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Elevated-temperature-induced 
acceleration of PACT clearing 
process of mouse brain tissue
Tingting Yu1,2,*, Yisong Qi1,2,*, Jingtan Zhu1,2, Jianyi Xu1,2, Hui Gong1,2, Qingming Luo1,2 & 
Dan Zhu1,2

Tissue optical clearing technique shows a great potential for neural imaging with high resolution, 
especially for connectomics in brain. The passive clarity technique (PACT) is a relative simple clearing 
method based on incubation, which has a great advantage on tissue transparency, fluorescence 
preservation and immunostaining compatibility for imaging tissue blocks. However, this method 
suffers from long processing time. Previous studies indicated that increasing temperature can speed 
up the clearing. In this work, we aim to systematacially and quantitatively study this influence based 
on PACT with graded increase of temperatures. We investigated the process of optical clearing of 
brain tissue block at different temperatures, and found that elevated temperature could accelerate 
the clearing process and also had influence on the fluorescence intensity. By balancing the advantages 
with drawbacks, we conclude that 42–47 °C is an alternative temperature range for PACT, which can 
not only produce faster clearing process, but also retain the original advantages of PACT by preserving 
endogenous fluorescence well, achieving fine morphology maintenance and immunostaining 
compatibility.

High-resolution mapping of neuronal connectivity through the entire brain is indispensable for understand-
ing how the brain functions. Due to the high turbidity of biological tissues, it is necessary to make thin sec-
tions for the widespread histological approaches, which are labor-intensive and time-consuming. The automated 
serial-sectioning and imaging techniques have been developed recently to obtain high-resolution atlas of the 
mouse brain with high-throughput1–3. The major challenges of these sectioning methods involve tissue defor-
mation induced by mechanical slicing, efficient processing of massive data sets and destruction of the samples4.

Tissue optical clearing has emerged as a distinct approach for imaging deeper in large volumes by reduc-
ing the scattering and improving the light penetration depth with kinds of optical clearing agents or tools5–12. 
The rise of these techniques shows a great potential for obtaining the three-dimensional high-resolution images 
of un-sectioned whole brain by combining with various optical imaging techniques13–15, which provides a new 
perspective for visualization of brain-wide neuronal networks. Recently, to achieve transparency, different 
methods have been developed. As an organic solvent-based optical clearing method, 3DISCO could make the 
brain and spinal cord resemble glass with limited storage time owing to fluorescence quenching16–18. Some other 
water-based approaches were developed to achieve better fluorescence preservation. Scale is based on urea to 
clear the whole mouse brain but limited on tissue fragility and long incubation time19. ScaleS is a further devel-
opment of Scale based on sorbitol and urea with structural stability and shorter time20. ClearT2 takes a short time 
to clear the whole embryos based on formamide and polyethylene glycol but shows less effect on adult brain21. 
SeeDB and SeeDB2 are methods based on fructose or iohexol without tissue deformation22–26 and showed modest 
clearing capability. The subsequent aqueous methods like CUBIC27,28 not only clear the whole brain with good 
transparency and fluorescence preservation, but also can achieve large-volume tissue immunostaining.

CLARITY, as a fundamentally distinct approach, transformed the brain tissue into hydrogel-tissue hybrid 
and introduced electrophoretic tissue clearing for lipid extraction to achieve high transparency29–34. However, 
this method could be challenging to implement for researchers and get unstable tissue quality. This led to the 
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development of protocols that render tissue transparent through passive delipidation techniques, including 
advanced CLARITY without electrophoretic clearing31, PACT32. The procedure for PACT is similar to CLARITY 
method, including the hydrogel-tissue hybridization to provide a physically tissue support framework, passive 
lipid extraction with ionic detergents and embedding in high refractive index agent for imaging. However, as 
one of the passive clearing methods, PACT is characterized by inherently slow speed like TDE-based clear-
ing method4,35–38 and FRUIT39. Generally, the optical clearing methods process the samples at room temper-
ature or 37 °C. It has been mentioned that higher temperature could be used for faster clearing, such as 50 °C 
in SeeDB37ht22 or 60 °C in passive CLARITY31. They both indicated that high temperature might cause partial 
quenching of fluorescent proteins, but lack of quantitative analysis22,31. The detailed investigation on the influence 
of high temperatures on passive optical clearing is in absence. It is also critical to balance the clearing speed and 
fluorescence preservation.

