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Objective. A case-control study was conducted to explore the application and clinical value of machine learning-based cervical
cancer (CC) diagnosis and prediction model in adjuvant chemotherapy of CC. Methods. From August 2019 to August 2021, 46
patients with stage IA CC (study group) and 55 patients with high-grade squamous intraepithelial lesions (HSIL) (control group)
were retrospectively analyzed. All patients completed routine MRI examinations, the ADC values of diseased CC and normal
cervix and cervical tissues in different stages were compared, and the changes of ADC values in CC tissues before and after
chemotherapy were analyzed. The training set (IA =37, HSIL =44) and test set (IA =9, HSIL =11) are set in a ratio of 4:1. The
preoperative MRI images were collected and uploaded to the radiomics cloud platform after preprocessing, and the cervix was
manually delineated layer by layer on OSag-T2WI, OAx-TIWI, and OAx-T2FS, respectively, to obtain a three-dimensional
volume of interest (VOI) of the cervix to extract omics features. Variance Threshold analysis, univariate feature selection
(SelectKBest), and least absolute shrinkage and selection operator (LASSO) are adopted to reduce the dimension of data and enroll
features. The arbitrary forest model was adopted for machine learning, the ROC curve was drawn, and the diagnostic performance
of different sequence omics models was analyzed. Results. Compared with ADC of stage A CC and HSIL, the ADC value of CC was
remarkably lower than that of normal CC (P < 0.05). The ROC curve analysis of ADC value to differentiate CC and normal cervix
indicated that the AUC was 0.838 and the 95% confidence interval was 0.721-0.955. According to the maximum Youden index of
0.848, the optimal critical value of ADC was 1.267 x 10> mm®/s and the sensitivity and specificity were 92.21% and 9.48%,
respectively. All results are indicated in Table 2. After CC treatment, 12 patients were effective (CR + PR) and 4 patients were
ineffective (PD + SD). When the b value was 1000 s/mm?, the ADC value of the effective patients after the second chemotherapy
was significantly higher than that of the first chemotherapy and before treatment (P < 0.05). There was no significant difference
between the ADC value after the first chemotherapy and before treatment, compared with before treatment (P > 0.05). There was
no significant difference in ADC value between the ineffective patients before treatment and after the first and second che-
motherapy (P>0.05). A total of 8 omics features were extracted based on OSag-T2WI, all of which were wavelet features,
including 7 texture features and 1 first-order feature. A total of 10 omics features were extracted based on OAx-T1WI, including 6
wavelet first-order features, 2 gradient first-order features, and 2 wavelet texture features. Based on OAx-T2FS, 6 omics features
were extracted, including 3 wavelet texture features, 2 original shape features, and 1 logarithmic first-order feature. Based on
OSag-T2WI&OAx-T2FS, 9 histological features were extracted, 4 from OSag-T2WI and 5 from OAx-T2FS. The diagnostic
performance of the four arbitrary forest models is indicated in Table 1, and the ROC curve is indicated in Figure 6. The diagnostic
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performance of the omics model based on OSag-T2WI&OAx-T2FS was the best in both the training set and the test set. The AUC
of the training set was 0.991 (95% CI (0.94, 1.00)), and the accuracy rate was 0.925. The AUC of the test set was 0.894 (95% CI (0.75,
1.00)), and the accuracy rate was 0.835. On the other hand, the diagnostic efficiency of the group model based on OAx-T1WI was
the worst in both the training set and the test set. The AUC of the training set was 0.713 (95% CI (0.52, 0.92)), and the accuracy rate
was 0.71. The AUC of test set is 0.513 (95% CI (0.24, 0.77)), and the accuracy rate was 0.56, which has no practical clinical
significance. Conclusion. A CC diagnosis and prediction model based on machine learning can better distinguish stage IA CC from
HSIL in the absence of clear lesions, which is of great significance for reducing invasive examination before surgery, guiding

surgical procedures and adjuvant chemotherapy for CC.

