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Today’s brain imaging modality migration techniques are transformed from

one modality data in one domain to another. In the specific clinical

diagnosis, multiple modal data can be obtained in the same scanning field,

and it is more beneficial to synthesize missing modal data by using the

diversity characteristics of multiple modal data. Therefore, we introduce

a self-supervised learning cycle-consistent generative adversarial network

(BSL-GAN) for brain imaging modality transfer. The framework constructs

multi-branch input, which enables the framework to learn the diversity

characteristics of multimodal data. In addition, their supervision information is

mined from large-scale unsupervised data by establishing auxiliary tasks, and

the network is trained by constructing supervision information, which not only

ensures the similarity between the input and output of modal images, but can

also learn valuable representations for downstream tasks.

KEYWORDS

brain imaging, multiple modal, self-supervised learning, generative adversarial

network, auxiliary tasks

Introduction

Brain imaging is crucial in the diagnosis and treatment of neurological diseases.

The information provided by a kind of image obtained from an imaging method is

limited, and it can only reflect modal information. Generally, it cannot help doctors

to make an accurate diagnosis. Modal transfer technology is beneficial to transform

different modal images to obtain multimodal information. Combined with multimodal

images, it can provide a variety of information regarding diseased tissues or organs,

and provides a powerful theoretical basis for accurate diagnosis in clinical medicine.

Hence, we present a framework, called BSL-GAN, of self-supervised learning in this

paper. This framework not only realizes the transformation among different brain

imaging modes, but can also integrate all available information related to the target

mode in multi-source modal images to generate any missing modes in a single model.

Different from the existing methods of generative adversarial networks (GANs), we

introduce an auxiliary network as a new self-supervised constraint that provides

information about the target modal data to guide the training of the reconstructed

network. In addition, the generated target modal mask vector is used as the target
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modal data label through self-supervised learning in

unsupervised data by an auxiliary network. Finally, we

evaluate the performance, generalization performance of the

framework self-monitoring learning and cooperative learning

on experiments with 1.5T images and 3T image datasets, and

demonstrate the valuable performance of the framework for

downstream tasks in experiments with missing modal data

compared with other methods. The results show that our

proposed framework has advantages.

Related work

There are a lot of medical imaging modality data in

the field of medical imaging. In addition, Zhao et al.

(2020, 2022) used functional connectivity networks to explore

the discriminative information provided by different brain

networks. Cheng et al. (2021) used generative adversarial

networks to realize the conversion from EEG modality

data to fMRI modality data. According to whether the

data need to be paired or manually labeled, brain imaging

modality migration methods can be divided into two types:

supervised learning-based methods and unsupervised learning-

based methods.

The methods based on supervised learning require that the

input data must be marked or paired, but they take a lot of

manpower and cost. Edmund and Nyholm (2017) report many

methods for the generation of substitute CT images for MRI-

only radiotherapy. Han (2017) used the method of minimizing

the voxel difference between CT and MR images, which strictly

aligns the acquired MR images and CT images, because this

method uses the deep convolution neural network with paired

data. Zhao et al. (2017) used the improved (Ronneberger et al.,

2015) to synthesize MR from CT images, and then used the

synthesized MR images for brain segmentation based on CT.

However, minimizing the loss of voxel direction between the

synthesized image and the reference image during training may

result in blurred output. Nie et al. (2017) proposed a method

of combining voxel loss with countermeasure loss in generating

a countermeasure network to obtain clearer results. A parallel

work by Bi et al. (2017) also proposed a GAN framework to

synthesize positron emission tomography (PET) images. Isola

et al. (2017) proposed a pix2pix framework to conduct image-

to-image translation. Ben-Cohen et al. (2017) combined a fully

convolutional network (Long et al., 2015) and pix2pix model to

output the target results, and mixed the two outputs to generate

PET images from CT images. Although the combination of

voxel direction loss and countermeasure direction loss solves the

problem of fuzzy output, the voxel direction loss still depends on

a lot of paired images.

