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Abstract: Small molecular networks within complex pathways are defined as subpathways. The
identification of patient-specific subpathways can reveal the etiology of cancer and guide the devel-
opment of personalized therapeutic strategies. The dysfunction of subpathways has been associated
with the occurrence and development of cancer. Here, we propose a strategy to identify aberrant
subpathways at the individual level by calculating the edge score and using the Gene Set Enrichment
Analysis (GSEA) method. This provides a novel approach to subpathway analysis. We applied this
method to the expression data of a lung adenocarcinoma (LUAD) dataset from The Cancer Genome
Atlas (TCGA) database. We validated the effectiveness of this method in identifying LUAD-relevant
subpathways and demonstrated its reliability using an independent Gene Expression Omnibus
dataset (GEO). Additionally, survival analysis was applied to illustrate the clinical application value
of the genes and edges in subpathways that were associated with the prognosis of patients and cancer
immunity, which could be potential biomarkers. With these analyses, we show that our method could
help uncover subpathways underlying lung adenocarcinoma.

Keywords: lung cancer; individual-specific subpathways; immunity; biomarkers

1. Introduction

Lung cancer is one of the most malignant tumors. In both male and female patients,
lung cancer is the leading cause of cancer-related deaths worldwide [1]. The incidence and
mortality of lung cancer have been increasing year by year, with a significant burden on
patients and society [2]. In lung cancer, non-small cell lung cancer (NSCLC) accounts for
more than 80% of cases, of which lung adenocarcinoma (LUAD) accounts for 45–55% of
NSCLC. The 5-year overall survival rate of LUAD is less than 15% [3]. Due to the extensive
heterogeneity of LUAD [4], it is crucial to develop successful personalized treatment, which
could help in the implementation of precision therapy and improve patient survival rates.

The interactions of multiple dysfunctional genes and pathways can lead to cancer.
Pathway analysis is an effective tool for understanding the perturbation or stimulation
of biological systems and clarifying the pathogenesis and progression of cancer [5]. In
homeostasis, genes coordinate to achieve specific biological functions in the same pathway,
and many pathway analysis methods can effectively reveal complex traits and dysreg-
ulated pathways in human diseases. Gene set enrichment analysis (GSEA) approaches,
which are based on differentially expressed (DE) genes, have been widely used in pathway
analysis [6,7]. Similarly, edge set enrichment analysis can identify dysregulated pathways
by capturing changes in pathway-specific biological relationships from gene expression
data [6]. The concept of subpathways, which are defined as smaller and local molecular
networks, has been proposed. Because an entire pathway is too large to accurately inter-
pret as relevant pathological phenomena, a pivotal subpathway region containing fewer
components may be more effective and sensitive for dissecting related phenomena [4].
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Some studies have reported that dysregulated subpathways are related to the occurrence
and development of cancer and can reflect more specific biological functions. Li C et al.
identified a “norepinephrine metabolism” subpathway by using pathway topological struc-
ture information [7]. This subpathway belongs to a part of the “Tyrosine metabolism”
pathway, which is highly associated with cancer development and progression. Han J
et al. developed a method, subpathway-GM, based on integrating gene and metabolite
information and their topologies within pathways [8]. They identified some subpathways
enriched in differentially expressed genes associated with the progression of lung cancer.
psSubpathway [8] was proposed to identify phenotype-specific subpathways in a breast
cancer dataset. These subpathways could be used as prognostic biomarkers for patients
with breast cancer and may contribute to the characterization of patient states [9]. However,
these methods mainly focused on groups of tumor or tumor-adjacent samples, rather than
considering the potential of this analysis for personalized medicine.

In this study, we aimed to identify reliable individual subpathways that reflect the specific
disease state of a patient. Unlike previous studies, genetic changes in the molecular states
of a single sample, rather than a group of samples, were integrated to identify significant
subpathways associated with the study condition. Specifically, gene interaction information
was obtained from gene expression profiles and pathway graphs, and the edges of each sample
were constructed for statistically significant edge scores by Pearson correlation coefficients
(PCCs). Next, gene set enrichment analysis (GSEA) was applied to each sample based on the
edge score to obtain aberrant personalized subpathways. To confirm that our method can
sensitively capture relevant biological and clinical information, we applied it to lung cancer
datasets from the TCGA database and verified it on the GEO database. Gene mutations and
immune-related gene changes from the identified subpathways were used to construct a
Cox survival prediction model for the diagnosis and prognosis of patients. Survival analysis
suggested the clinical relevance of these subpathway genes, and our results show that the
predictive model has an excellent ability to distinguish samples’ survival outcomes. These
subpathways were also significantly associated with previously reported functional pathways
in LUAD. Thus, we trust that our method is reliable in lung adenocarcinoma prognostic
prediction and especially valuable for precision medicine.

