods

to elucidate the relationships between gene expression and
brain function as well as the relationships between brain devel-
opment and disease. Many of these relationships have been
discovered by following the general pipeline of brain transcrip-

tome analysis (Figure 1). Finally, we state some limitations in
recent transcriptome studies and offer some directions for
future studies.

Brain transcriptomic atlas resources

In the past decade, an increasing number of researchers have
realized the importance of large-scale brain transcriptome
data, and various countries have launched big brain research
projects, which have greatly promoted the study of the molec-

ular mechanisms of brain organization and function. The rapid
Figure 1 General pipeline of computational analysis of the brain tran

Brain samples are collected and the expression of all genes in each reg

Then computational strategies are applied in order to identify D

differentially-expressed gene.
development of high-throughput technologies has made it pos-
sible to quantify the expression of thousands of genes simulta-
neously. Currently, various brain transcriptome datasets from

humans and other species can be obtained from different
molecular platforms, such as microarray, RNA sequencing,
and in situ hybridization (ISH). For rodents, the Gene Expres-

sion Nervous System Atlas (GENSAT) [10,11] and GenePaint
[12] have provided expression signals for thousands of genes in
developing and adult mouse brains. However, compared with

mouse brain atlases, the available human brain expression
atlas is less abundant because there are more difficulties in
obtaining, storing, and analyzing human postmortem brain tis-
sues [13]. Fortunately, several studies have investigated gene

expression variations among different brain regions [14,15]
and at different development time points [3–7,16]. Further-
more, a series of transcriptome atlases of the developing and

adult mouse brains [2,17], the developing and adult human
brains [18,19], and the nonhuman primate (NHP) brains [20–
22] have been released. Specifically, the Allen Institute for

Brain Science (http://brain-map.org/) possesses comprehensive
transcriptomic sources from mouse and human brains and is a
great resource for many neuroscience fields [23]. To facilitate

the application of these data, we have summarized some avail-
able brain transcriptome resources in Table 1. Notably, Jason
et al. has provided a detailed user guide for some brain tran-
scriptome databases in another review [24]. In this review,

we include a series of data released recently. We believe that
these available transcriptome data are essential components
for investigating the complex molecular architecture of the

brain at a large scale.

Analyzing brain-wide gene expression patterns

Spatial and temporal gene expression analyses

One important aspect of brain complexity is that the brain is
organized into multiple functional regions with distinct
scriptome

ion is profiled by either microarray or next-generation sequencing.

EGs, marker genes, or network co-expression modules. DEG,

http://brain-map.org/


Table 1 Summary of major brain transcriptome resources

Species Sample Age Region Method Web link Data access Annotation Refs.

Mouse Bulk tissues Multiple CNS BAC transgenic; ISH http://www.gensat.org/ URL Spatiotemporal [10,11]

Mouse Bulk tissues Multiple Multiple ISH http://www.genepaint.org URL Spatiotemporal [12]

Mouse Bulk tissues Multiple Multiple ISH http://www.emouseatlas.org/

emage/

URL Spatiotemporal [25]

Mouse Bulk tissues Lifespan Multiple ISH http://developingmouse.brain-

map.org/

URL Spatiotemporal [17]

Mouse Bulk tissues Postnatal NCX MiD; RNA-seq http://hbatlas.

org/mouseNCXtranscriptome

SRP031888 Spatiotemporal [26]

Mouse Bulk tissues Adult NCX layers RNA-seq http://genserv.anat.ox.ac.uk/

layers

GSE27243 Spatial [27]

Mouse Bulk tissues Adult Multiple ISH http://mouse.brain-map.org/ URL Spatial [2]

Mouse Bulk tissues Postnatal Forebrain FACS; PAN; microarray www.ncbi.nlm.nih.gov/geo GSE9566 Cell-type specific [28]

Mouse Bulk tissues Adult NCX PAN; FACS; RNA-seq http://web.stanford.edu/group/

barres_lab/brain_rnaseq.html

GSE52564 Cell-type specific [29]

Mouse Bulk tissues Adult CNS TRAP; microarray http://genetics.wustl.edu/jdlab/

csea-tool-2

GSE13379 Cell-type specific [30]

Mouse Bulk tissues Embryonic NCX FACS; RNA-seq http://decon.rc.fas.harvard.edu/ GSE63482 Cell-type specific [31]

Mouse Bulk tissues Adult HIP Genetic labeling; RNA-seq http://hipposeq.janelia.org GSE74985 Cell-type specific [32]

Mouse Bulk tissues Adult Multiple Genetic labeling; RNA-seq http://neuroseq.janelia.org GSE79238 Cell-type specific [33]

