
Structural optimization of different 
truss designs using two archive 
multi objective crystal structure 
optimization algorithm
Pranav Mehta1, Ghanshyam G. Tejani 2,3 & Seyed Jalaleddin Mousavirad4

Optimizing a multi-objective structure is a challenging design problem that requires handling several 
competing goals and constraints. Despite their success in resolving such issues, metaheuristics can be 
difficult to apply due to their stochastic nature and restrictions. This work proposes the multi-objective 
crystal structure optimizer (MOCRY), a potent and effective optimizer, to address this problem. The 
MOCRY algorithm, also known as MOCRY2arc, is built on a two-archive idea centered on diversity and 
convergence, respectively. The efficacy of MOCRY2arc in solving five typical planar and spatial real-
world structure optimization issues was assessed. Because of these problems, safety and size limits 
were put on discrete cross-sectional regions and component stress. At the same time, different goals 
were being pursued, such as making nodal points bend more and reducing the mass of trusses. Four 
recognized standard evaluators—Hypervolume (HV), Generational-Inverted Generational Distance 
(GD, IGD), Spacing to Extent Metrics (STE), convergence, and diversity plots—were utilized to compare 
the results with those of nine sophisticated optimization techniques, including MOCRY and NSGA-II. 
Moreover, the Friedman rank test and comparison analysis showed that MOCRY2arc performed better 
at resolving big structure optimization issues in a shorter amount of computing time. In addition to 
identifying and realizing effective Pareto-optimal sets, the recommended method produced strong 
variety and convergence in the objective and choice spaces. As a result, MOCRY2arc may be a useful 
tool for handling challenging multi-objective structure optimization issues.
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In recent times, the world has been transforming from conventional methods for product design or development 
to novel artificial intelligence and machine learning techniques. These techniques have the potential to 
enhance product standards and enable access to the development or design domain from anywhere in the 
world. Optimization techniques play a crucial role in industries and research organizations, facilitating the 
optimization of products in terms of cost, dimensions, parameters, and time consumption. Consequently, for 
many years, classical optimization algorithms have served as viable options for optimizing various engineering 
and multidisciplinary tasks. Additionally, a wide range of design optimization problems, from the product 
development range to the finalization stage, utilize classical optimization techniques1–3. Efficient and effective 
design and product development necessitate the development of further potential techniques capable of 
handling multi-modal problems, critical constraints, and the non-linear nature of functions, all while achieving 
the best globally optimized solutions. Consequently, a trend of nature-inspired algorithms has emerged, offering 
innovative alternatives to traditional optimization algorithms. These algorithms that are based on nature are 
usually called metaheuristics (MHs) algorithms. They are known to be more efficient and proven convergence 
solutions that keep a good balance between the exploration and exploitation phases and can handle critical 
constraint functions3. We further incorporate these MHs with various techniques to enhance the solution quality, 
including oppositional-based learning techniques4, chaotic maps5, the Levy flight mechanism6, elite oppositional-
based learning techniques7, and hybridized two MHs optimizers8. In addition, researchers developed and 
applied multi-objective versions of various MHs to simultaneously optimize multiple fitness functions across 

1Department of Mechanical Engineering, Dharmsinh Desai University, Nadiad, Gujarat 387001, India. 2Department 
of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 
Saveetha University, Chennai 600077, India. 3Department of Industrial Engineering and Management, Yuan Ze 
University, Taoyuan 320315, Taiwan. 4Department of Computer and Electrical Engineering, Mid Sweden University, 
Sundsvall 851 70, Sweden. email: p.shyam23@gmail.com; Seyedjalaleddin.mousavirad@miun.se

OPEN

Scientific Reports |        (2025) 15:14575 1| https://doi.org/10.1038/s41598-025-97133-w

www.nature.com/scientificreports

http://orcid.org/0000-0001-9106-0313
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-97133-w&domain=pdf&date_stamp=2025-5-23