2. Materials and Methods
2.1. Data Preparation

Corresponding TCGA RNA-seq and somatic mutation data were obtained from the
UCSC Xena data portal (https://gdc.xenahubs.net (accessed on 15 May 2022)). In this study,
the LUAD dataset was used. The gene expression values were normalized to Fragments
per Kilobase per Million (FPKM) and were then log2(x + 1)-transformed. In total, LUAD
tissues and their tumor-adjacent normal tissues were studied, including 526 LUAD tumor
samples and 59 LUAD tumor-adjacent tissue samples. Genes with zero expression values
in all samples were excluded from the following analysis. Finally, we obtained 49,340 genes.
The MuTect2 Variant Aggregation and Masking version was used as somatic mutation data.
Additional clinical data of all samples were also downloaded using the above portal to
ensure the consistency of the sample source. We removed patients whose survival time or
vital status was unspecified.

GSE68465 gene expression profiles were obtained from the NCBI Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/ (accessed on 15 May 2022)) database as the
validation dataset. The probes were mapped to gene symbols, and those that mapped to
the same gene symbol were merged by averaging their expression values. Gene expression
values were also log2-transformed.

2.2. Pathway Information

Biological pathway information was obtained from the widely used Kyoto Encyclopedia
of Genes and Genomes (KEGG) database [10], which provides abundant pathway information,
including interactions, regulation, modifications, and binding between genes. Based on the
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structure information, each pathway was converted into an undirected graph. Finally, the
pathway information was organized into three columns. The first column was the pathway
name, and the other two columns were the coding genes connected in the pathway. In total,
75,578 gene pairs (i.e., edges) were obtained as the edge set of 236 pathways.

2.3. Overview of the Subpathway Identification Pipeline

This study identified dysregulated subpathways driven by somatic mutation genes
based on the construction method of the sample-specific network [11]. A schematic
overview is described in Figure 1. Subpathways for each patient were obtained by the
following steps: (1) individual-level edge scores in pathways were computed for each
patient, which reflects the interactions among genes at the individual biological level; (2)
rank-based edge-score lists were generated by ranking the edge score of each sample in
descending order; then, GSEA [12] was employed to determine if members of an edge set
tend to occur toward the top (or bottom) of the edge list, a condition in which the edge
set is correlated with the phenotypic class distinction. This approach was usually used
to analyze and interpret coordinate pathway-level changes, but here, the gene expression
value was replaced with the edge score, and then GSEA was used on each sample to
identify individual-level dysregulated subpathways.

Figure 1. Cont.
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Figure 1. Schematic overview of subpathway extraction.

2.4. Calculation of Edge Scores

As shown in Figure 1, the gene expression data of a group of normal samples served
as a reference. The normal samples’ PCCs (Pearson correlation coefficients, PCCn) for each
pair of genes in an edge were computed, and then a single sample was added to obtain a
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new sample (PCCn+1). For each sample, the differential PCC (PCCn+1 − PCCn) between all
normal samples and an additional single sample was used in the following analysis.

Due to the specificity of individual samples, different samples have different differ-
ential PCCs (∆PCCn = PCCn+1 − PCCn) in the same background network. The ∆PCCn
distribution was similar to the normal distribution, which has been theoretically derived
in detail [11]. We calculated the edge score, which has a strong theoretical foundation, to
quantify each differential edge in the network for a single sample in terms of statistical
significance. In fact, the edge score measures the perturbation of edges in a pathway and is
defined as follows, where n is the total number of reference samples:

edge − score =
PCCn+1 − PCCn

(1 − PCC2
n)/(n − 1)

(1)

Finally, an edge-score matrix was constructed, which contained 75,578 rows (edge
numbers) and 526 columns (tumor samples).

2.5. Subpathway Extraction

To evaluate the difference in each sample enrichment analysis based on edges, we
extracted individual-level subpathways through the following steps (Figure 1).