In this work, based on the original PACT, we aim to systematically study the influence of high temperature 
on the clearing and seek to screen the alternative temperature range, which can not only enhance the clearing 
efficiency, but also preserve the fluorescence of protein whose stability is sensitive to temperature. The process of 
optical clearing of brain tissue block at different temperatures (37–52 °C) and the influence on the fluorescence 
intensity were examined by bright-field images and the fluorescence images, respectively. In addition, the effect 
of elevated-temperature on morphology preservation of samples and the compatibility with immunostaining for 
tissue block were investigated.

Results
High temperature can promote the random molecular motion, which can accelerate the diffusion of the chemical 
reagents into biological tissues. Generally, room temperature and 37 °C are chosen as the processing temperature 
in most of optical clearing methods due to the thermal sensitivity of fluorescent proteins, such as GFP40, which 
leads to longer incubation time. To achieve rapid tissue clearing, we quantitatively evaluated the optical transpar-
ency and fluorescence intensity of mouse brain blocks incubated at 37 °C, 42 °C, 47 °C, 52 °C, 57 °C, respectively, 
and balanced with these two parameters to determine the alternative temperatures for PACT. Meanwhile, we 
investigated the increase of imaging depth, the tissue morphologic maintenance, and immunostaining compati-
bility for brain blocks at indicated temperatures.

Optical transparency with different temperatures. The optical transparency of the 1-mm-thick 
mouse brain coronal block was observed after 0-, 12-, 24-, 36- and 48-hours SDS (Sodium-Dodecyl Sulfate) 
clearing. The representative images of the SDS-cleared brain slices through the time course photographed in the 
trans-illumination mode are shown in Fig. 1a. The time to clear for brain slices in 8% SDS solution at 37 °C, 42 °C, 
47 °C, 52 °C, 57 °C is respectively recorded and compared, as showed in Fig. 1b. The results demonstrate that with 
the increase of temperature, the time to clear reduced and the clearing speed is increased.

After clearing in SDS for 6 hours, the transparency of samples appears different among five temperatures 
(Supplementary Fig. 1a). Hence, to quantify tissue transparency, 6-hours was taken to compare the collimated 
transmittance of five temperatures with SDS-clearing and further sorbitol incubation for refractive index match-
ing. The relative transmittance at the wavelength of 500 nm for 37 °C, 42 °C, 47 °C, 52 °C, 57 °C are 5.5%, 10.4%, 
18.9%, 30.3%, 57.9%, respectively. Then incubated in sorbitol solution, the transmittance at 500 nm increase to 
32.5%, 45.2%, 58.6%, 69.2%, 86.5% for five temperatures, respectively. This refractive index matching process with 
sorbitol after PACT could increase the transmittance of the brain samples (Supplementary Fig. 1b). For SDS and 
SDS-sorbitol clearing samples, the transmittance values both increase with the increase of temperature.

It is concluded that processing with higher temperature could achieve better transparency with higher trans-
mittance at the same incubation time and accelerate the clearing process.

Fluorescence preservation of neurons in different temperatures. Considering proteins are sensitive 
to temperature and SDS, we imaged the neurons of mouse brain cortex before and after clearing with SDS in dif-
ferent temperatures, then examined the fluorescence intensity of GFP under identical conditions. The results from 
the 50-μ m maximum projections of z-stack images show that higher temperature (52 °C and 57 °C) can induce 
obvious decrease in GFP fluorescence intensity (Fig. 2a). Then, the mean fluorescence intensity of SDS cleared 
1-mm-thick brain slices were calculated. We found that there was a decrease in mean fluorescence intensity after 
cleared under all temperatures (37–57 °C). Taking tissue expansion into account, we observed that the total flu-
orescence intensity increased to 1.18 ±  0.11 for 42 °C and 1.08 ±  0.17 for 47 °C, which were comparable to 37 °C, 
while present highly significant reduction for 52 °C and 57 °C. Considering the clearing effect described above 
with the preservation of fluorescent signals, the results demonstrate that 42–47 °C give it an ideal compromise 
between clearing speed and fluorescence preservation. Further, the relative fluorescence intensity along with time 
for different temperatures was shown in Supplementary Fig. 2. The statistical analyses show that there is no dif-
ference in fluorescence change within 48 hours between 42 °C and 37 °C, but extremely significant between other 
higher temperatures (47–57 °C) and 37 °C.