Most medical institutions have quite a lot of unpaired

data, which are scanned for different purposes and different

radiotherapy techniques. Zhu et al. (2017) proposed a

framework named cycle-GAN to solve the problem of image-to-

image translation. This framework not only combined voxel loss

and antagonism loss, but also put forward the concept of cyclic

consistency loss, so that training can be carried out without

relying on paired data. Wolterink et al. (2017) synthesized

CT images from MR images by using unpaired data. The

above loop-based method alleviates the dependence of paired

data to a certain extent. However, there could be excessive

deformation in the generated images, and this may affect their

clinical applications. Hence, aligned data or auxiliary tasks are

still necessary for these tasks. Although these methods have

shortcomings, their advantages are worth learning. Therefore,

in this paper, the setting of objective function also includes

voxel loss and cyclic consistency loss, benefiting from stable

optimization of supervised learning and large-scale datasets of

unsupervised learning.

BSL-GAN

Although the existing GAN-based methods have greatly

improved the quality of synthesized images, these images are

often found to be distorted or blurred. The main reason is

that these methods implement a loss function calculated from

the pixel-level difference between the generated image and the

real reference image. As far as we know, no work directly uses

feature-level constraints to guide the decoder to obtain a better

learning generator.

Knowledge distillation (Kim and Rush, 2016; Liu et al.,

2019), extracts general, moderate, and sufficient knowledge from

the “teacher” network to guide the “student” network, and

the experienced “teacher” network can guide the generation

of decoders in the network at the functional level. We need

a network with a strong representation ability to guide the

decoder better.

Therefore, the classification model (Simonyan and

Zisserman, 2015) can be pre-trained on the large-scale natural

image dataset (Deng et al., 2009), and enough feature maps

with a strong representation ability can be extracted to realize

knowledge transfer. However, for medical images that are more

complex than natural images, it is difficult to directly use the

knowledge derived from natural images to guide the generator

network. In fact, it is also impossible to obtain large-scale

medical image datasets for pre-training. To sum up, medical

image synthesis should be better than natural image synthesis.

Therefore, we propose a self-supervised learning framework for

medical image processing, namely, BSL-GAN.

The BSL-GAN framework can be supervised by the input

image itself, and has a similar architecture to the generator

in the GAN-based method. Since the (Rumelhart et al., 1986;

Vincent et al., 2008; Kingma and Welling, 2014) only works

on a single domain and is faster than a generator that learns

the mapping function between two different domains, it is
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also easy to converge. Its powerful self-representation ability

finds wide use in other tasks (such as feature dimensionality

reduction). Therefore, we borrow the auto-encoder network

to guide the decoder network at the feature level, which is

better than learning from the reconstructed image only through

backpropagation with pixel-level loss.

As shown in Figure 1, the BSL-GAN framework proposed

in this paper consists of three key parts: reconstruction network

R, auxiliary network P, and discriminator network D. All

these three components train data in an end-to-end manner.

First, the function of reconstruction network R is to realize

the transformation from source domain modal data to target

domain modal data. It designs a generator structure like GAN,

and correspondingly, it includes three components: encoder,

converter, and decoder. Among them, in the encoder of R, it

consists of several branches, where each branch corresponds to

a kind of modal data; in the converter of R, it is composed

of a batch normalization (BN) layer and a latent layer. In

the decoder of R, it has only one branch and finally outputs

the converted modal data. Second, the auxiliary network P

refers to the network structure of self-encoder. The encoder

and decoder have only one branch, and only the target image

is input, while the target modal data vector is output. The

discriminator network D has three branch inputs: the vector of

the target modal image generated by the auxiliary network, the

reconstructed image generated by the reconstruction network,

and the real target modal image.

In the training stage, the reconstruction network R encodes

the input image into the common potential feature space. The

converter fuses the deep features of the connections from the

input images to extract their complementary information for

generating images through the decoder. Auxiliary network P

adopts the form of self-encoder, which is only trained by the

target image. Once trained, the feature map extracted from

the decoder of the auxiliary network P is used to guide the

optimization of the decoder of the reconstruction network R.