a wide range of applications. The initial focus of the multi-objective optimizers was on the Pareto fronts, which 
are non-dominated solution sets that provide a converged global optimized solution for fitness functions. The 
accuracy and effectiveness of the multi-objective optimizer can be realized by identifying the nature of Pareto 
fronts, diversity, and several other metrics9–12. Several applications were observed that utilized novel multi-
objective optimization algorithms, such as not limited to but including truss structure optimization13, solution 
of EDM problems14, real-world engineering problems15, multi-factorial optimization problems16, and fuzzy 
circuits. Moreover, truss structures are imperative elements of the civil engineering discipline that provide 
potential support for various applications, such as stadiums, cranes, electrical transmission towers, wind turbine 
towers, and mechanical systems. In addition, standard agencies like the American Society of Civil Engineers 
(ASCE) have imposed constraints and standards on structural optimization, primarily to reduce overall weight 
or cost. Therefore, the adoption of multi-objective optimizers results in the realization of more efficient design 
and structural parameters. Researchers in the truss optimization domain developed potential MOMHs using 
various techniques and verification standards to optimize two fitness functions: the minimum weight of the 
overall structures and the minimization of the maximum nodal deflection of the elements.

In one of the studies, a hybrid symmetric laminated composite structures have been optimized by considering 
the uncertain buckling load effect. The study was conducted by applying a unique approach of Quantum inspired 
evolutionary algorithm. Moreover, the study further investigates the different configurations of the structure 
under different loading conditions, aspect ratio and material properties17. In another study, a NSGA-II was 
applied to manage the initial and seismic damage cost of the steel structure. Moreover, the computational time 
is reduced by utilizing the stated approach with generalized regression neural network for controlling several 
parameters18. The reinforced concrete structures are optimized in terms of cost and minimum emission of 
carbon dioxide gases while in operation. For attaining these objectives enhanced vibration particles system, 
modified-colliding bodies optimizers and particle swarm algorithm have been utilized19. Apart from this 
multi-objective optimization algorithms have been employed to optimize the steel structures and reinforced 
concrete wall structures20,21. Multi objective optimization of different truss structures have been attained using 
Mult objective version of the vibrating particle system and results are compared with other well-known multi 
objective optimizers. The Pareto-fronts identified by the studies MO optimizer found potential22. Furthermore, 
several state-of-the-art studies demonstrates MO and modified versions of the optimization algorithms for truss 
optimization. For instance, multi-objective charged system search23, hybrid multi-objective particle swarm 
optimizer24, multi-objective cuckoo search algorithm25, evolutionary graph-based multi-objective algorithm26, 
multi-swarm multi-objective optimizer27and multi-objective colliding bodies optimizer28.

In the recent times, authors potentially identified that nature inspired optimizers may sometimes leads to 
poor quality results and unable to identified global optimize solutions. One of the major reasons behind that is 
the metaphor-based optimizers. Accordingly, the justifications demand regarding the scientific concerns related 
to the metaphor-based algorithms29. Moreover, another study identified six metaphor-based metaheuristics 
that developed based on the particle swarm or evolutionary-based techniques. Moreover, the authors present 
different components of the developed optimizers that gives an effective way to understood the no-free-lunch 
theorems for optimization in a better way30. Several studies also claimed that whale optimization algorithm 
and arithmetic optimizer contain center-bias operator that realized ineffective results. However, the exploration 
phase of the metaphor-based algorithm may be unsuitable for attaining the global optimum solutions31,32.

Researchers have made several additions to the optimizer in the MOMHs research domain to enhance 
its performance and effectiveness. For instance, we have implemented two archive techniques to enhance the 
algorithm’s population diversity while simultaneously converging the solution to the Pareto fronts. Additionally, 
we have implemented the multi-strategy and multi-model approach, many objectives, and the external archive-
based approach as potential methods to further enhance the performance of the MOMHs algorithms. So, this 
study presents a brand-new two-archive multi-objective crystal structure algorithm (MOCRY2arc) for improving 
the structure of eight constrained truss structures. Furthermore, the lattice structure and crystal growth at the 
atomic and molecular levels served as inspiration for the development of the crystal structure algorithm. The 
state-of-the-art algorithm aimed to pursue the following objectives:

• The aim of the study is to identify the effectiveness of the MOCRY for the global optimization of various truss 
structures by incorporating two archives strategy. Accordingly, the results can be justified by taking acceptable 
balance between the exploration and exploitation phase of the algorithm. Accordingly, two-archive based 
MOCRY algorithm compared with relevant competitors for justifications of results trends and statistics.

