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Purpose: This study aimed to develop a nomogram model based on multiparametric
magnetic resonance imaging (MRI) radiomics features, clinicopathological characteristics,
and blood parameters to predict the progression-free survival (PFS) of patients with
nasopharyngeal carcinoma (NPC).

Methods: A total of 462 patients with pathologically confirmed nonkeratinizing NPC
treated at Sichuan Cancer Hospital were recruited from 2015 to 2019 and divided into
training and validation cohorts at a ratio of 7:3. The least absolute shrinkage and selection
operator (LASSO) algorithm was used for radiomics feature dimension reduction and
screening in the training cohort. Rad-score, age, sex, smoking and drinking habits, Ki-67,
monocytes, monocyte ratio, and mean corpuscular volume were incorporated into a
multivariate Cox proportional risk regression model to build a multifactorial nomogram.
The concordance index (C-index) and decision curve analysis (DCA) were applied to
estimate its efficacy.

Results: Nine significant features associated with PFS were selected by LASSO and used
to calculate the rad-score of each patient. The rad-score was verified as an independent
prognostic factor for PFS in NPC. The survival analysis showed that those with lower rad-
scores had longer PFS in both cohorts (p < 0.05). Compared with the tumor–node–
metastasis staging system, the multifactorial nomogram had higher C-indexes (training
cohorts: 0.819 vs. 0.610; validation cohorts: 0.820 vs. 0.602). Moreover, the DCA curve
showed that this model could better predict progression within 50% threshold probability.
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Conclusion: A nomogram that combined MRI-based radiomics with clinicopathological
characteristics and blood parameters improved the ability to predict progression in
patients with NPC.
Keywords: radiomics, progression-free survival, nasopharyngeal carcinoma, Ki-67, blood parameters
1 INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a malignant tumor in the
mucous membrane of the nasopharynx. The incidence and
mortality of NPC vary in regional distribution, especially in
Southeast Asia (1–3). Although intensity-modulated radiotherapy
(IMRT) significantly improved the prognosis of NPC, some
patients still experience progression (4, 5). At present, the risk
assessment of NPC is mainly determined by the tumor–node–
metastasis (TNM) staging system, which only has 61% accuracy for
predicting the local recurrence of NPC (6). While it incorporates
local tumor invasion, positive lymphnodes, and distantmetastases,
TNM cannot explain the temporal and spatial heterogeneity or
changes in the internal and external environments of tumor cells.
Plasma Epstein–Barr virus (EBV) DNA, which may affect the
growth and apoptosis of the NPC cell line, has been used as an
independent prognosticmarker in endemic areas, but the detection
rate of EBV is low in nonendemic areas (7, 8). Therefore, it is urgent
to identify more representative and comprehensive biomarkers to
predict NPC prognosis.

Many studies reported that a large number of clinical biomarkers
suchasmonocytes (MONO),mean corpuscular volume (MCV), and
Ki-67 expression are associated with the tumor microenvironment
and tumor immune escape (9–11). There are no regional differences
in the expression of these markers. Beyond these biomarkers, the
emerging field of radiomics is supposed to be a bridge between
medical imaging and clinical medicine (12). Radiomics features are
used for tumor diagnosis, phenotype, and prognosis (13–15). By
extracting innumerable quantitative imaging features, the differences
in tumor heterogeneity and microenvironment may be explained.
Some recent studies showed thatmagnetic resonance imaging (MRI)
radiomics were significantly associatedwithNPCprognosis (16–18).
However, no publications integrated blood parameters, Ki-67, and
MRI radiomics to predict progression-free survival (PFS) in patients
with NPC.