In the testing stage, the auxiliary network and the discriminator

network are removed, and only the reconstruction network

is used to translate images from multiple source domains to

target domains. For different input combinations from different

source domains, the BSL-GAN framework can generate images

of missing modes through a single unified model.

Reconfiguration network

Inspired by the existing image translation methods, this

paper develops an encoder-decoder network architecture like

the GAN generator structure for reconstruction network R (Noh

et al., 2015). As shown in Figure 1A, the reconstruction network

R consists of three parts: multi-branch encoder ER, converter

TR, and decoder DeR. The number of branches in the encoder

network is determined by the total number of input modes, and

each branch consists of three convolution layers. Particularly,

the converters in the converter network are composed of a batch

standardization layer (Ioffe and Szegedy, 2015) and a latent layer,

and the latent layer is composed of six residual blocks (He et al.,

2016), each of which is in the form of Conv-BN-ReLu-BN. For

each residual block, their input is the output of the last batch

normalization layer.

During training, the reconstruction network R inputs the

source domain modal data into the encoder, and then encodes

the source domain image into the common potential feature

space through the potential layer in the converter network.

Finally, the target domain image is reconstructed through the

deconvolution layer of the decoder. In the test, the auxiliary

network and discriminator network are removed, and only

the reconstruction network R is used to reconstruct the image

source domain to the target domain. For images from the source

domain, the BSL-GAN framework can generate images with

missing modes.

Suppose that there are two kinds of datasets: source domain

O and target domain A. There are two kinds of modal

data
{

d1, d2
}

in the source domain O, and only one kind

of modal data
{

d3
}

in the target domain. Given the input

image xdO, i , (i ∈ 1, 2) from the source domain O and the input

image ydA, 3 from the target domain A, the encoder branch

ER, i (i ∈ 1, 2) in the reconstruction network R encodes the input

image to the converter branch, and the converter encodes the

source domain image into the common potential feature space

as f
TR
i :

f
TR
i = ER, i

(

xdO, i

)

, i ∈ 1, 2 (1)

where ER, i (·) denotes the forward calculation process of

convolution network, and ii denotes modality. The converter

TR extracts the fused complementary information f
TR
i from

the concatenated coding features. The decoder DeR extracts the

feature map f
TR, DeR
i from f

TR
i as follows:

f
TR, DeR
i =DeR, i

(

f
TR
i

)

(2)

where i denotes thei − th layer of decoder network. DeR, i (·)

denotes the forward computation process of the decoder in the

reconstruction network R.

Auxiliary network

This paper introduces an auxiliary network into the

proposed new framework which serves as the supervision

constraint of the BSL-GAN framework and provides

information about target modal data to guide the training

of the reconstruction network to improve the traditional brain

imaging modal migration method based on unsupervised

learning. In addition, self-supervised learning is performed

in unsupervised data through the auxiliary network, and
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FIGURE 1

(A–C) BSL-GAN framework structure. BSL-GAN realizes the conversion between 1.5T MR images and 3T MR images.

the generated target modal mask vector is used as the target

modal data label. As described in the reconstruction network,

the self-encoder is trained to reconstruct the input itself,

which ensures the strong representation ability of the self-

encoder in the same domain. Considering this, one of the key

objectives of the proposed framework is to guide the decoders

in the reconstruction network through the decoders in the

auxiliary network. Here, the same network architecture as the

reconstructed network is used, except that multiple branches

are merged into a single branch. Therefore, the self-encoder

framework is utilized in the auxiliary network P.