• The goal of this study was to find the best eight truss structures, mostly 10-, 25-, 37-, 60-, 72-, 120-, 200-, and 
942-bar ones, by lowering their maximum nodal deflection and lowering their minimum structural mass.

• The execution of MOCRY2arc was compared with nine benchmark algorithms. The other competitive opti-
mizers selected for the performance assessments are MOALO12, MOCRY33, MOBA34, NSGA-II35, DEMO36, 
MSSA37, MODA38, and MOWCA39.

• Accordingly, the statistical test of the proposed optimizer are realized, such as Hypervolume tests (HV), spac-
ing-to-extent tests (STE), generational and inverted-generational distance metrics (GD and IGD), and Fried-
man’s rank test on an average and global basis.

• The study identifies a potential option within the research domain of multi-objective optimization algorithms 
for addressing critical constrained truss structure issues. It provides a strong competitive comparison among 
benchmark optimizers, which could further enhance the effectiveness and versatility of each algorithm.

Multi-Objective crystal structure (MOCRY) algorithm Understanding
The CRY optimizer draws its motivation from the naturally occurring and unique crystal structure of quartz. 
The motivation for the development of the algorithm is based on the structural development and growth of 
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the crystal at the atomic and molecular level. The main objective of the CRY algorithm is the existence of the 
lattice point in nature, which follows the development of the crystal structure. Apart from this, Galena is also 
a naturally identified crystal structure, which exists in multiple-layered configurations as BCC (body-centered 
cubic), HCC (hexagonal cubic center), and FCC (face-centered cubic). The crystallographic configuration in 
terms of population development, basis development, and different structure growth that enables the optimizer 
to attain the global optimum solution is mathematically modeled as follows. Equation (1)33 develops the initial 
location of the crystals in the lattice, further modeling each crystal as an individual candidate solution.

 yj
i (0) = yj

i, min + ξ (yj
i, max − yj

i, min) (1)

where, ξ  is random number ranging from 0 to 1, with provisional location of the crystal is yj
i (0) relative to 

j-th variable for i-the iteration. Accordingly, yj
i, min and yj

i, max are extreme limits of the design variables.
Here, the term “basis” refers to the process of developing an individual crystal structure. This process involves 

allocating four different configurations to identify the best candidate solution, ultimately leading to the global 
optimum solution. For instance, crystal structures with cubicles, effective crystals with cubicles, mean crystal 
configurations with cubicles detailing, and superior and mean crystal systems with cubicles detailing. This is 
being modeled as per the Eqs. (2–5).

SCC—simple cubic structure—can be modeled as follows33:

 Crnew = Crold + rCrmain (2)

FCC and HCP configurations can be modeled as follows33:

 Crnew = Crold + r1Crmain + r2Crb (3)

 Crnew = Crold + r1Crmain + r2Fc (4)

 Crnew = Crold + r1Crmain + r2Crb + r3Fc (5)

where, Crnew , Crb and Crold refers to latest location of the crystal, best crystal and recent location of the 
crystal respectively with randomly identified crystal is denoted as Fc subsequently, a significant balance has 
been realized between exploration and exploitation phase once the algorithm is executed with the Eqs. (2–4).

The considered algorithm can be applied to optimize single fitness function problems. However, for attaining 
the optimal solution of a problem that consists of multiple objective functions, a multi-objective version is 
required. Hence therefore, the current study broadens the development of a multi-objective version of the CRY 
algorithm, concentrating on implementing a non-dominated solution (NDS) approach in conjunction with 
dominance theory. In order to identify the non-dominated solution sets, two solutions are compared in order to 
determine which is the best and which is the worst. To find non-dominated solution sets, the function vectors 
of two design solutions are compared. When two functional vector sets are chosen from among the available 
elements, at least one element in one set must match another set in order to meet the mathematical criterion. 
A collection of non-dominated solutions is then sought for based on the solutions that are not dominated by 
other solutions. MOCRY updated external archives with non-dominated solutions using the ε-dominance 
technique. Additionally, MOCRY divides the solutions into squares and boxes based on the number of objective 
functions. To ensure that only non-dominated solutions are kept in each categorized box, dominated solutions 
are eliminated. The grid-based method saves the best answer in a fixed-size archive every time the algorithm 
updates. Furthermore, at each iteration step, the -dominance technique updates the archive, preserving only 
non-dominance solutions within it. In light of this, MOCRY is able to efficiently search the domain in order to 
find the best solutions worldwide.