We built and validated a nomogram prediction model based
on MRI, clinicopathological parameters, and blood parameters
to visually demonstrate the PFS of NPC and guide clinical
diagnosis and treatment.
magnetic resonance imaging; PFS,
aryngeal carcinoma; LASSO, least
tor algorithm; MONO, monocytes;
an corpuscular volume; C-index,
analysis; IMRT, intensity-modulated
sis staging system; EBV, Epstein–Barr
py; IC, induction chemotherapy; AC,
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2 MATERIALS AND METHODS

2.1 Patients
Data from patients treated in Sichuan Cancer Hospital from
January 2015 to December 2019 were reviewed. The inclusion
and exclusion criteria are presented in the Supplementary Data.
The study workflow is displayed in Figure 1. A total of 462
patients were included and randomly divided into a training
cohort (n = 323) and validation cohort (n = 139) at a 7:3 ratio.
The method and criteria of Ki-67 scoring are detailed in the
Supplementary Data. Clinical data (age, gender, smoking and
drinking habits, TNM, plasma EBV DNA) and blood parameters
were collected. All patients were restaged according to the 8th
Edition American Joint Committee on Cancer TNM Staging
System (19).

2.2 Treatment
2.2.1 Radiotherapy
All patients underwent IMRT. Delineation of the target area and
organs at risk were based on ICRU reports 50 and 62. The
prescribed doses for the target area were GTVnx 66–76 Gy,
GTVnd 66–70 Gy, CTV1 60–62 Gy, CTV2 50–56 Gy, and
CTVnd 50–56 Gy (28–33 fractions).

2.2.2 Chemotherapy
Patients with stage II (n = 23) underwent concurrent
chemoradiotherapy (CCRT). Those with stages III–IV (n =
439) were treated with two cycles of induction chemotherapy
(IC) followed by CCRT. The IC drugs were cisplatin (75 mg/m2,
d1–3) plus paclitaxel (135 mg/m2, d1) every 3 weeks for two
cycles. The CCRT drug was cisplatin (75 mg/m2, d1–3) given
every 3 weeks.

2.3 Follow-Up
After patients completed all treatments, they were followed-up
every 3 months in the first 2 years, every 6 months in years 3–5,
and annually thereafter. The review items included blood
parameters, nasopharyngeal MRI, chest computed tomography,
abdominal ultrasonography, or isotope bone scanning, and each
review item was determined according to the specific situation of
the patient. PFS was set as the primary endpoint.

2.4 MRI Acquisition and Image
Preprocessing
The pretreatment MRI parameters are listed in the Supplementary
Data. To avoid inhomogeneity due to different MRI devices, two
image preprocessing steps were applied. First, we used the N4ITK
algorithm to remove bias field artifacts (20). Second, the intensity
range was adjusted from 0 to 255. In addition to the original images,
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fang et al. Clinical-Radiomics Nomogram for NPC Prognosis
the Gaussian Laplace filter with sigma values of 4 and 5 mm was
used to reconstruct the images, and the features of the multiscale
resolution were extracted (21, 22). Preprocessing was performed in
the SimpleITK 2.0.2, which is an open-source platform for Python
3.8.5 (www.python.org).

2.5 Image Segmentation
We used 3D Slicer 4.11 software (open source and multiplatform
software; www.slicer.org) for manual segmentation (23). A
radiologist with 20 years of experience delineated the region of
interest (ROI), which refers to the margin of the nasopharyngeal
tumor at each level on axial CET1-w and T2-w images.