Imaging depth of mouse brain blocks with different temperatures. The imaging depth is another 
important parameter concerned in optical clearing methods for fluorescence imaging techniques except for the 
transparency and fluorescence preservation. In this study, the imaging depth for different temperatures was also 
quantified based on contrast attenuation. To understand the correlation of time-to-clear and imaging depth, the 
fluorescence of Cx3Cr1-GFP brain samples after clearing with SDS at typical time points (6 hours and 12 hours) 
followed by sorbitol immersion were acquired to calculate the imaging depth, as shown in Fig. 3. Figure 3a gives 
the typical contrast attenuation of 1-mm-thick brain sections before and after 6-hours SDS clearing followed by 
sorbitol incubation, and the imaging depth is determined at the point where the contrast reduced to 1/e of the 
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maximum value on the surface. As shown in Fig. 3b, the imaging depth increases with SDS-clearing time for all 
three temperatures, and 47 °C shows larger increase of imaging depth than 42 °C at two time points. When applied 
to 3-mm-thick brain blocks, the results are similar (Supplementary Fig. 3).

Tissue size and morphologic change during the clearing process. Tissue morphology preserva-
tion is of particular importance to analyze fine structures of biological tissues. During the clearing process, the 
changes of sample size are inevitable due to the dehydration or hydration of different agents. The linear expansion 
during 37 °C, 42 °C, and 47 °C-SDS clearing and sorbitol incubation were calculated, as shown in Fig. 4a. After 
sorbitol incubation, the tissue expansion is diminished and the size of slices reduces to similar values for three 
temperatures. To characterize the effects on neuronal morphology, typical neurons of the Thy1-GFP-M mouse 
cortex were imaged before clearing and during clearing process. The main structures of the neurons were pre-
served well, as shown in Fig. 4b. After cleared with SDS, the locations of a few dendrites show slight shifts. Then 
with sorbitol incubation, the shift decreases and the dendrites present close to original location. This deformation 
is anticipated to be related to the tissue expansion. Figure 4c show the images of dendrite spines before and during 
the clearing process. The results indicate that the fine structures were all preserved well for 37 °C, 42 °C, and 47 °C.

Compatibility with immunostaining of brain block after PACT. To investigate whether the raising 
temperature during PACT clearing impedes the subsequent immunostaining, we used anti-parvalbumin (PV) 
antibody to immunostain the cleared 1-mm-thick mouse brain sections with PACT in different temperatures, 
and focused on the success of labeling. The effectiveness of immunolabeling (after SDS incubation at 47 °C) was 
proved by staining the GFP protein, which is an endogenous protein that can be used as comparative reference for 

Figure 1. Optical transparency with different temperatures. (a) Bright-field images of 1-mm-thick mouse 
coronal blocks at different temperatures in SDS solution with time. Grid size, 1.45 mm ×  1.45 mm. “uncleared” 
indicates the sample with only hydrogel-embedded and placed in PBS. “SDS-12hr”, “SDS-24hr”, “SDS-36hr”, 
and “SDS-48hr” indicate 12-, 24-, 36-, 48-hours SDS clearing. (b) A comparison of time to clear for different 
temperatures.
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complete labeling (Supplementary Fig. 4). Further, Fig. 5 demonstrates the immunostaining anti-parvalbumin 
signal (Alexa Fluor 647) and the nuclei staining with DAPI. The imaging parameters used for these images are 
identical. As we can see from Fig. 5, the immunostaining and nuclear staining after PACT under all the three 
temperatures (37 °C, 42 °C, 47 °C) show successful antibody labeling at cleared state with respective clearing time. 
These results indicate that moderately rising temperature for PACT works well with subsequent immunostaining.

Figure 2. GFP Fluorescence intensity of neurons before and after SDS clearing in gradient temperature.  
(a) Each image is a 50-μ m maximum projection of image stacks acquired with confocal microscope  
(10× /0.5 objective). Scale bar, 50 μ m. (b) Quantitative calculation of relative mean fluorescence intensity and 
total fluorescence intensity. Error bars denote standard deviations. (n.s. =  not significant, ∗∗P <  0.01).