As shown in Figure 1B, the auxiliary network P can be

regarded as a self-encoder network, which mainly consists of an

encoder EP , a latent layer lP , and a decoder DeP . In addition, the

modal mask vector obtained from the auxiliary network training

is used as the target modal label, which guides the reconstruction

network of the BSL-GAN framework to transform images from

various input modal images into any lost modal images during

the training process. For a given input ground-truth image ydA, 3
from the target domain, the encoder EP of the auxiliary network

P encodes it into the latent space lP :

lP=EP

(

ydA, 3

)

(3)

Similar to the reconstruction network R, the potential

features of lP are used to feed the decoder DeP of the auxiliary

network P and extract the feature map f
P, DeP
i :

f
P, DeP
i = DeP, i

(

lP
)

(4)

where DeP, i (·) denotes the forward calculation process of

the decoder in network P, and i denotes the i − th layer

of the decoder network. The image reconstructed by the

reconstruction network P, the target modal label y′ = P
(

y
)

generated by the auxiliary network, and the ground-truth image

ydA, 3 are inputs into the discriminator network D which

together train its discrimination ability.

Discriminator network

As shown in Figure 1C, BSL-GAN uses “PatchGAN” (Isola

et al., 2017) in the discriminator network. Unlike distinguishing

whether each pixel of the input image is real or fake, this

discriminator network tries to classify each patch in the input

image that determines whether it is true or false. Such a patch-

level discriminator punishes the structural loss on the patch scale

and has fewer parameters than the whole image discriminator.
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In the training of the discriminator, the ground-truth

image y of the target domain, the image reconstructed by the

reconstruction network, and the modal mask vector obtained by

the auxiliary network training are taken as inputs. The modal

mask vector here is also the target modal label, which has the

same size matrix as the training image. For each target modal

label, the elements of eachmatrix in themodal mask vector share

the same value.

Network losses

The structure of the BSL-GAN framework has been

introduced above, and then the loss function involved in the

framework is mainly introduced. In the BSL-GAN framework,

this paper designs three kinds of losses: self-monitoring loss,

discriminator loss, and multi-branch generator loss.

Self-monitoring loss

In the proposed BSL-GAN framework, an auxiliary network

is constructed as a self-monitoring constraint to guide the

reconstruction network training. Therefore, in the proposed

BSL-GAN framework, the self-monitoring loss between the

auxiliary network and the reconstructed network is designed.

Different from the traditional method of brain imaging modal

migration based on GAN, BSL-GAN is supervised not only by

pixel-level loss, but also by feature-level loss. As described above,

the auxiliary network p is trained by the target image itself.

When training with the reconstruction network R, the auxiliary

network P will better simulate the distribution of target images

than the reconstruction network R. Therefore, we introduce the

feature mapping of decoder DeP to guide decoder DeR. Given

the three kinds of modal data of two datasets, our proposed

framework can generate another missing modal data from the

other two modal data. Assuming that
{

d3
}

is generated from
{

d1, d2
}

, the loss LSLC from self-supervision can be defined

as follows:

LSLCd3
=

n
∑

i

∥

∥

∥
f
P, DeP
i, d3

− f
P, DeR
i, d1, d2

∥

∥

∥

2
(5)

where ‖ · ‖2 denotes l2− norm, Dei (·) denotes the output of the

i− th layer in the decoder network, and n represents the number

of convolution layers in the decoder networks DeP and DeR.

Discriminator loss

The discriminator is used to predict whether the input image

is true or false. As mentioned above, the auxiliary network P can

estimate the distribution of the target domain more accurately

than the reconstructed network R. We not only merged the fake

image ŷ reconstructed by R, but also merged the pseudo image

y′ generated by the auxiliary network P for training the decoder

network and the real image y. Therefore, the discriminator

impairment LD can be calculated as follows:

LD
(

y, ŷ, y′
)

= Ey : Py
[

log
(

D
(

y
))]

+λ1Eŷ :Pŷ

[

log
(

1− D
(

ŷ
))]

+ (1− λ1)Ey′ :Py′
[

log
(

1− D
(

y′
))]

(6)

where λ 1 ∈ (0, 1) denotes the value of the auxiliary network and

the weight network.