A two-archive multi-objective crystal structure algorithm (MOCRY2 Arc)
The MOCRY optimizer employs a two-archive strategy to enhance convergence towards Pareto fronts while 
maintaining population diversity. In each update phase, the optimizer classifies a set of non-dominated solutions 
(NDSs) into two archives, eliminating dominated solutions and preserving only the non-dominated ones. The 
newly generated solution is then assessed against the stored solutions based on three verticals. In the first scenario, 
it is assumed that the existing solution sets either do not impact the superior outcome or influence other members 
within the archive. In the second scenario, both existing and newly introduced solutions remain independent 
without interaction. The third case results in the rejection of a new solution as it violates the archival property 
boundary. When a new solution outperforms a previous one, it is incorporated into the archive, with younger 
members demonstrating superior performance over older ones. The archiving process remains unaffected before 
and after collection in the second scenario. Once fresh solutions are stored, MOCRY processes each member 
uniformly, and if the archive reaches its capacity, any member may be removed to maintain balance. Two-archive 
strategies are incorporated into multi-objective optimization algorithms to enhance both convergence towards 
the Pareto front and population diversity. The primary reasons for using two archives in these algorithms are:

Exploration and exploitation While one archive preserves diverse solutions to cover a wider search space 
(exploration), the other archive concentrates on preserving high-quality, well-converged solutions close to the 
Pareto front (exploitation). This equilibrium guarantees a well-distributed set of optimal solutions and avoids 
premature convergence.
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Effective selection and updating The algorithm able to filter and update non-dominated solutions in a me-
thodical manner by classifying solutions into two archives. This guarantees that only the most pertinent solu-
tions are kept for the following iteration while preventing the loss of potentially helpful ones.

Managing archival constraints Using two archives offers an organized method of dealing with small archive 
sizes. While the other archive concentrates on diversity to avoid overcrowding in particular areas of the solution 
space, the first archive may rank elite solutions according on convergence quality.

Better performance in dynamic environments Keeping two archives enables the algorithm to adjust by moni-
toring previous solutions while investigating novel possibilities, improving flexibility and robustness in dynamic 
multi-objective situations where objectives vary over time.

The solution set undergoes further segmentation into two archives. If the new solution outperforms each member, 
we remove it from the first set of archives. In Archive- 2, multiple scenarios persist, including the removal of a 
member from the archive due to capacity overflow and the dominance of a new solution over the existing one. 
The selection strategy for identifying the leader is based on the probability of the main leader being the MOCRY, 
or alternatively, it can be selected from the three available strategies in Archives- 2. The algorithm handles the 
exploitation phase by generating Archive- 1. The algorithm then generates the leader from the available set and 
exponentially increases its value, as demonstrated in Eq. (6)40.

 LP (t) = c1 × ec2t (6)

 
c1 = Lps

ec1
c2 = ln (Lps) ln (Lpf )

tmax − 1

where, initial and final point values of probability is indicated with Lps and Lpf  respectively.
In the archives- 2 generation, there are two surplus objective functions generated based on the NDSs 

stored in the archives. For the solution Pi in the solution set, a first objective aligns with the diverse solution 
that implicating population diversity indicator in the algorithm. Furthermore, the second objective function 
employs the weighted sum of multi-objective optimizers, which generates weighted factors at random solutions 
to preserve diversity. Consequently, the first objective and second secondary objective functions, respectively, 
balance exploration and exploitation. Equations (7–8)40 model both exploitation and exploration.

 
f ′

1 (Pi) = 1∑
N2
j=1∥fi − fj∥  (7)

 f ′
2 (Pi) = W T

g fi (8)

where, total numbers of design solutions and objective function is indicated with N2 and fi respectively. The 
weight factor vector is denoted with W T

g . For selection of leaders MOCRY2arc utilized archive- 2. Leader- 1 
is designated for the first iteration following the creation of the original population and both archives. The 
universes’ orientation

is modified in accordance with the first MOCRY. Additionally, the likelihood Lp is increasing exponentially, 
and both archives are updated with fresh universe positions. The procedure is repeated until the termination 
requirements are met. The flowchart of the proposed optimizer can be depicted in Fig. 1.