Figure 3. Quantification of imaging depth with different temperatures. (a) Image contrast for 1-mm-thick 
Cx3Cr1-GFP brain sections before and after 6-hours SDS clearing followed by sorbitol incubation. The imaging 
depth is determined where the contrast drop to 1/e from the surface. (b) Increase of imaging depth with clearing 
time for 37 °C, 42 °C and 47 °C. Error bars denote standard deviation. “6hr-sor” and “12hr-sor” indicate 6-hours 
and 12-hours SDS clearing followed by sorbitol incubation, respectively (∗∗P <  0.01).
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Discussion
As mentioned above, there’re a number of well-established optical clearing methods. Thereinto, PACT is an 
aqueous-based passive clarity technique suitable for passive lipid extraction of 1- to 3-mm-thick tissues32. 
Previous studies mentioned that the use of higher temperature could quicken the clearing process and claimed 
that it might quench the fluorescent signal without detailed evaluation22,31. As is well-known, most proteins are 
sensitive to temperature, for instance, the stability of GFP could be reduced with the increase of temperature41. In 
this work, with systematic investigation from clearing speed, fluorescence preservation, and morphology mainte-
nance to immunostaining compatibility, an appropriate temperature range has been determined as the alternative 
choice for the researchers instead of 37 °C in original PACT. It has certain scope of application, especially for the 
passive clearing methods need long incubation time, an appropriate increased temperature is conducive to save 
time and accelerate the clearing process under such circumstances. It is noticed that the thermal acceleration is 
unapparent for those solvent-based methods15–18 and active clearing methods29,30.

During the PACT clearing procedure, we found that the brain slices treated at 57 °C are too soft and fragile to 
handle for imaging easily, which indicates that higher temperature is not beneficial to tissue morphology main-
taining. For the other four temperatures, the clearing protocol can also lead to tissue expansion in certain extent, 

Figure 4. Tissue size change and neuronal morphology. (a) Sample expansion through SDS clearing at 
different temperatures and sorbitol incubation. Error bars denote standard deviation. (b) Typical neurons of the 
Thy1-GFP-M mouse cortex before and during clearing. The images were acquired with confocal microscope 
(20×/0.8 dry objective). Scale bar, 20 μ m. (c) Structure of dendrite spines before and during clearing process. 
Scale bar, 2 μ m. Each image is a maximum projection of image stacks. “uncleared” indicates the sample with 
only hydrogel-embedded. “SDS” indicates the sample cleared with SDS. “Sorbitol” indicates the sample with 
further sorbitol incubation after SDS clearing.
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as shown in Fig. 1a. In the investigation of fluorescence preservation, the field of view of images for uncleared 
samples in Fig. 2a is slightly larger than the cleared state owing to the tissue expansion of SDS clearing, which 
is common to the other detergent-clearing methods. Tissue expansion is most likely to induce structure rup-
ture or deformation, such as ScaleA220, while some clearing methods which do not cause obvious change in 
tissue volume can achieve fine morphology preservation, such as SeeDB22–25. This expansion and deformation 
could be diminished by introduction of refractive index matching solution, such as sorbitol32, fructose22–25 and 
histodenz26,31. Considering the cost and viscosity of the chemical agents, sorbitol was employed to achieve the 
refractive index matching in this study. What is noteworthy is that the samples need sufficient rinsing to remove 
the SDS before incubating in sorbitol. Otherwise, the samples would turn white in a few hours and the tissue 
transparency would decrease, which made imaging deeply difficult.

Though the higher temperature can accelerate the clearing speed, as described above, but is unfavorable for 
preserving fluorescence of protein which is sensitive to temperature, like GFP40. Hence, it is necessary to deter-
mine an appropriate temperature range to balance the both. In this study, the GFP fluorescence intensity was 
quantified based on the fluorescence images, while GFP protein loss was not measured. During detergent-based 
clearing process, GFP protein is easy to be eluted from tissues, this might be more serious at higher temperatures 
because the faster clearing rate means it is easier to overclear tissues. In the future work, the protein loss for each 
temperature should be measured with NanoDrop, as described in the original literature32,33.