2.6 Extraction of Radiomics Features
A total of 1,037 radiomics features were obtained by
SlicerRadiomics (an extension for 3D Slicer 4.11 that
encapsulates pyradiomics library) from axial CET1-w and T2-
w images, respectively. Features of different categories were
considered: first-order statistics, shape-based (3D), gray-level
co-occurrence matrix (GLCM), gray-level run length matrix
(GLRLM), gray-level size zone matrix (GLSZM), gray-level
dependence matrix (GLDM), neighborhood gray tone
difference matrix (NGTDM), and wavelet-based features.
Frontiers in Oncology | www.frontiersin.org 3
2.7 Postprocessing of Radiomics Features
and Building of Radiomics Signature
To ensure the comparability of different features, Z-score
normalization was performed to unify data from different
levels into the same level. Feature selection was conducted in
the training cohort (n = 323). We used the least absolute
shrinkage and selection operator (LASSO) algorithm for
feature dimension reduction and screening. LASSO attempts to
shrink some coefficients of the models and sets others to zero, but
it may lead to overfitting, so we added a 10-fold cross-validation.
Nine noteworthy features were selected. These features were
linearly fitted according to the weights of their coefficients; for
each patient, the rad-score was calculated. The rad-score was
then used to build the radiomics signature.
2.8 Radiomics Survival Model
Development and Validation
To find the rad-score cutoff with the best sensitivity and
specificity, we generated a receiver operating characteristic
curve (ROC) using data from the training cohort. To explore
the potential association between radiomics features and PFS, we
separated patients in both cohorts into high- and low-risk groups
based on the cutoff value of rad-scores (patients below this cutoff
FIGURE 1 | The workflow of MRI-based radiomic analysis. After manual tumor segementation, 2074 features of each patients were extracted. Radiomics features
selection by the LASSO algorithm. These selected features were linearly fitted according to the weights of the coefficients to calculate the rad-score. Decision curve
analysis (DCA) compared the net benefit rate between the TNM stage system (Model 1 ) with our nomogram model (Model 4).
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value were considered low risk). Kaplan–Meier survival analysis
was used to identify PFS differences in both cohorts.

2.9 Evaluation and Comparison
of the Multifactorial Prognostic
Nomogram Model
Four models were set up to compare the prognostic efficacy
(model 1: clinical stage; model 2: radiomics; model 3: clinical
stage + rad-score; model 4: clinical data + rad-score). The
concordance index (C-index) was used to evaluate univariate
or multivariate Cox models. A nomogram was built to visualize
the results of the best prediction model in the training cohort
using the R software (version 4.1.0). We evaluated the uniformity
of the nomogram by plotting 3- and 5-year calibration curves.
Decision curve analysis (DCA) was performed to compare the
net benefit rate between the TNM stage system and this
nomogram for predicting prognosis.

2.10 Statistical Analysis
Statistical analyses were performed with the R software (version
4.1.0; www.r-project.org), SPSS (SPSS version 20.0, IBM Corp,
Armonk, NY, USA), and Python 3.8.5. Clinical data were
compared between the training and validation cohorts with
Independent samples t-tests, Mann–Whitney U tests, or Chi-
square tests. Missing data was processed using the “miceforest”
package from Python. Several R packages were employed:
LASSO in the “glmnet” package was used to select radiomics
features. Kaplan–Meier survival, Cox proportional hazard
regression, and C-index were calculated by the “survival” and
“rms” packages. DCA was performed with the “ggDCA” package.
The “pROC” and “ggplot2” packages were applied to generate
the ROC curve and rad-score histogram, respectively. For all
statistical tests, differences were considered significant at p < 0.05.
3 RESULTS

3.1 Clinical Parameters
This retrospective study included 462 patients with
pathologically confirmed nonkeratinizing NPC who were
treated at Sichuan Cancer Hospital between January 2015 and
December 2019. The clinical parameters of all patients in the
training and validation cohorts are listed in Table 1. The median
age was 49 years (range: 12–82 years), with 329 men and 133
women. The numbers of patients with each clinical stage were 0,
23, 193, 226, and 20 for stages I, II, III, IVA, and IVB,
respectively. The Ki-67 cutoff value from the ROC curve was
37.5% (range: 3%–90%). The cutoff value for classifying EBV
infection status was 400 copies/ml (negative: <400 copies/ml;
positive: ≥400 copies/ml). A total of 330 patients who met the
inclusion criteria underwent plasma EBV DNA tests before
treatment, and 112 were positive. Among them, there were 2
cases of stage II, 24 cases of stage III, and 86 cases of stage IV. The
interpolation of EBV DNAmissing data was performed using the
multiple substitutions in chained equations (MICE) method of
random forest. The Supplementary Data detail the results after
Frontiers in Oncology | www.frontiersin.org 4
interpolating EBV DNA. The median PFS was 33.15 months
(0.6–76.2 months) for all patients; 45 patients progressed,
including 23 deaths, 14 distant metastases, and 8 recurrences.