Multi-branch generator loss

Since our model can generate any missing mode from

the other three modes, the generator loss is the sum of four

different input combinations. We take l1 loss as pixel-level loss

to supervise the reconstruction network R and auxiliary network

P to avoid the blurring effect caused by l2 loss. When m1 is

the target mode, the generator loss LG, Rm1 of the reconstruction

network R and the generator loss of the auxiliary network

LG,Pm1 can be given as follows:

LG, Rm1 = Ex : Px
[
∥

∥R
(

xm1|m2, m3

)

− y
∥

∥

1

]

LG, Pm1 = Ex :Px
[
∥

∥P
(

xm1

)

− y
∥

∥

1

] (7)

Therefore, the multi-branch generator loss LG, R of

reconstruction network R and the generator loss LG, P of the

auxiliary network P can be written as:

LG = LG, Rmk
+ LG, Pmk

, k ∈ {1, 2, 3} (8)

where k means that mk is the target mode. Our total loss is

formulated as follows:

L = LSLC + LD + λ2 · LG (9)

where λ2 = 10. LSLC means self-supervision, LD means

discriminator loss, and LG means the total generator loss.

Experiments

We verify the effectiveness of the BSL-GAN framework

through experiments in four different scenarios:

• Supervised learning performance and cooperative learning

performance test: control test without auxiliary task and

control test with an auxiliary task, and single-branch input

and multi-branch input.
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• Generalization performance test: conversion test from 1.5T

MR images to 3T MR images.

• Performance test of synthetic missing modes: There are

three modes of MR images obtained by a 1.5T scanner,

namely, T1-FLAIR, T2-FLAIR, and T2-TRF, and any

missing modes are generated from the other two modes.

In addition, we compare the BSL-GAN framework with

several latest brain imaging mode conversion methods. In

this section, we will describe the dataset, experimental

implementation details, model performance evaluation, and

qualitative and quantitative results to prove the effectiveness

of the brain imaging modality migration method based on

supervised learning.

Datasets

Our dataset is obtained from Yuhuangding Hospital of

Yantai City, which was scanned by 1.5T MRI and 3T MRI

scanners. This dataset consists of 22 subjects. The study

was approved by the institutional review board of Yantai

Yuhuangding Hospital and the Ethics Committee of Shandong

Technology and Business University while patient informed

consent was waived. Every subject has three magnetic resonance

imaging modes: T1-FLAIR, T2-FLAIR, and T2-TRF. The size of

each MRI image is 256 × 256 × 1, and the voxel size is 1 × 1

× 1.

In all of the experiments, 80% of the subjects were randomly

selected as the training set. The remaining 20% of subjects were

used as the test set. We verify the performance of the model by

changing the network input and output modalities:

• Supervised learning performance test: in the 1.5T scanning

field, the input and output of tasks without assistance

are the same, that is, the T1-FLAIR image and T2-

FLAIR image are inputs, and the T2-TRF image is

the output.

• Cooperative learning performance test: in the 1.5T

scanning field, the T1-FLAIR image or T2-FLAIR image

is input in a single branch, the T1-FLAIR image and T2-

FLAIR image are inputs in multiple branches, and the

T2-TRF image is output if single branch input and multi-

branch input have the same output.

• Generalization performance test: T2-FLAIR image in 1.5T

scanning field is input, and T2-FLAIR image in 3T scanning

field is output.

• Synthetic missing modal performance test: three modal

images, namely, T1-FLAIR, T2-FLAIR, and T2-TRF, are

obtained by a 1.5T scanner, and the missing third modal

image is generated by inputting two modal images.

Experimental details

We used MicroDicom visualization software to visualize

the two types of imaging data and obtained 1.5T and 3T axial

slice images of T1-FLAIR, T2-FLAIR, and T2-TRF, respectively

(Figure 2). Each subject involved 20 axial slices. Their pixel

sizes were the same as 256×256×1. Next, we used AMD

Ryzen 7 4800H and NVIDIA GeForce RTX 2060 processor for

2e5 iterations. The whole training process takes about 40 h.

According to the slice-based scanning principle of medical

images, we cut the 3D medical images into multiple slices and

utilize them to train the proposedmethod. All the images used in

our experiments are spatially aligned. Then we convert each 2d

slice to grayscale. In our experiments, the parameter λ1 is set to

0.5 and λ2 is set to 10.We used structural similarity index (SSIM)

and feature similarity index (FSIM) as evaluation criteria to

objectively evaluate the quantitative score of translated images.