Objective functions and constraints
The present study handles two objective functions: structural mass and nodal deflections with multiple critical 
constraints in the form of load, stress, and deflections. Moreover, we aim to minimize the structural mass of 
the study’s truss bars and the maximum nodal deflections of their elements while simultaneously managing the 
constraints. Table 1 provides the design configurations. Equation (9)40 accordingly gives the problem’s definition 
in the computational domain.

Find X = {X1, X2, X3 . . . . . . . . . ., Xm}
Structural mass- first objective with target to minimize

 
f1 (X) =

∑
m
i=1Xiρ iLi (9)

Nodal deflection- second objective with target to minimize

 f1 (X) = max (δ j)

Constraints: stress (tensile and compressive) and cross-sectional area.
Constraint 1: |σ i| − σ max

i ≤ 0
Constraint 2: Xmin

i ≤ Xi ≤ Xmax
i

where, cross-sectional area vector, mass density and length of the truss bar is denoted with X, ρ i and Li 
respectively. Moreover, the dynamic penalty function to address the constraints requirement is given by Eq. (10).

 
fpenalty (X) =

{
f (X)

no constraints violations  (10)
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 f (X) = (1 + ∈ 1 × C)∈ 2

 
C =

∑
q
i=1Ci, Ci =

∣∣∣∣1 − Pi

P ∗
i

∣∣∣∣

where, Pi and P ∗
i  is the values of constraint violation penalty and maximum penalty at ith iteration respectively.

Experimental assessments
The experiments are conducted to verify the effectiveness of MOCRY2arc optimizers for the eight complex truss 
structures (10-, 25-, 37-, 60-, 72-, 120-, 200-, and 942-bar). In addition to this statistical analysis, we evaluated 
convergence and diversity tests to identify potential Pareto front sets, and compared MOALO, MOCRY, MOBA, 
NSGA-II, DEMO, MSSA, MODA, MOWCA, MOBA, and MOCRY. This being said that four parameters were 
evaluated to potentially check the performance of the algorithms. First, indicator S shows how convergent and 
diverse the set S is within the search domain. It does this by showing how much space each NDS takes up in 
the search domain using hypervolume (HV) metrics. For an HV test, a larger number of results indicates better 
algorithm performance. The mathematical Eq. (11) provides details about the HV index.

 
HV = volume

( ∪
A
i=1Vi

)
 (11)

The Generational Distance (GD) and Inverted Generational Distance (IGD) are performance metrics used to 
evaluate the quality of solutions obtained by multi-objective optimization algorithms. They measure how closely 
the obtained Pareto front approximates the true Pareto front. GD measures the average Euclidean distance 
between the solutions in the obtained Pareto front and the nearest points in the true Pareto front. A lower 
GD indicates that the obtained solutions are closer to the optimal front. Whereas, IGD computes the average 
distance from points in the true Pareto front to their closest counterparts in the obtained Pareto front. A lower 
IGD suggests that the obtained solutions cover the true Pareto front more effectively. Equations (12–13) provide 
the same information. Accordingly, lower values of GD and IGD metrics are preferred for better performance.

 
GD =

√∑
no
i=1d2

i

|P |
 (12)

 
IGD =

√∑
nt
i=1d′ 2

i

|P ′ |
 (13)

where, Euclidian distance is denoted with di, Pareto front solution counts are represented by |P |. Moreover, 
|P ′ | represents the number of Pareto front solutions in the reference plane with d′ i denoted the distance 

Fig. 1. Flow chart of MOCRY2 Arc.
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between optimum solution from the previous front and fitness function vector of the ith solution. Accordingly, 
IGD can provide diversity vis-a-vis progression of the search domain Pareto fronts. The fourth parameter for 
performance assessment is the Spacing to Extent (STE). This gives the parametric analysis regarding spacing 
between Pareto fronts and, effective fronts have the smaller values of STE metrics. The extent and spacing can be 
given by Eqs. (14–15) respectively.

 
SP = 1

|P | − 1
∑

|P |
i=1(di−

−
d)

2
 (14)

 
ET =

∑
M
i=1

∣∣fmax
i − fmin

i

∣∣ (15)

where, total counts of objective function are denoted with M. Whereas, maximum and least values of the 
objective function for the ith Pareto front is denoted with fmax

i  and fmin
i  respectively. Moreover, average values 

of all di is denoted by 
−
d.