Mouse Single-cell Postnatal Brain; SC SPLiT-seq www.ncbi.nlm.nih.gov/geo GSE110823 Spatiotemporal [34]

Mouse Single-cell Adolescence NS FACS; 10X Genomics http://mousebrain.org SRP135960 Spatial [35]

Mouse Single-cell Juvenile; adult Multiple scRNA-seq http://linnarssonlab.org/

oligodendrocytes/

GSE75330 Spatiotemporal [36]

Mouse Single-cell Adult NCX; HIP CA1 Fluidigm C1 http://linnarssonlab.org/cortex GSE60361 Spatial [37]

Mouse Single-cell Adult HPA Drop-seq www.ncbi.nlm.nih.gov/geo GSE87544 Spatiotemporal [38]

Mouse Single-cell Adult RB neurons FACS; Drop-seq https://portals.broadinstitute.

org/single_cell

GSE81905 Spatial [39]

(continued on next page)
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Table 1 (continued)

Species Sample Age Region Method Web link Data access Annotation Refs.

Mouse Single-cell Adult HIP Div-seq (nuclei) https://portals.broadinstitute.org/

single_cell

GSE84371 Spatial [40]

Mouse Single-cell Adult V1 (NCX) FACS; SMARTer http://casestudies.brain-map.

org/celltax

GSE71585 Spatial [41]

Mouse Single-cell Adult HIP SMART-seq www.ncbi.nlm.nih.gov/geo GSE71485 Spatiotemporal [42]

Mouse Single-cell Adult STR Mic-scRNA-seq; FACS-scRNA-seq www.ncbi.nlm.nih.gov/geo GSE82187 Spatial [43]

Mouse Single-cell Adult Multiple Drop-seq http://dropviz.org/ GSE116470 Spatial [44]

Mouse Single-cell Adult NCX FACS; SMART-seq www.ncbi.nlm.nih.gov/geo GSE115746 Spatial [45]

Mouse Single-cell Adult HPA MERFISH; Drop-seq www.ncbi.nlm.nih.gov/geo GSE113576 Spatial [46]

Mouse Single-cell 1–3 M; 21–22 M Brain 10X Genomics http://shiny.baderlab.org/

AgingMouseBrain/

GSE129788 Temporal [47]

Mouse Mixed Multiple Multiple Microwell-seq https://figshare.com/s/

865e694ad06d5857db4b

GSE108097 Spatiotemporal [48]

Mouse Mixed Adult Multiple FACS; Microfluidic https://tabula-muris.ds.czbiohub.

org/

GSE109774 Spatial [49]

Rhesus macaque Bulk tissues Lifespan Multiple LMD; microarray http://www.blueprintnhpatlas.org/ URL Spatiotemporal [21]

Rhesus macaque Mixed Lifespan Multiple RNA-seq; 10X Genomics http://www.evolution.

psychencode.org/

PRJNA448973 Spatiotemporal [50]

Human Bulk tissues Lifespan Multiple MaD; exon-array http://hbatlas.org/ GSE25219; GSE13344 Spatiotemporal [3,5]

Human Bulk tissues Lifespan Multiple LMD; microarray; ISH; RNA-seq http://www.brainspan.org/ URL Spatiotemporal [19]

Human Bulk tissue Lifespan Multiple Multi-omics http://development.psychencode.

org/

phs000755. Spatiotemporal [51]

Human Bulk tissues Adult Multiple MaD; LMD; microarray; ISH http://human.brain-map.org/ URL Spatial [18]

Human Bulk tissues Lifespan PFC Microarray http://braincloud.jhmi.edu GSE30272 Temporal [6]

Human Bulk tissues Fetal; juvenile;

adult

NCX; HIP PAN; RNA-seq http://www.brainrnaseq.org/ GSE73721 Cell-type specific [52]

Human Single-cell Fetal PFC SMART-seq2 www.ncbi.nlm.nih.gov/geo GSE104276 Temporal [53]
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Table 1 (continued)

Species Sample Age Region Method Web link Data access Annotation Refs.

Human Single-cell Fetal NCX STRT-seq www.ncbi.nlm.nih.gov/geo GSE103723 Spatial [54]

Human Single-cell Fetal NCX Fluidigm C1 https://cells.ucsc.edu/?ds=cortex-

dev

phs000989.v3 Spatiotemporal [55]

Human Single-cell Fetal; adult NCX Fluidigm C1 www.ncbi.nlm.nih.gov/geo GSE67835 Spatiotemporal [56]

Human Single-cell Fetal; adult Multiple Fluidigm C1 http://www.psychencode.org/ URL Spatiotemporal [51]

Human Single-cell Adult NCX Fluidigm C1(nuclei) http://www.scap-t.org/ phs000833.v3.p1 Spatial [57]