3.2 Blood Parameters
All blood parameters in the training and validation cohorts are
shown in Table 2. The cutoff values identified with ROC curves
are shown in the Supplementary Data, as are the values of the
areas under curve (AUCs) for blood parameters. The highest
AUC values were found for MONO, MONO%, and MCV, which
were 0.637, 0.626, and 0.568, respectively. These were
incorporated into model 4.

3.3 Radiomics Signature Development
In total, 2,074 features were obtained from each ROI. The final nine
key features were selected by LASSO ((1) CET1-w_Log-sigma-5-0-
mm_glrlm_HighGrayLevelRunE-mphasis; (2) CET1-w_wavelet-
LLH_glcm_ClusterShade; (3) CET1-w_wavelet-LLH_gl-szm_
GrayLevelNonUniformity; (4) CET1-w_wavelet-HHL_glcm_
Correlation; (5) CE-T1-w_wavelet-HHH_firstorder_Mean; (6)
CET1-w_wavelet-HHH_gldm_LargeDepen-denceHighGray
LevelEmphasis; (7) T2-w_log-sigma-4-0-mm_firstorder_
Maximum; (8) T2-w_wavelet-HHL_firstorder_Maximum; (9) T2-
w_wavelet-HHL_glcm_InverseVar-iance). The rad-score was
calculated for each patient according to the weights of their
coefficients. The formula for calculating the rad-score is detailed in
the Supplementary Data. The features selected by LASSO and the
histogram of every patient’s rad-score are shown in Figures 2A–D.

3.4 Model Predictions and Comparison
The C-indexes of the four models are listed in Table 3. The C-
index of model 2 was significantly higher than that of model 1 in
both cohorts, which suggested that the predictive effect of
radiomics may surpass that of the TNM stage system.
Moreover, when comparing models 1 and 3, we found that
model 3 that included the rad-score could remarkably predict the
prognostic potency of the clinical stage. Model 4 integrating
clinical data and radiomics had the best probability that the
predicted results were consistent with the observed results (C-
index of training and validation: 0.823 (95% CI: 0.745–0.901) vs.
0.812 (95% CI: 0.693–0.930)). The nomogram of model 4 is also
shown in Figure 3A. Notably, the calibration curves of 3–5 years
were very close to the diagonal line (Figures 3B, C). The DCA
results for models 4 and 1 are presented in Figure 3D,
confirming the remarkable effectiveness of model 4.

3.5 Kaplan–Meier Survival Analysis
Kaplan–Meier survival curves were drawn based on rad-scores.
The cutoff value from the ROC curve was −0.021. A rad-score
below this cutoff was considered low risk. In both cohorts, the
low-risk group had significantly longer PFS (p < 0.05) (Figure 4).
4 DISCUSSION

We designed this study to build and validate multimodal
information from MRI-based radiomics as an effective way to
March 2022 | Volume 12 | Article 815952
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estimate PFS in patients with NPC. Our findings suggested that
the multidimensional nomogram combining clinicopathological
characteristics, blood parameters, and rad-score was superior to
the prediction performance of the TNM staging system.
Moreover, using the cutoff value of the rad-score, patients
could be distinguished into high- and low-risk groups, and the
latter had longer PFS.