Fig. 2. Trusses: (A) 10-bar truss, (B) 37-bar truss, (C) 60-bar truss, (D) 120-bar truss, and (E) 200-bar 
truss8,13,40.
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Results and discussion
Figure 2 shows the basic and most widely utilized truss designs (10-, 37-, 60-, 120-, and 200-bar) with design 
variables and loads acting over them. Moreover, Figs. 3 and 4 depict 3-D designs of 25-bar and 72-bar, 
respectively. The 942-bar truss, which consists of diamond-shaped structural elements as shown in Fig. 5, is one 
of the most critical and challenging truss systems to optimize. Table 1 tabulates the detailed design configurations 
of each truss structure, including design variables, stress constraints, loading conditions, and relevant constants. 
Furthermore, each tested optimizer, including MOCRY2arc, is evaluated with 50,000 functional evaluations 
with 100 independent tests.

Accordingly, Tables 2, 3, 4, 5 and 6 present the statistical results of performance evaluations of compared 
algorithms under the specified matrices.

• Table 2 records the Hypervolume (HV) results that indicate the diversity and convergence behaviour of each 
algorithm. Moreover, the higher the values of HV, the better the performance of the algorithm. Accordingly, 
MOCRY2arc realized the superior values in terms of maximum, minimum, average, standard deviation and 
Friedman rank test (F-rank) compared to rest of the algorithms including MOCRY. In the test, MOCRY2arc 
achieved an average F-rank of 1.238, placing it first overall, followed by MOCRY and MOCRY in second and 
third place. Moreover, for 120-, 200-, and 942-bar MOCRY2arc, it pursued the highest maximum values for 

Fig. 4. The 72-bar 3D truss8,13,40.

 

Fig. 3. The 25-bar 3D truss.
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fitness functions. For the 120-bar truss, MOCRY2arc achieved better results than MOALO, MODA, MOCRY, 
MOWCA, MSSA, NSGA-II, DEMO, MOBA, and MOCRY. Similarly, MOCRY2arc achieves an average of 3% 
and 5% higher maximum values for the fitness functions for the 200-bar and 942-bar trusses, respectively, 
when compared to all other algorithms. Moreover, MOCRY2arc retains the least standard deviation in all 
truss cases, demonstrating superior performance compared to other optimizers. This being said, MOCRY2arc 
has potential for superior Pareto fronts compared to others.

Fig. 5. The 942-bar tower truss8,13,40.
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• Figures 6–13 show the Pareto front patterns obtained by MOALO, MODA, MOCRY, MOWCA, MSSA, NS-
GA-II, DEMO, MOBA, MOCRY, and MOCRY2arc for each of the truss problems. These graphs draw atten-
tion to the relationship between the objective functions of the problems, viz., mass and nodal displacement 
in the present study. As a result, the MOCRY2arc creates Pareto fronts that are evenly spread out and unin-
terrupted for each truss design problem. This shows that it is better than other optimizers. However, the rest 
of the optimizers realized slightly erratic and randomly scattered patterns for each truss structure, especially 
in the case of the 120-bar, 200-bar, and 942-bar. Subsequently, Figs. 14–21 show the boxplot analysis for each 
truss structure. This plot illustrates the trends in hypervolume distribution, indicating the superior perfor-
mance of optimizers that maintain compact boxplots. In these evaluations, MOCRY2arc achieved a compact 
boxplot for each truss structure, outperforming the other optimizers.

  

HV MOALO MODA MOMVO MOWCA MSSA NSGA-II DEMO MOBA MOCRY2 A MOCRY

10-bar

average 1.86E + 09 2.22E + 09 2.35E + 09 1.04E + 09 2.3E + 09 2.16E + 09 1.87E + 09 2.17E + 09 2.41E + 09 2.41E + 09

max 2.22E + 09 2.34E + 09 2.36E + 09 1.67E + 09 2.35E + 09 2.25E + 09 2.05E + 09 2.31E + 09 2.41E + 09 2.41E + 09

min 1.09E + 09 2.12E + 09 2.29E + 09 0 2.22E + 09 1.86E + 09 1.76E + 09 1.98E + 09 2.39E + 09 2.39E + 09

std 2.61E + 08 53,390,824 13,641,612 5.32E + 08 38,548,017 81,087,395 60,920,753 79,239,356 4,995,673 6,113,458