Human Single-cell Adult Multiple. snDrop-seq www.ncbi.nlm.nih.gov/geo GSE97942 Spatial [58]

Human Single-cell Adult MTG SMART-seq v4 http://celltypes.brain-map.org/ URL Spatial [59]

Human Mixed Adult Multiple RNA-seq https://www.gtexportal.org URL Spatiotemporal [14]

Drosophila Single-cell Adult Brain 10x Genomics; Drop-seq http://scope.aertslab.org GSE107451 Spatiotemporal [60]

Drosophila Single-cell Adult Midbrain Drop-seq https://www.ncbi.nlm.nih.gov/sra/

SRP128516

SRP128516 Spatial [61]

Zebrafish Single-cell Juvenile Brain GESTALT; Drop-seq http://krishna.gs.washington.

edu/content/members/aaron/fate_

map/harvard_temp_trees/

GSE105010 Spatiotemporal [62]

Zebrafish Single-cell Adult Hab FACS; 10X Genomics;

SMART-seq2

http://stackjoint.com/zbrain/ GSE105115 Spatial [63]

Multiple Bulk tissue Adult Multiple RNA-seq http://www.psychencode.org/ PRJNA236446 Species [64]

Multiple Mixed Multiple Multiple Multi-omics https://www.encodeproject.org URL Integrative [65]

Note: Web links for supporting resources are provided when available. Multiple means that samples were obtained from multiple specie tissues, brain regions, or at multiple time points. NCX,

neocortex; HPA, hypothalamus; PFC, prefrontal cortex; HIP, hippocampus; Hab, habenular; RB, retinal bipolar; STR, striatum; CNS, centr nervous system; SC, spinal cord; BAC, bacterial artificial

chromosome; V1, primary visual cortex; MTG, middle temporal gyrus; MiD, microdissection; MaD, macrodissection; FACS, fluorescence ctivated cell sorting; LMD, laser microdissection; PAN,

immunopanning; TRAP, translating ribosome affinity purification; GESTALT, genome editing of synthetic target arrays for lineage tracing ISH, in situ hybridization; MERFISH, multiplexed error

robust fluorescence in situ hybridization.
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transcriptomic architectures. Therefore, a good strategy for
studying the functions of a specific gene is to analyze its expres-
sion across different developmental stages and/or brain regions.

Many transcriptomic analyses of prenatal and postnatal tissues
have shown that the intricate principles of human brain devel-
opment can be revealed by carefully surveying spatial and tem-

poral gene expression [3–7]. For example, Kang et al. used a
high-throughput exon array to characterize the spatial and tem-
poral transcriptomes of the human brain [5]. The authors col-

lected more than 1000 postmortem brain samples, covering 16
different regions of the human brain (the hippocampus, stria-
tum, cerebellar cortex, amygdala, mediodorsal nucleus of the
thalamus, and 11 neocortical areas). These tissue samples

spanned 15 periods from the prenatal stage (5.7 weeks after con-
ception) to the aging stage (82 years old), making this collection
one of the most comprehensive collections of brain transcrip-

tome data. This work provides new insights into the spatiotem-
porally regulated patterns of brain-related genes and their co-
expression relationships [5]. The data also show that the pre-

dominately regulated stage is the prenatal stage (70.9% genes
are spatially differentially expressed, 89.9% genes are tempo-
rally differentially expressed, and 70.0% of all expressed genes

are regulated in both patterns) [5]. Furthermore, based on the
spatial and temporal transcriptome data, researchers can obtain
the developmental trajectories of key genes, such as marker
genes of different cell types (Figure 2). For brain development

and neurodevelopmental disorders, an important problem that
needs to be solved is when and where the key genes are expressed
and how such expression is disrupted in neurodevelopmental

disorders. These gene expression trajectories are valuable
resources to dissect the molecular mechanisms underlying the
functional specialization of brain regions. More importantly,
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Brain Transcriptome project [5]). Based on these trajectories, the prena
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these trajectories can also contribute to understanding the
causes of various neurodevelopmental diseases.