In recent years, a growing number of studies have reported
that MRI radiomics features can better reflect prognostic
information for NPC because they may explain the inherent
temporal or spatial heterogeneity of tumors on imaging (24–26).
Kim et al. studied CET1-w and T2-w MRI images of 81 patients
with NPC and conclude that MR-based radiomics features
showed better performance than the TNM staging system and
clinical variables. Their model combined radiomics features with
TNM stage and clinical variables to provide the highest AUC
values (27). Shen et al. found that a model that incorporated
radiomics, clinical stage, and EBV DNA status from 327
Frontiers in Oncology | www.frontiersin.org 5
nonmetastatic NPC, yielded a high C-index in two cohorts
[0.805 (95% CI: 0.768–0.841) vs. 0.874 (95% CI: 0.861–0.877)]
(28). In our study, the model that integrated clinical data with
radiomics features also performed best; the C-index values of
model 4 were 0.823 (95% CI: 0.745–0.901) in the training cohort
and 0.812 (95% CI: 0.693–0.930) in the validation cohort. The C-
index of our validation cohort was lower than that reported in
the study by Shen. A possible explanation may be that we
included metastatic NPC patients and had a larger sample size,
which may have improved the generalizability of the prediction
model. Compared with other research, the parameters included
in our model are more universal, without regional differences, so
the model has a higher degree of applicability. Based on our
nomogram, the probabilities of 3- and 5-year PFS of a given
patient can be visually and easily estimated by using the
corresponding parameters measured before treatment. If
patients with short PFS are identified as early as possible,
clinicians can enhance treatment without increasing side effects
TABLE 1 | Clinical parameters of patients in the training and validation cohorts.

Training cohort (n = 323) Validation cohort (n = 139) p-value

Gender 0.652
Male 228 (70.6%) 101 (72.7%)
Female 95 (29.4%) 38 (27.3%)
Age (years) 0.949
≥49 167 (51.7%) 70 (50.4%)
<49 156 (48.3%) 69 (49.6%)
Overall stage 0.000
I 0 0
II 18 (5.6%) 5 (3.6%)
III 132 (40.9%) 61 (43.9%)
IVA 158 (48.9%) 68 (48.9%)
IVB 15 (4.6%) 5 (3.6%)
T stage 0.000
T1 20 (6.2%) 9 (6.5%)
T2 77 (23.8%) 36 (25.9%)
T3 118 (36.5%) 49 (35.3%)
T4 108 (33.5%) 45 (32.3%)
N stage 0.000
N0 5 (1.5%) 4 (2.9%)
N1 42 (13.0%) 16 (11.5%)
N2 191 (59.1%) 78 (56.1%)
N3 85 (26.4%) 41 (29.5%)
M stage 0.000
M0 308 (95.4%) 134 (96.4%)
M1 15 (4.6%) 5 (3.6%)
Smoking 0.036
No 201 (62.2%) 72 (51.8%)
Yes 122 (37.8%) 67 (48.2%)
Drinking 0.111
No 246 (76.2%) 96 (69.1%)
Yes 77 (23.8%) 43 (30.9%)
Ki-67 (%) 0.680
≥37.5 238 (73.7%) 98 (70.5%)
<37.5 85 (26.3%) 41 (29.5%)
EBV 0.664
Positive 76 (23.5%) 36 (25.9%)
Negative 153 (47.4%) 65 (46.8%)
None 94 (29.1%) 38 (27.3%)
March 2022 | Volume 12 | Article
Statistical comparisons between the training and validation cohorts were performed with Independent samples t-tests, Mann–Whitney U tests, or Chi-square tests. p-values <0.05 were
considered statistically significant.
EBV, Epstein–Barr virus.
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TABLE 2 | Blood parameters in the training and validation cohorts.