All real images from the target modality were used as reference

datasets. SSIM and FSIM scores of translated images were used

for quantitative evaluation.

Characteristic similarity index

Peak signal-to-noise ratio (PSNR), mean square error

(MSE), structural similarity index measure (Wang et al., 2004

SSIM), and feature similarity index (Zhang et al., 2011. FSIM)

are selected as evaluation criteria. The PSNR, MSE, and SSIM

have been introduced before the publishing of this article,

and the FSIM index is mainly introduced in this study. This

index holds that all pixels in a picture do not have the same

importance. For example, pixels at the edge of an object aremore

important to define the structure of an object than pixels in other

background areas.

Based on some studies in psychology and brain science, it

is found that Fourier waves with different frequencies have the

same phase, which often corresponds to visually recognizable

important features. This means that feature information can

be extracted from some consistent phases. However, phase

consistency (Zhang et al., 2011. PC) is relatively invariant to

image changes, which helps to extract stable features in images,

but sometimes image changes do affect perception, so it needs to

be compensated by gradient magnitude (GM). PC and GM are

used in FSIM to complement each other. FSIM is obtained by

coupling PC and GM terms:

FSIM =

∑

x∈ωSL (x) PCm (x)
∑

x∈ωPCm (x)
(10)

where PCm (x) = max (PC1 (x) , PC2 (x)) , PC (x) ∈ (0, 1],

andω means the whole image pixel domain. PC1 (x) and

PC2 (x) mean the PC values of the first and the second image,

respectively. Intuitively, for a given location x, if either of the two
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FIGURE 2

1.5T MRIs and 3T MRIs.

images has a significant PC value, it implies that this position x

will have a high impact on human visual system when evaluating

the similarity between the two images. Therefore, we define

SL (x) as follows:

SL (x) = [SPC (x)]α · [SG (x)]β (11)

where α = β = 1. The similarity measure SPC (x) and SG (x)

can be calculated as follows:

SPC (x) =
2PC1 (x) · PC2 (x) + T1

PC21 (x) + PC22 (x) + T1
(12)

SG (x) =
2G1 (x) · G2 (x) + T2

G2
1 (x) + G2

2 (x) + T2
(13)

where G1(x) and G2(x) represent the GM values of the first and

the second image, respectively. T1 and T2 are positive constants

that depend on the dynamic range of PC and GM values. For the

calculation of PC(x) andG(x), please refer to Zhang et al. (2011).

Comparison method

We compared BSL-GAN with the following methods:

• Pix2pix: Pairing data is trained using a combination of L1

distance and antagonism loss.

• StarGAN (Choi et al., 2018): The above pix2pix framework

is applicable to the modal migration of paired data, that is,

the transformation from one domain to another. However,

the pix2pix framework is not applicable when modal data

in more than two fields need to be migrated. StarGan can

transform multi-domain modal data into desired target

modal data.

Analysis of experimental results

The BSL-GAN framework proposed in this paper has

been verified by experiments. In this paper, the BSL-GAN

framework is compared with the traditional pix2pix framework

based on supervised learning and the StarGAN framework

with multi-branch input, which proves that the performance

of our proposed framework is excellent. Next, we will evaluate

and analyze the performance of self-supervised learning and

cooperative learning, generalization and synthesis of missing

modal data, and prove the feasibility and effectiveness of the

BSL-GAN framework.

Performance analysis of self-supervised
learning and cooperative learning

This paper divides the experiment into two parts to verify

the effectiveness of self-supervised learning and multi-branch

cooperative learning based on the BSL-GAN framework. First,

we set up a control task group for the self-supervised learning

performance of the framework. One is the framework for

removing the auxiliary network from the framework, and the

other is the framework with the help of the auxiliary network.