1. Introduction

With the continuous improvement of material living
standards in modern society, the living environment and
lifestyle of human beings have also undergone corre-
sponding changes and the accompanying cancer problem
has become the most serious problem threatening human
health [1]. According to estimates from the “Global
Cancer Incidence and Mortality 2018” (GLOBO-
CAN2018) data compiled by the International Agency for
Research on Cancer, there were approximately 18.1
million new cancer cases and 9.6 million cancer deaths in
2018. According to the Surveillance, Epidemiology, and
End Results Program (SEER) project, in 2019, about 1.8
million people in the United States was diagnosed with
cancer, and meanwhile, 606,880 people passed away from
cancer [2]. An estimated number of 268,600 women and
2,670 men were diagnosed with breast cancer, the most
common cancer. Compared with other cancers, CC ranks
at the forefront among the cancers that affect women’s
health, especially in areas with backward economic de-
velopment. Due to the lack of medical resources and the
backward medical level, most women rarely have the
opportunity to be vaccinated with HPV. vaccines and
surgeries or related cancer drugs are rarely performed or
administered after the disease, so the morbidity and
mortality of the disease are higher than in developed
regions. In recent years, the incidence and mortality of CC
have been on the rise, especially among middle-aged and
elderly women. Therefore, it is necessary to standardize
the diagnosis and treatment of CC and enhance the
prognosis of patients with CC.

Over the past few decades, researchers have taken dif-
ferent approaches to diagnosing the type of cancer before it
becomes symptomatic [3]. Traditional cancer diagnosis
methods usually use cell morphology, histopathology, and
other methods, but traditional cancer diagnosis methods
usually cannot meet the requirements of early diagnosis and
early treatment required by clinical practice. With the
gradual emergence of new technologies in the field of ma-
chine learning, machine learning has been applied in dif-
ferent fields and in different scopes, such as advertising,
insurance, finance, social media, and fraud detection [4]. At
the same time, a large number of cancer data have been
collected and provided to the machine learning research
community. Compared with traditional cancer diagnosis
methods, machine learning does not use explicit instructions
but relies on pattern recognition and reasoning to

discover and identify specific patterns from complex
datasets, which can effectively predict cancer. However,
accurate prediction of cancer outcomes remains one of the
most interesting and challenging tasks currently in the
field of machine learning. Cancer diagnosis prediction
includes three prediction tasks: (1) cancer susceptibility
prediction; (2) cancer survival prediction; (3) cancer re-
currence prediction [5]. In the first two cases, the first is to
try to discover the likelihood that the disease will evolve
into a cancer and the second is to predict a survival
outcome, such as how long a patient will survive. In the
last case, it is to predict the likelihood of developing a
cancer after a complete or partial remission of the disease.

When experts formulate a diagnosis and treatment plan
for CC patients, they usually predict based on their past
diagnosis and treatment experience or search for medical
records similar to the current patient in the computer. At
each stage of the treatment of CC patients, experts need to
consider many factors, such as the stage of CC, whether to
preserve fertility, whether there are high-risk factors for
recurrence after surgery (parauterine invasion, deep stromal
invasion, or lymph node invasion), and lymph node me-
tastasis status [6, 7]. The effect of disease diagnosis and
treatment is affected by the medical level of doctors. The
process of formulating a diagnosis and treatment plan is
based on past experience and the current situation of pa-
tients and is subject to a certain degree. Especially for areas
with backward medical standards, it affects patients to a
certain extent.