Training cohort (n = 323) Validation cohort (n = 139) p-value

WBC (109/L) 0.439
≥6.695 111 (34.4%) 45 (32.4%)
<6.695 212 (65.6%) 94 (67.6%)
GR (109/L) 0.833
≥3.105 230 (71.2%) 100 (71.9%)
<3.105 93 (28.8%) 39 (28.1%)
LYMPH (109/L) 0.636
≥1.960 77 (23.8%) 31 (22.3%)
<1.960 246 (76.2%) 108 (77.7%)
MONO (109/L) 0.643
≥0.385 150 (46.4%) 59 (42.4%)
<0.385 173 (53.6%) 80 (57.6%)
EO (109/L) 0.841
≥0.175 95 (29.4%) 38 (27.3%)
<0.175 228 (70.6%) 101 (72.7%)
BASO (109/L) 0.877
≥0.035 76 (23.5%) 35 (25.2%)
<0.035 247 (76.5%) 104 (74.8%)
GR% 0.868
≥69.150 82 (25.4%) 47 (33.8%)
<69.150 241 (74.6%) 92 (66.2%)
LYMPH% 0.944
≥29.850 97 (30%) 46 (33.1%)
<29.850 226 (70%) 93 (66.9%)
MONO% 0.595
≥5.950 168 (52%) 75 (54%)
<5.950 155 (48%) 64 (46%)
EO% 0.856
≥2.050 156 (48.3%) 64 (46%)
<2.050 167 (51.7%) 75 (54%)
BASO% 0.856
≥0.350 224 (69.3%) 89 (64%)
<0.350 99 (30.7%) 50 (36%)
RBC (1012/L) 0.262
≥4.685 132 (40.9%) 62 (44.6%)
<4.685 191 (59.1%) 77 (55.4%)
HGB (g/L) 0.616
≥125 266 (82.4%) 112 (80.6%)
<125 57 (17.6%) 27 (19.4%)
HCT 0.899
≥44.050 114 (35.3%) 50 (36%)
<44.050 209 (64.7%) 89 (64%)
MCV (fl) 0.057
≥95.650 106 (32.8%) 39 (28.1%)
<95.650 217 (67.2%) 100 (71.9%)
MCH (pg) 0.424
≥32.750 34 (10.5%) 10 (7.2%)
<32.750 289 (89.5%) 129 (92.8%)
MCHC (g/L) 0.132
≥337.500 40 (12.4%) 23 (16.5%)
<337.500 283 (87.6%) 116 (83.5%)
RDW_CV 0.454
≥12.950 210 (65%) 94 (67.6%)
<12.950 113 (35%) 45 (32.4%)
RDW_SD (fl) 0.524
≥42.850 176 (54.5%) 71 (51.1%)
<42.850 147 (45.5%) 68 (48.9%)
PLT (109/L) 0.698
≥191 182 (56.3%) 82 (59%)
<191 141 (43.7%) 57 (41%)
MPV (fl) 0.099
≥12.250 98 (30.3%) 28 (20.1%)
<12.250 225 (69.7%) 111 (79.9%)

(Continued)
Frontiers in Oncology | www.frontiersin.org
 6
 March 2022 | Volume 12 | Article
 815952

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fang et al. Clinical-Radiomics Nomogram for NPC Prognosis
(e.g., by combining targeted treatment or immunotherapy), pay
attention to adverse prognostic factors, and ensure an adequate
follow-up period to reduce the risk of disease progression.
Conversely, for patients with a high probability of 3- and 5-
year PFS predicted by the model, it may be possible to reduce the
drug dose and mitigate side effects.
Frontiers in Oncology | www.frontiersin.org 7
However, several key aspects need to be considered when
developing a clinical radiomics predictive model. Firstly, since
plasma EBV DNA is used as an independent prognostic marker
in endemic areas, many studies have incorporated it in
nomogram construction. The MICE algorithm has the benefit
of fast and efficient memory, which makes the results reliable
TABLE 2 | Continued

Training cohort (n = 323) Validation cohort (n = 139) p-value

PDW 0.615
≥16.050 254 (78.6%) 106 (76.3%)
<16.050 69 (21.4%) 33 (23.7%)
PCT 0.807
≥0.245 110 (34.1%) 47 (33.8%)
<0.245 213 (65.9%) 92 (66.2%)
NLR 0.991
≥2.026 232 (71.8%) 94 (67.6%)
<2.026 91 (28.2%) 45 (32.4%)
PLR 0.990
≥132.020 150 (46.4%) 59 (42.4%)
<132.020 173 (53.6%) 80 (57.6%)
LMR 0.601
≥4.822 113 (35%) 50 (36%)
<4.822 210 (65%) 89 (64%)
March 2022 | Volume 12 | Article
Statistical comparisons between the training and validation cohorts were performed with Independent samples t-tests, Mann–Whitney U tests, or Chi-square tests. p-values of <0.05 were
considered statistically significant.
BASO, basophils; BASO%, ratio of basophils; EO, eosinophils; EO%, ratio of eosinophils; GR, neutrophilic granulocytes; GR%, ratio of neutrophilic granulocytes; HCT, hematocrit; HGB,
hemoglobin; LMR, lymphocyte-to-monocyte ratio; LYMPH, lymphocytes; LYMPH%, ratio of lymphocytes; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin
concentration; MCV, mean corpuscular volume; MONO, monocytes; MONO%, ratio of monocytes; MPV, mean platelet volume; NLR, neutrophil-to-lymphocyte ratio; PCT, plateletcrit;
PDW, platelet distribution width; PLR, platelet to lymphocyte ratio; PLT, platelets; RBC, red blood cells; RDW-CV, variation of RBC distribution width; RDW-SD, standard deviation of RBC
distribution width; WBC, white blood cells.
A B