The precondition is that the inputs of these two sets of frames are

the same. The T1-FLAIR image and T2-FLAIR image acquired

under the 1.5T scanner will be used as the inputs, and the

T2-TRF image will be used as the target output.

In Figure 3, the images generated without auxiliary tasks are

fuzzy in appearance and lack useful anatomical details. However,

this framework obtains a clearer output image and generates

more anatomical details like the reference target image with

the help of auxiliary tasks. According to Table 1, the scores

obtained by MSE, PSNR, SSIM, and FSIM also indicate that the

framework under the guidance of auxiliary tasks has achieved

the highest results.

In addition, for the analysis of the multi-branch cooperative

learning performance of the BSL-GAN framework, this paper

also sets up a control task group. The task group is implemented
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FIGURE 3

(A) There is no self-monitoring constraint in image generation; (B) Images generated under self-supervision constraints; and (C) 1.5T MRI

(ground truth).

TABLE 1 Self-supervised learning performance index and cooperative learning performance index.

Tasks without auxiliary network Tasks wit auxiliary network T1-FLAIR T2-FLAIR

MSE 171.69± 20 80.58± 20 117.16± 20 107.68± 20

PSNR 25.78± 2 29.07± 1 27.44± 2 27.81± 2

SSIM 0.80± 0.03 0.92± 0.01 0.87± 0.03 0.91± 0.02

FSIM 0.87± 0.03 0.93± 0.02 0.89± 0.03 0.91± 0.02

in the framework of an auxiliary network. One group only

takes the T1-FLAIR image acquired under the 1.5T scanner

as input, and the other group only takes the T2-FLAIR image

acquired under the 1.5T scanner as input. T2-TRF image

acquired by 1.5T scanner is output as the target. These two

groups of tasks are compared with the above-mentioned tasks

with an auxiliary network with T1-FLAIR and T2-FLAIR

as inputs.

As shown in Figure 3, if there is no multi-branch input to

realize cooperative learning, the generated output image has

fuzzy anatomical details. These are the output images and target

reference images generated by naked eye observation. Moreover,

the loss of each iteration is shown in Figure 4, and the loss of

the discriminator converges step by step. Finally, this paper also

uses SSIM and FSIM to evaluate the results quantitatively. As

shown in Table 1, the proposed BSL-GAN framework under the

guidance of auxiliary tasks reaches 0.9250 in SSIM and 0.9264

in FSIM, which are much higher than 0.8380 and 0.8853 in the

group without auxiliary tasks and higher than the score of only

one branch input.

Generalization performance analysis

The above experiments verify the superiority of self-

supervised learning performance and cooperative learning

performance of the framework proposed in this paper, and the

following experiments verify the generalization performance of

the framework proposed in this paper. Through the research in

this paper, it is found that the existing modal data migration

framework based on GAN in the field of medical imaging is

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.920981
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Cheng et al. 10.3389/fnins.2022.920981

FIGURE 4

The blue line represents the generator loss, the yellow line represents the discriminator loss, and the green line represents the reconstructed loss.

a single branch input, that is, the modal data in one field is

converted into the modal data in another field. Therefore, this

paper reduces the input branch of the reconstruction network

to one and simplifies the BSL-GAN framework to prove that it

can be implemented well in this case. Similarly, this experiment

can further prove the self-supervised learning performance

of BSL-GAN.

As shown in Figure 5, in clinical practice, the strong

magnetic field possessed by a 3T magnetic resonance scanner

may affect the health of patients with metal implants, while

a 1.5T magnetic resonance scanner is considered safe and

non-invasive. Therefore, in the experiment, the T2-FLAIR

modal image obtained from a 1.5T scanning domain is

transformed into the T2-FLAIR modal image obtained from

a 3T scanning domain. Qualitative evaluation showed that

Pix2Pix and StarGAN had a poor perceived appearance

and large deformation around the skull. The simplified

framework of BSL-GAN can obtain qualified pseudo 3T

MR modal images with more accurate and clearer skull

contour. For quantitative evaluation, this paper compares

the synthesized 3T MR modal image with the real 3T

MR modal image and calculates SSIM and FSIM scores.