Figure 5. Immunostaining of 1-mm-thick brain slices through PACT with different temperatures. Cleared 
brain slices with PACT in different temperatures were immunostained for (a) parvalbumin (Alexa Fluor 647 
anti-PV) and (b) nuclei stained with DAPI, respectively, then incubated in sorbitol solution for 5 h and mounted 
for imaging. Scale bar, 100 μm.
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In the immunostaining of brain blocks, the intensity of immunostaining signal in the middle volume was 
lower than that in the superficial volume, especially for the neuronal fibers. During the passive permeating pro-
cess of primary and secondary antibodies, it is inevitable for the macromolecules to form concentration gradient 
from edge to center of samples, which would reflect in the difference of fluorescence intensity. 37 °C is an effective 
temperature for PACT to immunostain the 1-mm-thick slices32,33. In this study, 42–47 °C is suggested as the 
processing temperature in PACT based on the measurements of transparency, fluorescence preservation and 
imaging depth. The compatibility with immunostaining is also an important factor that should be considered in 
the clearing method. To address this doubt, the immunostaining for GFP after 47 °C-SDS clearing was carried 
out to prove the effectiveness of labeling. Further, the immunostaining for parvalbumin and nuclear staining after 
SDS clearing at 37 °C, 42 °C, and 47 °C were demonstrated to investigate the labeling ability of the antibody and 
small molecules. The results show that high temperature is compatible to the immunostaining, but cannot aid 
the antibody penetration due to the same hydrogel formulation (A4P0), which decides the crosslink density of 
tissue-hydrogel hybrid and pore size that directly affects the diffusion rate.

It should be noted that the immunofluorescence is not suitable for quantitative analysis and comparison due 
to the variety of interference factors, including individual differences of samples and the important anthropic 
factor in the complicated operations. And the repeated trials also showed different intensity level (Fig. 5 and 
Supplementary Fig. 5). This is due to the difficulty of keeping only one variable in all the experiments, the imag-
ing region, the placement angle of samples and even the contact of brain slices with the sample-containing tubes 
can all influence the staining effect. Hence, we investigated the compatibility of the increased temperatures with 
immunostaining by focusing on investigating whether the labeling is successful. Though the results above showed 
successful labeling for all the three temperatures at indicated clearing time, it is uncertain if the antigenicity was 
influenced due to lack of quantitative measurement of antigenicity. It is worth to note that the antigenicity must be 
effected with increased temperature in SDS through a longer time accumulation, even with the 37 °C in original 
PACT33. Theoretically, lower temperature is better for the immunostaining. However, in practical applications, if 
the protocol can satisfy the imaging requirements with faster process, for example, 37 °C instead of 4 °C in tradi-
tional studies, or higher temperature instead of 37 °C in this study, it should be useful and valuable.

Based on the physically and chemically support of hydrogel-tissue hybridization, the lipids and unconjugated 
biomolecules were removed from hybrid with the ionic detergent (SDS). The concentration of SDS solution is 
critical for the clearing, as demonstrated in the original paper for PACT32,33. Temperature is an important factor 
that affects micellar composition. With the increase of temperature, the volume of micelle decreases for SDS 
solution and the number of micelle increases. For the tissue-hydrogel matrix with certain pore size, it is supposed 
to be easier for smaller micelles to diffuse, which might explain why high temperature can speed up the clearing 
process33,42. Except for the effect on micelle size, high temperature can also affect the stability of the hybrid mesh 
and the architecture of other biomolecules, which can be investigated with ultrastructural examination using 
electron microscopy that we lacked. Instead, we evaluated the influence of temperature on the microstructure, e.g. 
spine, the fine structure on dendrite, as described above.

Though for 1-mm-thick brain sections, the samples could achieve good transparency with fine fluores-
cence preservation for both 42 °C and 47 °C, a faster decrease in GFP fluorescence was observed under 47 °C 
(Supplementary Fig. 2) due to the instability of GFP in SDS solutions under high temperatures41. Considering in 
conjunction with the potential impact on antigenicity of labeling target under high temperature, it is suggested 
that for relative smaller sample (e.g. 1-mm-thick brain section), 47 °C is suitable for acceleration of clearing, but 
for thicker samples need longer time to clear, lower temperatures are suggested, such as 42 °C, even lower. As 
shown in Fig. 2b, 42 °C and 47 °C show comparable fluorescence intensity to 37 °C by comparing the fluorescence 
intensity of different temperatures at cleared state with different clearing time needed for the brain samples (less 
time for higher temperature). The comparable mean or total fluorescence of GFP signal at the first period of clear-
ing time for 42 °C and 47 °C is supposed to be induced by the alkalinity of clearing solution (pH =  8.5)43,44, whose 
effect on the fluorescent signal counteracts the influence of temperature and SDS. In addition, we also investigated 
the fluorescence preservation at different temperatures for YFP and found that the fluorescent signal decreases 
with the elevated temperature (Supplementary Fig. 6). Hence, in this study, we set a range for the alternative tem-
peratures suitable for GFP in PACT but not strictly limited, which can be adjusted according to the requirements 
in certain conditions, including the sample thickness, the tracer thermal properties, the stability of antigenicity of 
immunolabeling target and so on.