First, the edge-score matrix was used to rank all of the pathway edges of each sample in
descending order, and edge lists were generated. Then, enrichment analysis was performed
for each sample by using the GSEA-based edge list. We used the “clusterProfiler” package in
R/Bioconductor to implement the GSEA analysis. In contrast to differentially expressed genes,
which are used in the traditional GSEA method, here, we used the edge score, which reflects
the interaction between genes in pathways and is used to measure the difference between
different edges by the Pearson correlation coefficients (PCCs) of gene pairs. Meanwhile,
the original background gene sets were replaced with edge sets in different pathways. In
sum, we extracted subpathways based on the results of the GSEA method. The results
of core enrichment were the main enrichment edges in different pathways, which had the
greatest contribution to the enrichment score of the edge set. The core enrichment edges
with FDR < 0.05 in each sample were selected as the set of edges significantly enriched in
the corresponding KEGG pathway in each sample, and then all edges were integrated as a
subpathway in the corresponding KEGG pathway of a single sample.

2.6. Survival Analysis

To further explore the effect of subpathway edges and genes on patient prognosis, the
Cox proportional hazards model was applied to each sample. Based on the edge score, the
risk score of the subpathway for each sample was calculated by the sum of weighted edge
scores, where the weight was the regression coefficient from the univariate Cox regression
analysis estimated on the edge score and the overall survival data. Based on the mutated
gene expression value, the risk score of the subpathway for each sample was calculated by
the sum of weighted mutated gene expression values, where the weight was the regression
coefficient from the univariate Cox regression analysis estimated on the mutated gene
expression value and the overall survival data. The risk score was defined as:

risk − score =
k

∑
i=1

βiExp(i) (2)

where βi is the Cox regression coefficient of edge/mutated gene i in a patient; Exp(i)
is the corresponding value of the edge score/mutated gene i; and k is the number of
edges/mutated genes.

We grouped patients using the median of the risk score as the cut-off to classify patients
into a high-risk group and a low-risk group. Then, a Kaplan–Meier survival analysis was
performed for the two groups of patients, and statistical significance was assessed with a
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significant log-rank test p-value < 0.05. The Kaplan–Meier survival curve was utilized to
validate the predictive ability of the risk model.

3. Results
3.1. Mutated Genes in Subpathways

Somatic mutation genes are mutated after conception and are a type of individual-
specific information provided by TCGA for every cancer. Driver mutation genes of cancer
can provide a growth advantage to cancer cells [13]. To date, 125 driver mutation genes
(Supplementary Table S1) have been found for human cancer. We used LUAD somatic
mutation genes and all driver mutation genes to validate the personalized features of the
subpathway in the same sample. TCGA LUAD gene expression data were used to construct
individual-specific subpathways, in which the higher the gene degree in a subpathway, the
greater its variation/change from normal to tumor samples.

We conducted the computation for the top 5, 10, 20 and 30 highest-degree genes
(the genes that have the most connected genes, indicating the importance of the genes)
in LUAD subpathways for each patient, and the mean rate at which genes with a high
degree are also somatic mutation genes was calculated. We observed that the rate of the
top five highest-degree genes was the highest (Figure 2a). Thus, high-degree genes in the
subpathway are more likely to have significant mutations in LUAD.

Figure 2. (a) The proportion of genes that are somatic mutation genes in the top 5, 10, 20 and
30 highest-degree genes in LUAD subpathways; (b) the proportion of genes that are both somatic
mutation genes and driver mutation genes in the top 5, 10, 20 and 30 highest-degree genes in LUAD
subpathways.

Next, we calculated the mean percentage of the top 5, 10, 20 and 30 highest-degree
genes that are both somatic mutation genes and driver mutation genes in subpathways. As
shown in Figure 1b, from the top 30 highest-degree genes, the rate monotonically increases,
and the higher the gene degree, the higher the likelihood that this gene is a driver mutation
gene. The above results indicate that high-degree genes in a subpathway are strongly
related to driver mutations in the same sample, and thus, these genes can be used to
predict potential driver genes on an individual basis for each sample. The rate at which
a somatic mutation gene with a high degree is also a driver mutation gene increases in
each subpathway, and thus, the accuracy of the prediction increases with the degree. These
results are consistent with the literature [11]. Hence, high-degree genes in the subpathway
are more likely to have a significant influence on cancer.
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3.2. Potential Disease Genes in Subpathways

The high-degree genes in a subpathway are important features of a cancer sample,
which reveals their importance in the dysfunctional subpathway of the single sample. They
are also strongly related to driver mutation genes in the individual sample (Figure 2b).
Therefore, high-degree genes in subpathways may play an important functional role in the
subpathway for cancer occurrence.