As shown in Table 2, the BSL-GAN framework obtains

the highest SSIM and FSIM scores, which is superior to

other methods. The experimental results further verify the

effectiveness of the proposed feature-level self-supervised

learning method.

Performance analysis of synthetic missing
modal data

In this paper, the BSL-GAN framework is compared with

two popular GAN-based methods (pix2pix and StarGAN).

We assume that one of the modal datasets in the1.5T

scanning field is missing, and the remaining two modal

data in the 1.5T scanning field are used as input for

training. Then, the results of synthetic missing modes are

analyzed. Pix2Pix and StarGAN need a single input. T2-

FLAIR image is used as input in this paper, because it

provides more information about tumor lesions than the other

three methods.

As shown in Figure 6, the output reconstructed image of the

proposed BSL-GAN framework is very similar to the reference

image, and the soft tissue details and boundary texture are clear,

which is superior to other methods. In Figure 6, Pix2pix and

StarGAN reconstruct 3T MR images from 1.5TMR images, but

the output results show a poor perceived appearance, and the

details are unclear.

For quantitative evaluation, SSIM and FSIM scores are

shown in Table 3, and these scores are calculated from

reconstructed images and reference images. Because other

methods based on GAN only use pixel-level loss, they cannot

learn the accurate distribution of target modes at the feature

level, which reduces the quantitative SSIM and FSIM scores.

By comparison, the BSL-GAN proposed in this paper can

estimate any missing modes from other available modes in
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FIGURE 5

Task of 1.5T MRI to 3T MRI.

FIGURE 6

Images synthesized via missing modal data and the experimental results of other methods.

a unified single model and has excellent qualitative and

quantitative performance, which can be more efficient in the

testing stage.

Conclusion

Magnetic resonance imaging is widely used as an important

means to study brain diseases. The magnetic resonance

intensity has developed from 0.5T to 1.5T or 3T, which is

widely used now. Compared with 1.5T magnetic resonance

imaging, 3T magnetic resonance imaging provides better

contrast and higher resolution images, which provide

potential value for the diagnosis and treatment. However,

susceptibility artifacts often occur when 3T magnetic resonance

scanners have strong magnetic fields, and some patients

with implants and foreign bodies cannot use them, which

leads to the loss of related brain imaging modality data for

these patients.

In this paper, we introduce a self-monitoring method that

uses an auxiliary network to realize self-supervised learning

which is based on unsupervised learning to guide the decoders

in the reconstruction network and synthesize reconstructed

images with higher quality. In addition, the modal mask

vector obtained by the auxiliary network reconstruction can

be used as the target modal label, so that our self-monitoring

framework can generate any missing modes and further

ensure its generalization. Although the proposed BSL-GAN

achieves better performance than other advanced technologies,

it has several limitations. For example, in the training stage,

the proposed framework needs more computing resources

and computing time. In the future, we will explore more
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TABLE 2 Comparison of self-monitoring constraint performance under di�erent models: Comparison of scores between single-branch input and

multi-branch input in task method with auxiliary network.

BSL-GAN pix2pix StarGAN

SSIM 0.92± 0.01 0.89± 0.02 0.86± 0.02

FSIM 0.95± 0.02 0.93± 0.02 0.90± 0.02

TABLE 3 SSIM and FSIM scores of the proposed method are compared with Pix2Pix and StarGAN.

T1-FLAIR T2-TRF T2-FLAIR

SSIM FSIM SSIM FSIM SSIM FSIM

BSL-GAN 0.94± 0.01 0.95± 0.01 0.90± 0.01 0.92± 0.01 0.91± 0.01 0.93± 0.01

pix2pix 0.90± 0.02 0.92± 0.02 0.89± 0.02 0.91± 0.02 0.88± 0.02 0.91± 0.02

StarGAN 0.83± 0.03 0.88± 0.03 0.87± 0.03 0.91± 0.03 0.86± 0.03 0.89± 0.03

efficient network architecture to deal with more realistic and

complex applications.
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