This work demonstrates the temperature rise could enhance the efficacy of PACT, the demonstration on 
thicker blocks should be carried out in the future work. It is anticipated that the thermal acceleration can be 
expanded to the other passive clearing methods and future research is needed.

Conclusion
The slow speed is a common limitation for passive clearing methods. In this study, the elevated-temperature- 
induced acceleration of PACT was demonstrated. To screen the alternative temperature, we observed the tissue  
transparency and imaged the fluorescent neurons of Thy1-GFP-M mouse brain block at five temperature points, 
and found that the temperature range of 42–47 °C for PACT gave more excellent transparency and deeper imag-
ing depth than 37 °C and comparable fluorescence preservation. The tissue size and cell morphology and fine 
structure keep almost the original state with minimal change after clearing. In addition, this method is also 
proved to be compatible with immunostaining for brain tissue blocks. The quantitative and systematic assess-
ments of temperature based on PACT is supposed to provide alternative temperature range, which can simultane-
ously speed up clearing process and preserve fluorescence intensity. It may be expanded to other clearing methods 
based on long-time incubation.
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Methods
Preparation of mouse brain blocks. Adult Thy1-GFP-M line and Cx3Cr1-GFP line mice (8–9 weeks old, 
Jackson Laboratory, USA) were used in this study. Thy1-GFP-M mice were employed to study the change of fluo-
rescence intensity with time and different temperature, and Cx3Cr1-GFP were used to measure the imaging depth 
due to the dense distribution of microglia in different regions of the brain. Mice were anesthetized with a mixture 
of 2% α -chloralose and 10% urethane (8 mL/kg) through intraperitoneal injection, and perfused intracardially 
with 0.01 M phosphate buffered saline (PBS, Sigma) followed by 4% paraformaldehyde (PFA, Sigma-Aldrich) 
in PBS. The brains were excised and post-fixed overnight at 4 °C in 4% PFA. The mouse brains were rinsed for 
several times with PBS and then were sliced into 1-mm-thick coronal blocks with a vibratome (Leica VT 1000 s, 
Germany). All animal care and all experimental protocols were in accordance with the Experimental Animal 
Management Ordinance of Hubei Province, P. R. China and the guidelines from the Huazhong University of 
Science and Technology, and have been approved by the Institutional Animal Ethics Committee of Huazhong 
University of Science and Technology.

PACT clearing protocol. The samples were cleared with PACT as described in the literature32,33. Before 
clearing, the brain sections were cut along the midline and incubated in A4P0 hydrogel monomer solution at 4 °C 
overnight. After infusion, the samples were degassed with nitrogen through the sample-hydrogel solution in the 
centrifuge tube for 5 to10 minutes and polymerized in 37 °C water-bath for 3 hours. Then the samples were rinsed 
with PBS, removed the excess hydrogel and placed into 50 ml conical tubes containing 8% SDS solution.

Selection of clearing temperature. In this study, temperatures from 37 °C to 57 °C at the interval of 5 °C 
were chosen as the SDS clearing temperature. For recording the transparency along with time, the bright-field 
images were taken on the same 1-mm-thick GFP mouse brain block during SDS clearing at 12-hr, 24-hr, 36-hr, 
or 48-hr for different temperatures until cleared. To illustrate the increase of tissue transparency induced by 
sorbitol with refractive index matching, the 1-mm-thick brain sections were cleared in SDS solution for 6 hours, 
then collimated transmittance were measured before and after sorbitol incubation. The fluorescence images for 
each temperature were also taken on GFP mouse brain slices before and after clearing with SDS. To measure the 
imaging depth for different temperatures, the 1-mm-thick Cx3Cr1-GFP mouse brain blocks were cleared in SDS 
solution at 37 °C, 42 °C and 47 °C for 6 hours and 12 hours, respectively, and rinsed with PBST (0.1% Triton X-100 
in PBS), then incubated in sorbitol solution (70% wt/vol) for 5 hours to achieve refractive index matching prior to 
imaging. The 3-mm-thick Cx3Cr1-GFP mouse brain blocks were also processed in SDS solution for 3 days with 
37 °C, 42 °C and 47 °C, then rinsed with PBST, incubated in sorbitol solution for 5 hours before imaging.