We collected somatic mutation genes from the top five highest-degree genes in every
LUAD sample (a total of 187 top 5 high-degree genes). Genes that appeared in at least
10 samples were selected as potential disease genes (Supplementary Table S2) and were
further validated by their mutation ratios. The mutation ratios of the above potential disease
genes, as well as the mutation ratios of random mutation genes (the same number as potential
disease genes), were computed, and the random process was repeated 1000 times. As expected,
there was a significantly higher mutation ratio for potential disease genes than random genes
in LUAD, as shown in Figure 3.

Figure 3. The mutation ratio of potential disease genes (red) and the mutation ratio of random genes
(green).

Then, we examined whether these high-degree potential disease genes could help
stratify patients into distinct clusters that were linked to survival. The top five genes
with the highest-degree potential for disease genes (Supplementary Table S2) were used
for survival analysis. We selected seven genes that were significantly associated with
patient survival with a p-value < 0.05 by univariate Cox regression analysis (Figure 4a).
The Kaplan–Meier curve with a log-rank statistical examination was used to perform the
survival analysis. As shown in Figure 4b, patients in the low-risk group had considerably
better overall survival than those in the high-risk group. These results imply that the
mutation of potential disease genes may be used as potential prognostic biomarkers in
survival risk stratification in LUAD.
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Figure 4. Results of survival analysis of the top 5 genes with the highest-degree potential disease
genes. (a) Forest plot of 7 genes selected by the univariate Cox proportional hazards regression model;
(b) Kaplan–Meier survival plots of patients grouped by the median risk score.

3.3. Immune-Related Genes in Subpathways

Tumor tissues have heterogeneous microenvironments (composed of fibroblasts, blood
vessels, immune cells and stromal cells), which can be infiltrated by immune cells and affect
tumor development. The tumor immune microenvironment is involved in tumorigenesis,
progression and metastasis. The interactions between tumor cells and the surrounding
infiltrate, especially two major non-tumor constituents (stromal cells and immune cells),
can drive either tumor progression or inhibition. We first extracted immune-related genes
according to the list of genes curated by the Immunology Database and Analysis Portal
(IMMPORT) website [14] and calculated the percentage of the top 5, 10, 20 and 30 highest-
degree genes in subpathways that are also immune-related genes. Our results show that
the higher the gene degree, the higher the likelihood that this gene is an immune-related
gene (Figure 5a).

Aiming to explore the tumor microenvironment of LUAD, we investigated the differences
in cancer immunity between high-risk and low-risk groups classified by 28 top 5 high-degree
and immune-related genes (Figure 5b). The Cox proportional hazards model was applied
to calculate risk scores and then stratify patients into two class groups. The ESTIMATE
method [15] was applied to calculate the stromal scores and immune scores in LUAD patients.
This method predicts the level of infiltrating stromal and immune cells by performing single-
sample GSEA on gene expression data. Patients were classified into high- and low-risk groups
based on the median of risk scores, where the high-risk group had poor survival outcomes
(Figure 5c; log-rank p-value < 0.0001 in Kaplan–Meier survival analysis). The results indicate
that high-degree immune-related genes may be used as potential prognostic biomarkers.
Stromal and immune cell infiltration in the tumor immune microenvironment decreases
tumor purity. We found that the tumor stromal and immune scores of the high-risk group
were significantly lower than those of the low-risk group. This suggests that the tumor
purity was high in the high-risk group, which is consistent with the poor survival results
of the high-risk group (Figure 5d, Wilcoxon analysis, p-value < 2.2 × 10−16). These results
indicate that significant genes in subpathways may be associated with the tumor immune
microenvironment.
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Figure 5. Results of survival analysis of both the top 5 highest-degree genes and immune-related
genes. (a) The proportion of genes that are immune-related genes in the top 5, 10, 20 and 30 highest-
degree genes in subpathways. (b) Forest plot of 28 genes selected by the univariate Cox proportional
hazards regression model; (c) Kaplan–Meier survival curves of patients classified into high-risk and
low-risk groups using 28 genes that belong to both the top 5 high-degree and immune-related genes
in the subpathway; (d) box plot to show the estimate scores, immune scores and stromal scores for
the patients in the above two groups.