HSIL is considered a precancerous lesion of CC, and
stage IA CC is an early stage that can only be diagnosed by
microscopy [1, 8]. The surgical methods of the two are quite
different. HSIL is mainly based on cervical conization. In
principle, total hysterectomy is required for stage IA CC
(extrafascial hysterectomy for stage IA1, modified extensive
hysterectomy, and pelvic hysterectomy for stage IA2) [9, 10].
Therefore, the accurate identification of the stage of the
disease before operation is of great significance to the choice
of operation mode and scope. However, the scope of lesions
in stage IA CC and HSIL is often limited on MRI images, and
it is often difficult to identify them with naked eyes, which
leads to the limited value of conventional MRI images in the
recognition of both. In recent years, with the rise of imaging
science research, the information reflected by images is no
longer limited to morphological changes and the data po-
tential behind it has been gradually excavated and utilized.
As a recent innovation in medical image analysis, imaging
technology can extract quantitative features from medical
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images with high throughput, thus transforming visual
images into computable data [11-13]. There has been a lot of
practice to combine the imaging data with machine learning
to analyze the cervical lesions which are difficult to be
recognized by the naked eye. In this study, the histological
features of cervix were extracted from magnetic resonance
images and a machine learning model was established with
arbitrary forest algorithm (RF) to explore the role of imaging
techniques in distinguishing stage IA CC from HSIL. The
application and clinical value of the machine learning-based
CC diagnosis and prediction model in adjuvant chemo-
therapy of CC were analyzed.

2. Patients and Methods

2.1. General Information. Forty-six patients with stage IA
CC treated in our hospital from August 2019 to August
2021 were enrolled. All patients were confirmed as having
advanced primary CC by operation and pathology or
cervical biopsy, and no radiotherapy, chemotherapy, or
operation was performed before imaging examination.
The age ranged from 28 to 69 years, with an average age of
(46.02 + 7.42) years; 28 cases of squamous cell carcinoma
and 18 cases of adenocarcinoma were treated with NACT
after the diagnostic examination, and MRI examination
was performed again after the first and second chemo-
therapy, respectively. Another 55 patients with HSIL were
enrolled as the normal control group, aged 29-65 years,
with an average age of (45.31 £ 7.42) years. There was no
significant difference in general data such as age and body
weight (P >0.05), which was comparable. This study was
permitted by the medical ethics committee of our hos-
pital, and the subjects were exempted from informed
consent.

Selection criteria were as follows: (1) patients with HSIL
or stage IA CC confirmed by pathology during or after
operation; (2) patients who did not receive any treatment
before operation; (3) MRI examination was performed in
our hospital before operation, the image quality was good,
and there was no obvious artifact.

Exclusion criteria were as follows: (1) there is a cervical
capsule; (2) there is cervical leiomyoma or low uterine
leiomyoma involving cervical myometrium; (3) there are
congenital malformations in the upper part of the cervix or
vagina.

2.2. Treatment Methods

2.2.1. The Method of Treatment and the Judgment of Curative
Effect. Total intravenous neoadjuvant chemotherapy
(NACT): cisplatin 50 mg/m ~ 2 + Isu 75 mg/m?* was given
for one day, hydration treatment was performed before
and after chemotherapy, and the second course of
treatment was performed after 2 weeks. After two courses
of treatment, the curative effect was judged according to
the latest international criteria for evaluating the curative
effect of solid tumor: (1) complete response (CR) tumor
disappeared completely; (2) the maximum diameter of
partial response (PR) tumor (measured on conventional

MRI T2WTI) decreased by at least 30%; (3) the maximum
diameter of disease progression (PD) tumor increased by
20% or more; (4) stable disease (SD) was between PR and
PD. According to the clinical efficacy after treatment,
patients were assigned to effective group (CR+ PR) and
ineffective group (PD +SD).

2.2.2. Image Acquisition. Images were acquired by scanning
with a 3.0T MR device (GEDiscoverySilent750 W). The
scanning parameters of the equipment are as follows: OSag-
T2WI (propeller sequence, TR4390ms, TE90ms), slice
thickness 4mm, slice interval 1mm, field of view
260 mm x 260 mm, matrix 320 x 320; OAx-T1WI (FSE se-
quence, TR810ms, TE9 ms) and OAx-T2ES (propeller se-
quence, TR4530 ms, TE80 ms), layer thickness 5mm, layer
spacing 1 mm, field of view 260 mm x260 mm, matrix
384 x 384. Images are copied in DICOM format (patient
information removed).