In addition to analyzing spatiotemporal expressional pat-

terns, some groups have considered temporal gene expression
dynamics among different brain regions, reflecting the func-
tional specialization of brain regions. Using the mouse brain,

Liscovitch and Chechik [66] identified differentially expressed
genes in multiple brain regions and determined how regional
dissimilarities changed over time. In this study, they calculated

the dissimilarity for each pair of regions, defined as 1 – Pear-
son’s correlation coefficient. Their results suggest an hourglass
pattern in which dissimilarities increase greatly in early prena-
tal development, decrease to a minimum at birth, and increase

again after birth [66]. Notably, they observed a significant
postnatal specialization in the mouse cerebellum, and a similar
phenomenon was also observed in human brains [66]. In

another study related to the human cortex, a temporal hour-
glass pattern consisting of three major phases was discovered
by Pletikos and the colleagues [7]. Prenatal development is

the first phase and is characterized by the highest number of
differentially expressed genes. The pre-adolescent phase is the
second phase, showing less divergent regional gene expression

and a more synchronized gene expression pattern. The last
phase is adolescence, showing increased regional differences
again [7]. This cup-shaped transcriptional divergence pattern
is repeatedly observed in the transcriptome of developmental

brains from both humans and macaques. Interestingly, the
transcriptional divergence between human and macaque
brains also exhibits a cup-shaped pattern, as reported in two

recent studies [50,51]. These temporal differences in gene
expression among different brain regions provide valuable
insights into the specialization of brain function.
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Unlike the aforementioned studies, Colantuoni et al.
focused on only one region, the dorsolateral prefrontal cortex
(PFC, BA46/9), a newly evolved area that is involved in exec-

utive functions such as working memory, emotion, cognition,
decision-making, and social behavior [67–70]. In this study,
269 human brain samples spanning gestational week 14 to

aging (>80 years old) were analyzed [6]. Interestingly, approx-
imately three quarters of genes showed reversed expression
between the prenatal stage and early postnatal stage, and these

reversals were also observed between the prenatal stage and
much later in life (approximately 50 years old) [6].

Because tissue samples from the human brain are invalu-
able, and most existing studies cannot cover all important

brain areas and developmental time points, NHPs, such as
chimpanzees and rhesus monkeys, are preferred over mice
for parsing the development and functions of the human brain.

A comprehensive transcriptome atlas of the developing brain
of rhesus monkeys was proposed by Bakken and colleagues
[21]. This atlas includes anatomical reference data (with mag-

netic resonance imaging [MRI]), ISH gene expression data
(cellular level), and developing transcriptome data (covering
10 stages throughout the lifespan). Using this highly precise

transcriptional map, Bakken et al. found that dramatic
changes in gene expression occurred in both progenitor cells
and neurons in the prenatal stage [21]. Furthermore, by com-
paring the gene expression conversion between humans, rhesus

monkeys, and rats, they confirmed that rhesus monkeys share
more similar gene expression with humans than with rats (22%
versus 9% of genes showed different expression trajectories in

rats and humans versus rhesus monkeys and humans, respec-
tively) [21], indicating that NHPs are valuable for investigating
human-specific changes in brain development.

In addition to characterizing gene expression changes in dif-
ferent regions and tracing expression trajectories of important
genes during brain development in a specific species, compar-

ative transcriptomic analysis can also provide valuable insights
into brain evolution. A set of studies have compared brain
gene expression between humans and other species to capture
conserved features and human-specific changes. For example,

by constructing and comparing the co-expression networks
of the brain between humans and mice, Miller et al. found that
the network properties are conserved between humans and

mice [71], which is consistent with the results of previous stud-
ies [72]. Furthermore, the human-specific modules identified
are correlated with Alzheimer’s disease. For NHPs, Xiao

et al. compared region-specific gene co-expression networks
between humans and macaques to investigate brain functional
divergence [73]. By calculating the topological features of these
networks, a structural difference was found; human genes are

more closely connected to form functional modules [73]. Sim-
ilarly, Sousa et al. compared the transcriptome profiles of
humans, chimpanzees, and rhesus macaques (247 samples

from 16 regions) and found that regions from the same species
are clustered together based on miRNA and mRNA expres-
sion, except for the cerebellum [64]. These results also showed

that differentially expressed genes with human-specific pat-
terns, including transcription factors and neurotransmitter
biosynthesis enzymes and receptors, play important roles in

neural circuit formation [64].
Brain-wide coexpression modularity analysis

In the aforementioned study, Kang et al. found that the brain
transcriptome tends to organize into co-expression networks
that are implicated in distinct biological processes [5]. Gener-

ally, genes that share similar expression patterns among sam-
ples or time points are defined as co-expressed genes, and
there is a high possibility that these genes are involved in sim-
ilar biological processes [74]. Thus, identifying the co-

expressed network based on expression similarity is a powerful
method to obtain context-specific functional annotations.

In practice, the key fundamental part of co-expression anal-

ysis is how to measure gene expression similarities. Generally,
people choose similarity measures according to the purpose of
their studies, such as Pearson’s correlations, Spearman’s corre-

lations, partial correlations, mutual information, Euclidian
distances, Cosine similarities, and probabilistic measures.
The most widely used are correlation-based measurements.