DC

FIGURE 2 | Radiomics feature selection using the LASSO algorithm. (A) Used the 1O-fold cross validation to identify the optimal penalization coefficient lambda the
minimum was 0.000577, with log (l) = -3.238. (B) The model coefficient trendlines of radiomics features. (C) The histogram of coefficients with 9 features. (D) Rad-
score for each patient. Red bars show scores for patients who survived without progression, while blue bars show scores for patients who happened progression,
metastasis or died.
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TABLE 3 | C-indexes of the four models.

Models Training cohort (n = 323) Validation cohort (n = 139)

1 Clinical stage 0.610 (95% CI: 0.507–0.714) 0.602 (95% CI: 0.474–0.729)
2 Radiomics 0.814 (95% CI: 0.746–0.882) 0.728 (95% CI: 0.618–0.838)
3 Clinical stage + rad-score 0.708 (95% CI: 0.602–0.814) 0.681 (95% CI: 0.562–0.801)
4 Clinical data + rad-score 0.823 (95% CI: 0.745–0.901) 0.812 (95% CI: 0.693–0.930)
Frontiers in Oncology | www.frontiersin.org
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Clinical data included gender, age, Ki-67, smoking and drinking habits, clinical stage, MONO, MONO%, MCV, and EBV DNA.
CI, confidence interval.
A

B

D

C

FIGURE 3 | (A) The nomogram of clinical data and rad-score. (B, C) The calibration curves of the nomogram. (D) Decision curve analysis for Model4 and Model1.
The y-axis measures the net benefit. The red line represents Model 1 (clinical stage). The green line represents Model 4 (clinical data and rad-score). The blue line
assumes that all patients progress. The purple line indicates that no progression is assumed in all patients.
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even with missing ENV DNA data. Currently, we are expanding
the sample size or conducting multicenter studies to address this
issue. Compared with plasma EBV DNA, radiomics features are
more advanced and accurate in predicting prognosis (29). One
study reported that EBV DNA can induce monocytes to produce
interluekin-10, which leads to immune escape (30). Based on
this, we collected easily obtainable blood parameters from NPC,
expecting to find stable markers and incorporate them into the
radiomics nomogram. After drawing the ROC curve for blood
parameters, we found that monocytes had the best sensitivity and
specificity. Two retrospective studies validated age, gender, Ki-
67, and smoking and drinking habits as independent prognostic
factors for NPC (11, 31). Our results showed the model
integrating clinical data and the rad-score was more useful
than those only using radiomics features.

Although we successfully demonstrated the utility of
radiomics data for predicting PFS in patients with NPC, this
study has three major limitations. First, this was a single-center
retrospective study, so the results may not readily be applicable
to other situations and prospective multicenter studies are
needed to confirm our findings. Second, we selected patients
according to strict inclusion criteria, which may have introduced
selection bias. Third, our study only focused on PFS at 3 and 5
years. In the future, we will investigate the long-term overall
survival of NPC and pay more attention to predicting long-term
quality of life using imaging radiomics.

In conclusion, we established an effective clinical-radiomics
nomogram based on MRI findings and several clinical,
pathological, and blood factors. This approach is noninvasive,
visualizable, and individualized and has great potential in
predicting NPC prognosis and treatment. Moreover, we further
confirmed that radiomics features were independent prognostic
factors for NPC.
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