2.2.3. Image Preprocessing and Segmentation. Copied im-
ages were preprocessed using the Simple ITK package in
Python (version 3.8). The N4 bias field correction is adopted
to eliminate grayscale differences caused by local magnetic
field inhomogeneities; the resampling uses a linear inter-
polation algorithm and a nearest neighbor interpolation
algorithm to achieve uniform and isotropic voxel size. The
preprocessed images were uploaded to the radiomics cloud
platform (Huiying Medical Technology Co., Ltd., Beijing).
The flow chart of radiomics processing is indicated in
Figure 1. The entire cervical region is employed as the ROI.
The axial plane is delineated layer by layer along the cervical
border and finally fused into a VOI. In sagittal delineation,
there is a delineation from the second layer that appears on
one side of the cervix to the previous layer where the
contralateral cervix disappears and a delineation along the
2 mm area outside the border at the external cervical part; in
axial delineation, the layer that appears from the upper
cervix is delineated and the second layer is drawn to the layer
after the cervix disappears.

2.2.4. Feature Extraction. 1409 omics features including
first-order features, shape features, texture features, and
high-order features in VOI are extracted. Texture features
include gray-level dependence matrix (GLDM), gray-level
co-occurrence matrix (GLCM), gray-level size zone matrix
(GLSZM), gray-level run length matrix (GLRLM), and
neighboring gray tone difference matrix NGTDM). Higher-
order features are logarithm, exponential, gradient, square,
square root, and wavelet transform for first-order features,
shape features, and texture features, among which wavelet
includes LLL, LLH, LHL, HLL, LHH, HLH, and HHL.

2.2.5. Feature Selection. The data were successively sub-
jected to dimension reduction and selection using Variance
Threshold method, single variable feature selection method
(SelectKBest), and leaf absolute shrinkage and selection
operator (LASSO) regression. Among them, the Variance
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FiGure 1: ROC curve analysis of ADC value in differentiating CC
from the normal cervix.

Threshold enrolls the feature with the threshold >0.80, the
SelectKBest enrolls the feature with P < 0.05, and the LASSO
regression enrolls the most valuable feature based on the
coefficient of the optimal alpha.

2.2.6. Machine Learning. Using the RF model, the eigen-
values of each sequence filtered by LASSO regression were
included in the calculation. The training set (IA =34,
HSIL=41) and the test set (IA=9, HSI=10) were set
according to the ratio of 4:1. Based on the eigenvalues
extracted by OSag-T2WI, OAx-TIWI, OAx-T2FS, and
OSag-T2WI&OAx-T2FS, four RF models were established,
and ROC curves of the test set were drawn to test the di-
agnostic efficiency of the models. The specificity and sen-
sitivity at the optimal cutoff point (maximum Youden index)
were chosen.

2.2.7. Statistical Analysis. All data were analyzed with
SPSS17.0 statistical software, measurement data were
expressed in the form of x+s, measurement data between
groups were compared by the t test, and count data were
calibrated by the y” test. The area under the receiver op-
erating characteristic (ROC) curve (AUC) was adopted to
analyze the value of ADC values in diagnosing CC. P <0.05
was considered statistically significant.

3. Results

3.1. Comparison of ADC of Stage IA CC and HSIL. First, we
compared ADC of stage IA CC and HSIL. The ADC value of
CC was statistically lower than that of normal CC (P <0.05).
All results are indicated in Table 1.

3.2. ROC Curve Analysis of ADC Value in the Diagnosis of CC.
We analyzed the diagnostic value of using ROC curve to
distinguish CC from the normal cervix. The results indicated
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TaBLE 1: Comparison of ADC of stage IA CC and HSIL (X + s).

Group N Pathological results t P

R group 46 0.91+0.17 17.220 <0.01
C group 55 1.49+£0.16

that AUC was 0.838, 95% confidence interval was

0.721~0.955, the maximum value of Youden index was
0.848, the best critical value of ADC was 1.267 x 10> mm?/s,
and the sensitivity and specificity were 92.21% and 9.48%,
respectively. All the results are indicated in Table 2.