For example, NeuroBlast can identify genes with similar
three-dimensional spatial expression based on Pearson’s corre-
lations [75], and the Spearman’s correlation coefficient can be
used to analyze co-expression gene pairs in the mouse brain

[76]. Another example is a recent study that analyzed the co-
expression pattern of chromodomain helicase DNA-binding
protein 8 (CHD8), a key autism-associated gene [77]. This

study showed that CHD8 is widely expressed in both cortical
and subcortical structures, although its expression density
decreases during development in both human and macaque

brains. Moreover, significant enrichment of autism genes was
observed in CHD8-correlated genes [77].

Generally, unsupervised clustering and network analyses
are appropriate for exploring molecular interactions between

a set of genes that may have similar biological functions or
be involved in similar pathways. As an unsupervised method,
hierarchical clustering is widely used to group genes and sam-

ples. Gofflot et al. applied unsupervised hierarchical clustering
to explore the expression of nuclear receptors (NRs) in 104
brain regions [78]. They found that anatomical brain structures

are organized in three main clusters in favor of the existing tax-
onomy models of brain, and NRs are clustered in two major
groups, with distinct expression patterns [78]. Besides cluster-

ing, another approach is constructing a co-expression network
in which the nodes are co-expressed genes and the edges repre-
sent co-expression relationships of gene pairs with or without
weights. The most widely used co-expression network in prac-

tice is weighted gene co-expression network analysis
(WGCNA), a computational approach to identify network
modules based on the topological profiles of a co-expression

network [79]. In WGCNA, there is an eigengene for each mod-
ule, which represents the overall expression of that module,
and hub genes can be identified further based on the connectiv-

ity of the module members. In this way, the module’s function
can be inferred based on the function or enrichment analysis of
those hub genes [79]. In neuroscience, this method has been
widely applied to construct transcription networks of the

mammalian brain. For example, Oldham et al. used WGCNA
to compare the network conservation between human and
chimpanzee brains [80]. They observed that functional mod-

ules of the cerebral cortex are less likely to be conserved during
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evolution than those of other brain regions [80]. Moreover,
other studies applied WGCNA to identify modules associated
with distinct cell types and functions or corresponding to dis-

tinct brain regions in the developing and adult brains of mice,
rhesus monkeys, and humans [5,17,18,81]. For example,
Hawrylycz et al. identified 13 co-expression modules with

specific anatomical distributions to characterize the transcrip-
tional variations across the adult human brain [18].

Complex neurological disorders are not caused by a single

gene but multiple dysregulated genes, which may converge in
the same dysregulated biological processes. With the increas-
ing number of samples taken into consideration, genome-
wide association studies have linked an increasing number of

variants with complex neurological and neuropsychiatric dis-
orders, including autism spectrum disorders (ASDs) [82–87],
schizophrenia [88,89], and Alzheimer’s disease [90,91]. In this

context, analyzing co-expressed genes with known disease-
related genes can provide an avenue to dissect the molecular
underpinnings of complex neurological disorders. Ben-David

and Shifman used WGCNA to analyze the co-expression rela-
tionships of rare and common autism variants and found two
modules affected by rare and common variations correspond-

ing to the plasticity of synapses and neurons and the areas of
learning and memory, respectively [92]. In another study,
Menashe et al. used cosine similarity as a measurement of
expression similarity and constructed a co-expression network

of autism genes in the mouse brain [93]. These studies demon-
strated that autism-related genes are preferentially co-
expressed. Moreover, Menashe et al. identified two modules

in which autism-related genes are highly connected and overex-
pressed in a specific brain region, the cerebellar cortex [93].
These abovementioned studies have shown a link between

the network of autism-related genes and specific brain regions.
Furthermore, researchers can use co-expression analysis to
examine when and where specific genes are expressed and

how they change during specific biological processes, such as
neuron differentiation and maturation, which may provide
another view for research into neurodevelopmental disorders.
Some studies have been conducted in this field. For example,

Parikshak et al. constructed brain developmental-related
WGCNA networks based on the BrainSpan dataset (www.
brainspan.org) and mapped ASD-related and intellectual

disability-related genes onto different modules [94]. Their
results demonstrated that modules significantly enriched in
ASD genes are involved in distinct biological functions, such

as the regulation of synaptic development [94]. They further
found that ASD genes are preferentially located in superficial
cortical layers and expressed in glutamatergic projection neu-
rons [94]. In another study, Mahfouz et al. analyzed 455 aut-

ism genes to identify their shared pathways [95]. They
showed that modules containing large numbers of ASD genes
are related to biological processes involving synaptogenesis,

apoptosis, and GABAergic neurons [95]. All of these studies
demonstrated that the co-expression network is a powerful
strategy to reveal the biological functions of disease-risk genes.