3.4. Cancer-Related Subpathway Identification

In Section 3.1, we report that mutation genes play an important role in subpathways.
Therefore, we selected high-frequency mutation genes (expressed in more than 5% of the
samples) for further analysis. Among 17,105 LUAD somatic mutated genes, 683 high-
frequency mutated genes were screened. Based on the GSEA results of LUAD patients,
the binomial distribution test found 485 significant edges, which were enriched in more
than 50% of the samples (p-value < 0.05). There were 45 edges containing high-frequency
mutation genes among the 485 edges. We then performed a Cox proportional hazard
regression model to choose 12 edges that were significantly associated with patient survival
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with a p-value < 0.05 (detailed in Section 2.6). Samples were divided into a high-risk group
and a low-risk group based on the median risk score.

The results showed that the risk score was a risk factor (hazard ratios (HRs) > 1,
p-value = 4.3 × 10−6), while all single edges were not risk factors (hazard ratios (HRs) < 1)
(Figure 6a). The risk score also had a good classification effect in patients (Figure 6b). These
results indicate that high-frequency mutation genes may also affect neighboring genes in
subpathways, and these edges could be prognostic biomarkers providing novel insights for
patient stratification.

Figure 6. Results of survival analysis of edges. (a) Forest plot of 12 edges in LUAD selected by
the univariate Cox proportional hazards regression model; (b) Kaplan–Meier survival curves of
two patient groups.

To illustrate the effectiveness of our method, we focused on entire pathways using
the binomial distribution test, which found 18 significant pathways with p-values < 0.05
that were enriched in more than 50% of the samples (Table 1), all closely related to tumor
development and progression.

We focused on a subpathway that belonged to the “cell cycle” (Figure 7a). The key
subpathway region was at the bottom of the pathway and centered on CDK1. CDK1 has
been reported as a poor prognostic marker of LUAD that is highly correlated with the risk
of cancer recurrence and poor overall survival in LUAD patients. Furthermore, CDK1 has
been hypothesized as a potential target for the treatment of LUAD [16]. When comparing
CDK1 expression values between normal and tumor samples in LUAD, the expression
value was significantly increased in cancer samples (p-value < 2.2 × 10−16) (Figure 7b).
Interestingly, CDK1 was also the highest-degree gene in the cell cycle subpathway. In
Figure 7c, we show common subnetworks of CDK1 from some LUAD samples. In addi-
tion, the minichromosome maintenance (MCM) gene family plays a crucial role in DNA
replication and cell cycle progression [17,18]. Several other key nodes, such as MCM2
dysregulation, are associated with cell proliferation, cell cycle progression and migra-
tion [18,19]. Similarly, MCM4 overexpression is an oncogenic event in LUAD [19]. Kikuchi
et al. showed that high expression of MCM4 was associated with worse overall survival and
progression-free survival [20]. Finally, MCM6 overexpression reduced immune infiltration
and response to immunotherapy in LUAD patients [21,22]. Taken together, these results
suggest that mutation genes affect the perturbation of edges and lead to the perturbation
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of subpathways, and that our method can capture important functional components from
subpathways that influence the development of cancer.

Table 1. Enriched pathways that were enriched in more than 50% of the samples.

Enriched Pathways The Number of Enriched Samples

Pyrimidine metabolism 439
Alcoholism 394
Cell cycle 386

Thyroid hormone signaling pathway 386
ECM–receptor interaction 380

Oxidative phosphorylation 363
Hippo signaling pathway 360

Inositol phosphate metabolism 358
Apoptosis 356

Phosphatidylinositol signaling system 355
Small cell lung cancer 353

Wnt signaling pathway 344
Pathways in cancer 322
Basal cell carcinoma 309
Lysine degradation 301

Focal adhesion 300
Axon guidance 286

PI3K-Akt signaling pathway 284

Another identified functional subpathway belonged to the “Hippo signaling pathway”
(Figure 8), which has been verified as an important regulatory mechanism in LUAD. A key
subpathway identified was linked to the pathway region of the Wnt signaling pathway,
YAP/TAZ, one of the key nodes in this subpathway. Amplification of the YAP1 gene drives
lung cancer brain metastasis [23]. WWTR1 can promote the progression of lung cancer [24],
and WWTR1 overexpression is closely associated with poor differentiation, poor prognosis
and metastasis of non-small cell lung cancer [25]. In addition, the knockout of WWTR1 in
mice can reduce lung cancer metastasis [26]. In summary, the key genes of the identified
subpathways have been previously associated with LUAD.