3.3. Comparison of ADC Values of Patients in Different
Treatment Groups at Different Time Points before and after
Treatment. After CC treatment, 12 patients showed effect
(CR+PR) and 4 patients did not show effect (PD + SD).
When the b value was 1000 s/mm?, the ADC value of the
effective patients after the second chemotherapy was
statistically higher than of the first chemotherapy and
before treatment P < 0.05(P < 0.05); the ADC value after
the first chemotherapy was not statistically different from
that before treatment (P >0.05). There was no significant
difference between the ADC values of ineffective patients
before treatment and after the first and second chemo-
therapy (P >0.05). The specific results are indicated in
Table 2.

3.4. Model Building. We built a diagnosis and prediction
model of CC based on machine learning. The specific
results of imaging feature screening are as follows: 8
ensemble features are extracted based on OSag-T2WTI, all
of which are wavelet features, including seven texture
features and one first-order feature. A total of 10 com-
binatorial features are extracted based on OAx-TIWI,
including 6 wavelet first-order features, 2 gradient first-
order features, and 2 wavelet texture features, and 6
combinatorial features are extracted based on OAx-T2FS,
including 3 wavelet texture features, 2 original shape
features, and 1 logarithmic first-order feature. Nine his-
tological features were extracted based on OSag-
T2WI&OAx-T2FS, four from OSag-T2WI and five from
OAx-T2FS. Specific results are indicated in Figures 2-5.

3.5. Comparison of Diagnostic Efficiency of Stochastic Forest
Models with Different Sequences. We compared the diag-
nostic efficiency of different sequence arbitrary forest
models. The diagnostic efficiency of the four arbitrary
forest models is indicated in Table 1, and the OSag-
T2WI&OAx-T2FS-based ROC curve is indicated in Fig-
ure 6. The diagnostic efficiency of the combinatorial model
based on ROC is the best in both training and test sets. The
AUC of the training set was 0.991, with 95% CI of (0.94,
1.00), and the accuracy rate was 0.925. The AUC of the test
set was 0.894, with 95% CI of (0.75, 1.00), and the accuracy
rate was 0.835. The diagnostic efficiency of the omics
model based on OAx-T1WI was worst in both the training
set and the test set. The AUC of the training set was 0.713,
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TaBLE 2: Comparison of ADC values at different time points before

x10° mm?/s).

and after treatment in patients with different curative effects (x + s,

Group

Before treatment

One week after operation

2 weeks after operation

Effective 12 0.91 +0.
Invalid 4 0.91 +0.

t 0.000

14
16

p >0.05

1.02+0.16

1.03+0.12
0.114
>0.05

1.24+0.38%
1.02+£0.27
1.061
<0.01

Note. *Compared with before treatment, P < 0.05; "compared with the first chemotherapy, P < 0.05.
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Figure 6: ROC curve of the arbitrary forest test set. Note: A: OSag-T2WT; B: OAx-TIWI; C: OAx-T2FS; D: OSag-T2WI & OAx-T2FS.

TaBLE 3: Diagnostic efficiency of arbitrary forest models with different sequences.

Model Test set Training set
AUC 95% CI Sensitivity degree  Specificity degree AUC 95% CI Sensitivity degree  Specificity degree
OSag-T2W1
HSIL  0.851 (0.68, 1.00) 1.00 0.58 0.971  (0.92, 100) 0.92 0.95
IA 0.851  (0.68, 1.00) 0.58 1.00 0.971  (0.92, 100) 0.95 0.92
OAx-TIWI
HSIL 0.513  (0.24, 0.77) 0.57 0.57 0.713  (0.52, 0.92) 0.76 0.68
IA 0.513  (0.24, 0.77) 0.57 0.57 0.713  (0.52, 0.92) 0.68 0.76
OAx-T2FS
HSIL 0.832 (0.61, 1.00) 0.79 0.90 0.943  (0.88, 1.00) 0.88 0.89
IA 0.832  (0.61, 1.00) 0.90 0.79 0.943  (0.88, 1.00) 0.89 0.88
OSag-T2WI&OAx-T2FS
HSIL 0.894 (0.75, 1.00) 0.79 0.90 0.991 (0.94, 1.00) 0.94 0.93
IA 0.894  (0.75, 1.00) 0.90 0.79 0.991 (0.94, 1.00) 0.93 0.94