Cell type-specific gene expression analysis

The brain is the most heterogeneous organ, in which diverse

cell types are assembled into distinct but highly connected cir-
cuits and regions. Thus, it is possible to identify functional
regions and neural cell types based on their transcriptional
architecture, not on their morphological and electrophysiolog-
ical properties. However, in general transcriptome studies,

RNAs are extracted from tissue samples and examined en
masse, which means the characteristics of a specific cell type
are missing, further limiting the utility of bulk transcriptome

data, since the expression changes that occur in rare cell types
may not be detected. Therefore, it is necessary to directly
quantify the transcriptome of a specific cell type. In practice,

various methods, such as laser-capture microdissection,
immunopanning, fluorescence-activated cell sorting, manual
cell sorting, and transgenic engineering, are used to identify
and isolate specific cell types. A detailed review has compared

these methods [96], and another review has provided an over-
view of existing studies combining these methods and high-
throughput transcriptomes to explore cell-specific expression

patterns [24].
In addition, great efforts have been made to extract cell

type-specific or region-specific patterns from bulk brain tran-

scriptome data. For example, Kirsch et al. proposed a method
to detect layer-specific gene expression in the mouse cerebellum
[97]. In this work, the authors used a histogram of local binary

patterns to represent each gene’s ISH image and predicted the
localization based on a two-level classification. First, a classi-
fier based on a support vector machine was trained to identify
images of specific layers. Then, genes were classified based on

multiple-instance learning [97]. Similarly, Li et al. developed
another method (scale-invariant feature transform) to detect
cell type-specific genes from ISH images [98]. Zeng et al.

applied a deep convolutional neural network to the developing
mouse brain [99]. In this work, they used two approaches to
extract features from ISH data, i.e., the invariant image feature

descriptors method and regularized learning method [99]. All
of these studies have demonstrated that computational
approaches, particularly feature exacting methods, are helpful

for detecting cell type-specific and/or region-specific genes.
However, these methods are based on some known marker
genes of specific regions, layers, or cell types, and the accuracy
of the results needs to be improved. A better choice is charac-

terizing the total transcriptome at the single-cell level and
grouping cells into distinct populations based on their tran-
scriptional pattern, as discussed below.

Single-cell gene expression analysis

Combined with physical isolation of specific cell types and

computational analysis of brain cell pools, the transcriptional
atlas of specific cell types can be depicted. However, the accu-
racy needs to be improved, and heterogeneity still exists.
Recently, advances in the isolation of single cells have made

it possible to generate the transcriptome of a single cell, and
a series of single-cell transcriptome data have been released
(Table 1). Researchers can use single-cell RNA-seq (scRNA-

seq) to discriminate distinct cell populations, identify new
and rare cell types, and trace cell developmental trajectories.

The mammalian brain is viewed as the most complicated

organ largely due to the heterogeneity of diverse specialized
cell types. Since scRNA-seq can describe the transcriptome
from a single cell and the same types of cells are likely to share

similar expression patterns, researchers can assign individual
cells to distinct cell populations based on the similarity of

http://www.brainspan.org
http://www.brainspan.org
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the transcriptome, not just based on the expression of marker
genes. scRNA-seq has shown great power to explore the
heterogeneity of cells in the brain (Table 2). In practice, unsu-

pervised clustering methods, including hierarchical clustering,
k-means clustering, principal component analysis, and t-
distributed stochastic neighbor embedding, are widely used

to identify cell subpopulations. Notably, it is better to apply
these clustering methods to differentially expressed genes or
highly variable genes. For example, Zeisel et al. measured

the transcriptomes of 3005 cells from two regions of the adult
mouse brain, that is the primary somatosensory cortex (S1)
and hippocampal CA1 region [37]. First, they selected 5000
genes based on a series of strict criteria. Then, they used an

algorithm called BackSPIN to cluster genes and cells simulta-
neously, and identified 47 subclasses of nine major clusters (S1
and CA1 pyramidal neurons, interneurons, oligodendrocytes,

astrocytes, microglia, vascular endothelial cells, mural cells,
and ependymal cells). Next, Zeisel and colleagues extracted
specific markers of each cell population. Some of these mark-

ers are well known, while some are novel, such as Gm11549
specific for S1 pyramidal cells, Spink8 specific for hippocampal
pyramidal cells, and Pnoc specific for interneurons [37]. Nota-

bly, the general analysis assumes that the cell types are abun-
dant. If the cells are small in number or rare, it is a
challenge to discriminate them from the cell populations. To
solve this problem, Grun et al. proposed RaceID, which uses

transcript counts to identify the rare and abundant cell types
in complex cell pools [100]. Overall, RaceID has two major
steps. First, k-means clustering is applied to the similarity