Immunostaining of PACT-processed mouse brain tissue. To demonstrate whether the temperature 
rise during PACT clearing influences the binding of antibody and antigen, the immunostaining was performed on 
1-mm-thick Thy1-GFP-M brain section referring to the original PACT method31. Before staining, the 1-mm-thick 
slices were cleared with 8% SDS at 37 °C, 42 °C, and 47 °C, respectively. Then the previously cleared samples were 
immunostained for parvalbumin and nuclei stained with DAPI. After washed in PBST for 1 day and blocked in 
PBS/0.1% Triton X-100/6% goat serum for 1 day, the samples were transferred to primary antibody dilutions 
(anti-parvalbumin antibody, Abcam, ab11427, 1:400) for 1 day followed by washing with PBST for several times, 
then to secondary antibody dilutions (Alexa Fluor 647 goat anti-rabbit IgG, Jackson Immunoresearch, 111-607-
003, 1:400) for 1 day at 37 °C. Then the samples were nuclei stained with DAPI at room temperature for 12 hours. 
The samples were finally washed in PBST for several times before further incubating in 70% (wt/vol) sorbitol 
solution for 1 or 5 hours. For GFP immunostaining, the cleared brain slice was incubated in primary antibody 
dilutions (anti-GFP antibody, Millipore, AB3080, 1:200) for 2 days and secondary antibody dilutions (Alexa Fluor 
633 goat anti-rabbit IgG, Invitrogen, A-21070, 1:200) for 2 days.

Fluorescence microscopy. The clarified brain slices were mounted with two cover glasses and imaged 
with the inverted confocal fluorescence microscopy (LSM710, Zeiss, Germany) equipped with the Fluar 10× /0.5 
objective (dry, W.D. 2.0 mm) and Plan-Apochromat 20× /0.8 objective (dry, W.D. 0.55 mm) or upright confocal 
fluorescence microscopy (A1RMP, Nikon, Japan) equipped with the 16×/0.8 water-immersion objective (W.D. 
3.0 mm).

Measurement of collimated light transmittance. Light transmittance of the 1-mm-thick mouse brain 
sections were measured with a commercially available spectrophotometer (Lambda 950, PerkinElmer, USA). 
Due to the small size of half brain slices, a customized 3 mm ×  3 mm slit was designed to obtain the collimated 
transmittance spectra (400–800 nm). The light transmittance of samples normalized to the blank value, which was 
100%, defined as the relative collimated transmittance.

Imaging data processing. The obtained images were analyzed with ImageJ software and Imaris software. 
For fluorescence quantification, the freehand-selection tool was used to select the soma area of a neuron, and the 
histogram tool was used to measure the mean fluorescence intensity and the area, whose multiplication values 
were served as the total fluorescence intensity of the neurons. The fluorescence intensity of a neuron is supposed 
to be ‘A’ before clearing and ‘B’ after clearing. The fluorescence change of a neuron during clearing is quantified 
as ‘B/A’. For each group, mean value of fluorescence change of twenty-five neurons was calculated. For sample 
expansion rate, based on the bright-field images, the size of the slices was outlined using ImageJ software. The 
linear expansion value was determined by normalizing the area of cleared slices with the area of uncleared ones 
and calculating the square root (n =  4). For imaging depth evaluation, the decay of image contrast with depth 
was used to quantify the value after clearing in different temperatures. The image contrast was calculated as the 
following Eq. (1) 4,45.
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where I is the grayscale value for each pixel, Imean indicates the average intensity of each frame, and n is the total 
pixel count. Data were analyzed and graphs constructed using Matlab, Microsoft Excel or Visio. Statistical analysis 
was performed using one-way ANOVA followed by Tukey’s post hoc test or two-way ANOVA with mixed design.
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