Note. HSIL: high-grade squamous intraepithelial lesion; IA: CC (stage IA); OSag: sagittal view; OAx: axial view; FS: fat-suppressed sequence.

with 95% CI of (0.52, 0.92), and the accuracy rate was 0.71.
The AUC of the test set was 0.513, with 95% CI of (0.24,
0.77), and the accuracy rate was 0.56, which has no
practical clinical significance. All the results are indicated
in Table 3 and Figure 6.

4, Discussion

In the past decade, a variety of different techniques and
algorithms have been widely adopted for disease prediction
[12]. Most of these studies use machine learning methods to
model and identify informative factors, which are then
employed in classification schemes. The success of disease
diagnosis depends on the quality of medical diagnosis.
Improving the quality of medical diagnosis is the ultimate
goal of machine learning and intelligent medicine. Major
machine learning techniques, including neural networks and
decision trees, have been adopted in cancer detection. Many
machine learning techniques have been applied to the
medical diagnosis of cancer, such as CC, breast cancer,
prostate cancer, and lung cancer. According to Court et al.’s
findings on machine learning and cancer retrieved from

PubMed, more than 7510 related articles have been pub-
lished to date [13]. The vast majority of these articles uses
one or more machine learning algorithms and integrates
data from different sources for tumor detection and cancer
type prediction.

Over the past decade, the application of supervised
learning techniques in cancer prediction has indicated an
increasing trend and classification algorithms are widely
adopted in various problems posed in cancer research. Shi
introduced the application of machine learning in medical
images, mainly including the use of machine learning
techniques to solve practical problems in “image recognition
of lung cancer pathological cells” and “prostate CT image
segmentation” [14]. Yu proposed a method combining
transfer learning with convolutional neural network, which
has a good effect in cancer image recognition [15]. Lv
proposed a support vector machine-based pancreatic cancer
detection method and found 12 characteristic genes closely
related to pancreatic cancer [16]. Ning et al. applied semi-
supervised learning of graph convolutional networks to predict
whether a patient had cancer [17]. Wu and Zhou proposed two
improved support vector machine methods, SVM-PCA and
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SVM-REE, for the diagnosis of CC [18]. They used a dataset of
858 cases, each containing 32 predictor variables and 4 target
variables. Due to the imbalance of the dataset, oversampling
was adopted during preprocessing, after which 668 records
were enrolled for analysis. The results indicate that SVM-PCA
outperforms SVM-RFE. When using SVM-REFE for prediction,
the authors also listed the top 10 relevant characteristics of the 4
target variables, such as years of hormonal contraceptive use
and smoking. In the past, typical information used by physi-
cians included histological, clinical, and population-based data
to make sound judgments about cancer prediction. Diet,
weight, family history, age, high-risk habits, and exposure to
environmental carcinogens play a key role in predicting cancer
development.

Ayer et al. used a neural network approach to risk as-
sessment of the likelihood of developing breast cancer [19].
The data adopted by the authors included mammograms
and demographic characteristics. In the study, the neural
network was adopted as a predictive model to find radio-
graphs of patients with malignant breast cancer in a mixture
of radiographs and to classify patients with benign breast
cancer from those with malignant breast cancer. They build
models with a large number of hidden layers, which are
more accurate than networks with a small number of hidden
layers. Data collected for the study included 48,774 mam-
mograms, as well as demographic risk factors and tumor
characteristics. All mammograms were reviewed by a ra-
diologist, and labeling information was obtained. The au-
thors then use this dataset to train a neural network model
and evaluate its performance through ten-fold cross-vali-
dation. Furthermore, to prevent overfitting, the authors use
the Early Stopping method. In general, this method reduces
errors during training and stops when overfitting occurs.
After training and testing with ten-fold cross-validation, the
model has a calculated AUC of 0.965. The authors believe
that if trained on a large amount of data, their model will be
able to accurately assess breast cancer risk.