matrix, and the cluster number is determined from the gap
statistic [101]. Then, outlier cells are identified followed by rare
cell type identification [100]. Using RaceID, Grun et al. identi-

fied a novel marker for enteroendocrine cells, Reg4 [102].
Another important implication of scRNA-seq is tracking

cell trajectories during a dynamic process, such as neuronal

differentiation. However, it is difficult to determine which cell
type at time point n progresses to a cell at time point n + 1 in
scRNA-seq data since the cell is completely consumed. In
addition, the cells collected from a sample may not be com-

pletely synchronized. Some algorithms have been developed
to address these problems, and these algorithms can be gener-
ally divided into two classes. These include pseudotime order-

ing methods, such as diffusion pseudotime (DPT) [103], single-
cell topological data analysis (scTDA) [104], Wanderlust [105],
Waterfall [42], and Monocle 2 [106], and probabilistic branch

models, such as single-cell clustering using bifurcation analysis
(SCUBA) [107] and temporal assignment of single cells
(TASIC) [108]. In practice, pseudotime ordering methods usu-
ally require dimension reduction first, followed by reconstruc-

tion of cell trajectories in the lower dimension space, in which
graph analysis is usually required, including the minimum
spanning trees and principal curves. Recently, Lin et al. pro-

posed a method called continuous-state hidden Markov model
(CSHMMs) to infer branching topology and assign cells to the
correct branches [109]. In neuroscience, these aforementioned

methods are widely used to track cell trajectories during brain
development. For example, Zhong et al. performed monocle
pseudotime analysis [110] of human prefrontal cortex develop-

ment and revealed the following development branches for
neural progenitor cells, including two paths to intermediate
progenitor cells and one late path to outer radial glia (RG)
[53]. In another study, Polioudakis et al. explored the diversity
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and lineage of cell types during human neocortex development.
First, they identified 16 distinct cell populations from �40,000
cells and then performed pseudotime ordering analysis [111].

Moreover, they found ordered transitions during neural pro-
genitor differentiation, such as RG transitioning to intermedi-
ate progenitors (IPs) and IP transitioning to newborn

migrating neurons [111].
Although scRNA-seq has shown extraordinary superiority

in characterizing neuronal cell types and their distributions,

some issues should be considered; for example, high variability
in levels of the detected transcripts. In the future, advanced
methods are required to improve the coverage of the transcrip-
tome and preserve the physiological microenvironment of cells.

Integrative analysis of brain transcriptome and neuroimaging

data

In recent years, neuroimaging technology has been greatly
developed, providing an unprecedented opportunity to associ-
ate molecular variance with macroscopic changes in the brain.

Although a large number of brain transcriptome atlases are
available, most lack the capability to cover the entire brain,
except the Allen Brain Atlas (ABA). ABA is an anatomically

comprehensive atlas, comprising 3702 transcriptomes from
six adult brains. Importantly, ABA contains MRI data and
Montreal Neurological Institute coordinate data [18], allowing
researchers to integrate the relationship between spatial varia-

tion at the molecular level and observed neuroimaging pheno-
types. Recently, many studies have suggested that gene
expression is related to the functional connectivity of the brain.

In an early study in this field, Goel et al. explored whether
there is a relationship between gene expression and anatomical
brain regions [112]. They extracted structurally connected

regions based on magnetic resonance (MR) diffusion tractog-
raphy and found no direct relationship between structural con-
nectivity and similar expression patterns at the individual level

[112]. In another study, Wang et al. used fractional amplitude
of low-frequency fluctuations, a region-specific index, to asso-
ciate genes with a network called the brain functional activity
default mode network, which contains brain regions that exhi-

bit coherent functional magnetic resonance imaging (fMRI)
signal fluctuations under the resting state [113]. They found
that these related genes are preferentially expressed in neurons

and the expression of these genes is downregulated in the brain
of autistic patients [114]. In another similar study, Richiardi
et al. found that functionally connected regions have similar

gene expression patterns via mapping ABA expression data
to 14 functional networks [115]. Furthermore, they identified
136 genes driving the relationship that are significantly
enriched in ion channels [115]. In addition to investigating

the relationship between variations in gene expression and
variations in structural/functional connections of the brain,
other researchers have shifted their focus to the relationship

between structural changes in the brain and gene expression
patterns. One example is a study by Whitaker et al., in which
the authors explored the underlying mechanism of brain struc-

ture maturation during adolescence [116]. Specifically, they
collected 297 samples and measured the thickness and myelina-
tion of the cortex via MRI. Their results demonstrate a signif-

icant association between the shrinkage and myelination of the
cortex and the gene expression patterns of dorsoventral areas
[116].