3.5. Validation on GEO Dataset

The predictive power of our method was further validated with the independent
GSE68465 dataset from GEO (details in Section 2.1). We used seven genes from Section 3.2
and twenty-eight genes from Section 3.3 to respectively calculate risk scores and stratify
patients into the high-risk group and the low-risk group. As shown in Figure 9a, seven of
the top five highest-degree and potential disease genes could classify high- and low-risk
groups with significant differences in survival outcomes (p-value = 0.0056). Additionally,
the high-risk group stratified by 28 top 5 high-degree and immune-related genes showed
poor survival outcomes compared to the low-risk group (p-value = 0.0081) (Figure 9b).
These results verify the effectiveness of these genes in predicting patient survival.

Subpathways were extracted by the same method, and again, a subpathway belonging
to the “cell cycle” pathway was selected (Figure 10). The key subpathway region was at the
bottom of the pathway and linked to the MAPK signaling pathway. The MAPK pathway
has also been reported to play a key role in LUAD [27]. These results are consistent with
the results from the TCGA dataset, supporting the effectiveness of our method.
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Figure 7. (a) The cell cycle pathway in KEGG. Red borders represent genes mapped to the subpathway.
Key subpathway region is shown in red ellipse; (b) the CDK1 expression value between normal and
tumor samples in LUAD. (c) Common subnetworks of CDK1 from some samples for LUAD.
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Figure 8. The Hippo signaling pathway in KEGG. Red borders represent genes mapped to the
subpathway. Key subpathway region is shown in red ellipse.

Figure 9. Results of survival analysis in GSE68465. (a) Kaplan–Meier survival curves of patients
classified into high-risk and low-risk groups using 7 genes that belong to the top 5 genes with
the highest-degree potential disease genes; (b) Kaplan–Meier survival curves of patients classified
into high-risk and low-risk groups using genes that belong to both the 28 top 5 high-degree and
immune-related genes.
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Figure 10. The cell cycle pathway in KEGG. Red borders represent genes mapped to the subpathway
from GSE68465. Key subpathway region is shown in red ellipse.

4. Discussion

Gene mutation plays an important role in cancer development. In the past decade,
large-scale genomic studies have revealed driver genes of LUAD [28]. Several oncogenic
drivers have guided novel targeted therapies and immunotherapies against immune check-
points [29–31]. Biological pathway dysfunction plays an important role in tumor occurrence,
development and prognosis, which could reflect key cellular mechanisms [10]. Pathway-
centered approaches rely on complex molecular interactions and networks and facilitate
the identification of robust prognostic features [32]. Subpathways are defined as gene
subregions in biological pathways, which contain fewer components than an entire path-
way but reflect more specific biological functions. Thus, determining mutation-mediated
dysregulated subpathways is important for exploring the pathogenesis of cancer.

In our study, we did not use the predefined gene sets of pathways in GSEA but instead
used gene pairs in the pathway. Here, we described the edge score, a computational score
that measures the degree of edge interaction instead of individual gene expression values,
and identified subpathways by using GSEA for each sample. This method provides a
novel approach to subpathway analysis by using edge interactions, which may uncover
new insights into the biological system. Based on our results, we concluded that our
method can measure the perturbation of a patient’s pathways and be useful for identifying
different functional subpathways in individual samples. Furthermore, we demonstrate
that the mutation genes in these subpathways play a key role, with a higher degree in the
subpathways and biological functions. Finally, we show that these mutation genes can also
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be used as potential prognostic biomarkers in survival risk stratification of LUAD patients
and were related to the patient-specific immune microenvironment, which is conducive to
personalized therapy. However, there are a few limitations to our findings: our method
only focuses on LUAD and disregards all other cancer types; it is based on a single pathway
database (KEGG); and the predictive prognostic gene/edge signatures identified here need
to be verified by molecular biological experiments on clinical samples in future studies.
Nonetheless, our study may provide a novel method for determining disease-specific
functional subpathways and prognostic biomarkers in LUAD.

5. Conclusions

In summary, our study could identify and dissect subpathways for individual samples,
which provides useful resources for promoting precision cancer therapy and molecular
mechanism studies. Our findings unveil a new potential future research direction in
personalized immunotherapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13071122/s1. Table S1: Driver mutation genes in human
cancer; Table S2: Potential disease genes in all LUAD samples.
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