Early identification of cervical lesions is of great sig-
nificance, not only to save the patient’s life but also to
maximize the preservation of the patient’s reproductive
function [20]. At present, for stage IA CC and HSIL, the
“three-step” procedure of cervical cytology and high-risk
human papillomavirus (HPV) DNA detection, colposcopy,
and cervical biopsy is still used. There is not yet a nonin-
vasive test that can tell the two apart. For cervical lesions
beyond stage IA, traditional MRI can assess the extent of
invasion, lymph node involvement, and distant metastasis,
thereby helping staging [21]. However, for stage IA CC and
HSIL, the changes reflected in the images are often at the
millimeter level or even sub-millimeter level, and there is a
large error in the recognition of the human eye. After the
combination of radiomics and artificial intelligence, small
differences that cannot be recognized by the naked eye can
be found, which is noninvasive and convenient, and it has
good patient compliance, which has practical research
significance.

Stage IA CC is a lesion with an invasion depth of less
than 5mm, the lesions of HSIL are more limited, and it is
difficult to observe the existence of both on MRI images with

the naked eye [22]. Therefore, the cervix was delineated as an
ROL In order to prevent the extraction of too many non-
strong features from interfering with modeling, when de-
lineating in the sagittal plane, the delineation layer removes
the layers where the cervix begins to appear on the left and
right sides, because these two layers often contain more
parametrial tissue, which will cause the volume effect and, in
the same way, removes the layer of the upper cervix and
uterus junction when delineating in the axial position.
Meanwhile, given that the most common site of CC is the
mucosal transition zone of the external cervical part, in order
to maximize the inclusion of the lesions in the ROI, when
delineating the sagittal view, the external cervical partwill be
delineated to 2 mm outside the boundary [23]. The observed
area is delineated along the cervical border, and the axially
observed area needs to be drawn to the level after the cervix
disappears. This segmentation can not only incorporate the
lesion into the ROI as much as possible when it is difficult for
the naked eye to identify where it is but also reduce the
computational burden caused by the large delineated area.
The final generated VOI, as a three-dimensional image, can
more comprehensively reflect the heterogeneity of the tissue
and enhance the diagnostic efficiency of the model.

In this study, the AUC values of the training set and test
set of the arbitrary forest model established based on OAx-
TIWI eigenvalues were not ideal. The AUC of the test set was
only 0.513, which was equivalent to arbitrary guessing and
had no discriminant value. The authors speculated that it
was imaging. The sequence and eigenvalue types cause the
model to underfit. Roy et al. collected three groups of TIWI
and T2WI images of breast cancer patients with different
resolutions, and based on this, they generated multiple
groups of MRI images with different signal-to-noise ratios
[23]. Values are more susceptible to changes in signal-to-
noise ratio than T2WI. In this experiment, 80% of the 10
omics feature values extracted based on OAx-TIWI were
first-order features. First-order features are simple statistical
features that convert VOI into a single histogram to describe
the distribution of voxel intensities and derive from them
parameters such as Energy, Entropy, Range, and Skew Ei-
genvalues such as Skewness. These feature values are simple
and easy to extract, but not as reliable as texture features.
This was also confirmed by the experiments of Mu et al. [24].
In their experiments, there were differences in first-order
features such as Entropy and standard uptake value kurtosis
(SUVpeak) in early and advanced CC, based on their
established support. The vector machine (SVM) model AUC
values are all lower than texture features, and the AUC
(0.625) of SUVpeak is the lowest among all feature values. In
summary, the authors believe that the first-order eigenvalues
extracted based on the OAx-TIWI sequence may not be
strong features, which will lead to underfitting of the model,
so the OAx-T1WTI is not adopted to construct a joint analysis
model.