Notably, integrative analysis of transcriptome and imaging

data often involves many variables, which requires sophisti-
cated data processing. Over the years, various software and
tools have been developed to perform such analyses [117–

120]. However, the accuracy and consistency of the results
obtained are largely affected by the choice of these tools.
Recently, a practical guide for key procedures in analyzing

HABA data has been proposed to facilitate studies in this field
[121]. In the future, developing methodological guidelines to
for more accurate results is still necessary.

Limitations and future directions

The resolution of brain ISH data

Although great progress has been made in quantifying gene

expression in the brain, several aspects in the field regarding
the analysis of the spatial and temporal patterns of the brain
must be improved. One key problem is the low resolution of

human brain expression imaging data. Although cellular-
level resolution is possible in the original ISH data (�1 mm),
much higher resolution data are desired for genome-wide data
used in three-dimensional (3D) space (�200 mm) [13]. The low

resolution poses challenges to investigations into the detailed
characteristics of the organization of the brain. Many research-
ers have attempted to develop new approaches to solve this

problem. For example, Ramsden et al. realigned mouse ISH
data using nonlinear regression model, which increased the res-
olution to approximately 10 mm [122]. Using this method, the

expression levels of genes that can define the border and layers
of medial entorhinal cortex were identified [122]. In the future,
more general methods are needed to integrate spatial gene
expression data into the standard 3D space.
Expression of non-coding RNAs

Current transcriptome data of the brain mainly focus on the

expression of protein-coding genes (mRNAs), whereas the
expression features of non-coding RNAs (ncRNAs) are often
ignored. In recent years, a series of studies have shown that

ncRNAs are of great importance in brain development and
neurological disorders [123,124]. In an early study, Mercer
et al. analyzed the ISH data from the adult mouse brain and

identified a large number of ncRNAs (849 transcripts) [125];
most of these ncRNAs have specific expression profiles in dif-
ferent brain regions and cell types [125]. In another study, Fer-
tuzinhos et al. focused on the transcriptional differences

among neocortex layers and how these differences change dur-
ing brain development. As a result, they profiled the temporal
transcriptomes of the mouse S1 region, including protein-

coding genes and ncRNAs [26]. Similarly, Ziats and Rennert
explored the roles of microRNAs (miRNAs) during human
brain development, and identified miRNAs with spatial-

and/or sex-dependent expression and their putative targets
[126]. Further functional analysis revealed that these differen-
tially expressed miRNAs are involved in many basic develop-

mental events and neurological disorders [126]. All the
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aforementioned studies demonstrate that necessity of explor-
ing the expression of ncRNAs and their regulatory basis
throughout brain development.
Integrative analysis with other neuro-omics data

The rapid development of high-throughput sequencing tech-
nologies provides not only transcriptome atlases but also other
omics atlases of the brain. Transcriptomes reflect the abun-

dances of RNA, whereas epigenomics data, such as DNA
methylation and histone modifications, describe the underlying
regulatory mechanisms of gene expression. Additionally, pro-

teomics data provide a more reliable readout of gene expres-
sion. With the available isolation of more homogeneous
brain samples and great advances in single-cell analysis

[127,128], multiple omics data of the brain can be obtained.
For example, Illingworth et al. explored the interindividual
variability in the human brain methylome and found that com-
pared to other brain regions, the cerebellum has a distinct

methylation pattern, which is consistent with the results of
transcriptome analysis [129]. In another study, Vermunt
et al. identified cis-regulated elements across brain regions,

and further analysis of coregulation of the enhancer network
revealed hidden cell type and functional information [130].
Furthermore, the psychENCODE project aims to construct a

neurobiological epigenetic landscape of adult and developing
human brains that are normal or diseased [131]. Based on these
high-dimensional multi omics, it is necessary to develop sys-

tematic approaches to conduct integrative analyses. Integrat-
ing different multi omics datasets can help us better explore
the molecular mechanisms underlying complex phenotypes
and neurological disorders.
Conclusion

In recent years, the hypergrowth of next-generation technolo-
gies has enabled high-throughput transcriptome measurement

of the brain throughout its main developmental stages. The
accompanying brain transcriptome atlases are also valuable
sources to reveal the molecular architecture of the brain. Com-

putational methods are important to decode these high-
dimensional transcriptome data. Combined with transcrip-
tome data and appropriate approaches, the relationships
among spatial and temporal gene expression, the complex

brain traits, and neurological disorders can be studied. How-
ever, with the emergence of new data and the limitations of
current data (such as low resolution and the lack of non-

coding genes), developing new computational methods
remains necessary to overcome limitations and identify new
molecular underpinnings of the brain. Furthermore, new sys-

tematic approaches are needed to conduct integrative analyses
of transcriptomic data and other neuro-omics data.
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