Texture features are extracted from different descriptive
matrices, which can reflect the correlation between different
voxels in a given image and capture the spatial rela-
tionship between adjacent voxels, so it has important
value in studying tissue heterogeneity. In this experiment,



the texture eigenvalues mainly come from the following
three groups: GLDM describes the number of voxels with
similar gray values within a certain distance centered on a
voxel and is a matrix representing the surrounding cor-
relation; GLRLM defines the length of continuous voxels
with the same gray value in different directions, reflecting
the thickness and uniformity of the image texture; GLSZM
quantifies the characteristics of the gray area in the image,
which can measure the voxels in the image [25, 26]. The
uniformity of gray distribution is a group of texture
features that are frequently used in medical imaging re-
search. Before that, no one has used the omics model to
predict the stage IA CC and HSIL. Guo et al. assigned CC
into early stage (stage IB and stage II) and advanced stage
(stage Il and stage IV) according to FIGO staging [27]. In
the two groups, the GLRLM-based SVM model has the
highest AUC (0.88) and the GLSZM (AUC=0.764) is
slightly second. The most ideal model in this experiment is
GLRLM (AUC=0.89). The texture features are mainly
from GLSZM. So far, it has been empirically verified that
the degree of gray level quantization has an important
impact on texture classification performance. Therefore,
GLSZM is more effective in characterizing texture con-
sistency and aperiodic or speckle texture than GLDM and
GLRLM and has better performance on the texture of
nuclei and PET images. In addition to being used to
predict staging, GLRLM has also been indicated to predict
postoperative recurrence of CC. Interestingly, some
studies have found that GLRLM is less reproducible and
unreliable in the omics features of CC. Roy et al.’s ex-
periments also seem to confirm this point. They think that
GLRLM is the most sensitive texture feature to the change
of signal-to-noise ratio and there is no unified conclusion.

The eigenvalues screened in this study also include
GLDM, but it has not been found to be related to CC staging
in the previous literature [28]. The authors speculate that it is
related to the way ROI is delineated. The invasiveness of
HSIL is different from that of stage IA CC. The former is
confined to the epithelial layer and has not yet penetrated the
basement membrane, while the latter penetrates through the
basement membrane and infiltrates the interstitial layer.
There is a fundamental difference in the transition zone at
the edge of the lesion, and GLDM is exactly the A matrix
representing the correlation between the center voxel and
surrounding voxels. Guo et al. found that GLDM was an
important feature for predicting myometrial invasion in
endometrial cancer [27]. Yu et al. also found that GLDM was
highly correlated with the expression level of Ki-67 in breast
cancer tissues and Ki-67 was closely related to the expression
of tumor cells [28]. Growth infiltration and lymph node
metastasis are closely related. Previous experiments tended
to focus more on the lesion itself, while ignoring the rela-
tionship between it and normal tissue. The ROI in this
experiment has a wide range and can fully reflect the texture
features around the lesion.

The ROC curve was adopted to analyze the diagnostic
performance of ADC value for CC. According to the
maximum  Youden index, the ADC value of
1.267 x 10> mm?/s was enrolled as the best critical value,
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which has high diagnostic performance. In addition, this
study found that the difference in ADC value of CC in
different stages was significant, indicating that in addition to
distinguishing CC from normal cervix, DWI can also be
employed to indicate disease staging and provide a reference
for evaluating the malignancy of CC. Due to the small
number of included cases, this study did not study the
threshold value of ADC value for diagnosing different stages
of CC and further studies are needed to collect further cases.

In this study, it was found that the ADC value of the
effective group increased slightly after the first chemo-
therapy and the ADC value increased significantly after the
second chemotherapy; while the ADC value of the patients
in the ineffective group changed after the first and second
chemotherapy. It is not obvious suggesting that the appli-
cation of DWI to detect the changes of ADC value in CC
patients before and after NACT treatment can dynamically
monitor the chemotherapy efficacy, which has potential
clinical application value for the prediction of CC chemo-
therapy efficacy.

Conclusively, the arbitrary forest model based on MRI
imaging can better distinguish stage I A CC from HSIL
without obvious lesions, which has certain clinical signifi-
cance in reducing preoperative invasive examination and
guiding CC adjuvant chemotherapy.
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