Friedman 8.300 5.433 3.067 9.933 4.200 6.400 8.500 6.167 1.500 1.500

25-bar

average 4.08E + 08 5.33E + 08 5.49E + 08 3.26E + 08 5.34E + 08 5.15E + 08 4.7E + 08 5.43E + 08 5.59E + 08 5.6E + 08

max 4.92E + 08 5.55E + 08 5.53E + 08 4.99E + 08 5.45E + 08 5.38E + 08 5.15E + 08 5.59E + 08 5.63E + 08 5.61E + 08

min 2.71E + 08 4.75E + 08 5.43E + 08 0 5.2E + 08 4.62E + 08 4.34E + 08 5.27E + 08 5.46E + 08 5.58E + 08

std 62,773,336 17,204,512 2,075,881 1.43E + 08 7,442,694 19,129,030 16,749,685 9,303,211 3,613,499 807457.4

Friedman 9.133 5.267 3.433 9.500 5.433 6.733 8.233 4.200 1.667 1.400

37-bar

average 1.25E + 08 1.37E + 08 1.51E + 08 1.22E + 08 1.47E + 08 1.37E + 08 1.17E + 08 1.4E + 08 1.55E + 08 1.53E + 08

max 1.44E + 08 1.44E + 08 1.53E + 08 1.45E + 08 1.52E + 08 1.53E + 08 1.23E + 08 1.49E + 08 1.56E + 08 1.55E + 08

min 74,429,861 1.27E + 08 1.5E + 08 4,645,312 1.43E + 08 43,400,281 1.08E + 08 1.27E + 08 1.54E + 08 1.5E + 08

std 15,241,020 4,124,711 661944.7 27,273,598 2,404,063 19,006,014 3,623,926 5,679,951 428710.7 1,171,606

Friedman 8.133 6.933 2.967 8.367 4.133 6.033 9.500 5.833 1.067 2.033

60-bar

average 3.7E + 08 3.87E + 08 4.44E + 08 3.4E + 08 4.09E + 08 4.21E + 08 3.21E + 08 3.97E + 08 4.73E + 08 4.44E + 08

max 3.9E + 08 4.16E + 08 4.57E + 08 4.13E + 08 4.34E + 08 4.39E + 08 3.42E + 08 4.2E + 08 4.76E + 08 4.55E + 08

min 3.35E + 08 3.41E + 08 4.3E + 08 27,987,312 3.73E + 08 3.64E + 08 2.95E + 08 3.72E + 08 4.66E + 08 4.2E + 08

std 14,452,720 15,601,343 7,492,358 68,151,879 15,065,086 14,223,960 12,769,726 13,856,795 2,105,812 7,068,600

Friedman 7.900 6.767 2.567 8.533 5.333 4.267 9.833 6.233 1.000 2.567

72-bar

average 2.63E + 09 2.79E + 09 3.13E + 09 2.54E + 09 2.98E + 09 2.82E + 09 2.26E + 09 2.88E + 09 3.2E + 09 3.08E + 09

max 2.85E + 09 2.97E + 09 3.15E + 09 3.01E + 09 3.05E + 09 3.03E + 09 2.43E + 09 3.06E + 09 3.21E + 09 3.17E + 09

min 1.97E + 09 2.62E + 09 3.1E + 09 1.67E + 08 2.89E + 09 1.7E + 09 2.04E + 09 2.58E + 09 3.18E + 09 2.97E + 09

std 1.84E + 08 88,286,459 12,129,868 7.44E + 08 42,795,380 2.93E + 08 75,044,109 1.2E + 08 5,573,982 54,633,046

Friedman 8.233 7.267 2.200 7.233 4.400 6.033 9.700 5.900 1.000 3.033

120-bar

average 5.99E + 10 7.91E + 10 8.19E + 10 3.35E + 10 7.99E + 10 7.42E + 10 6.81E + 10 7.69E + 10 8.43E + 10 8.45E + 10

max 7.77E + 10 8.21E + 10 8.28E + 10 7.85E + 10 8.18E + 10 8E + 10 7.34E + 10 8.09E + 10 8.48E + 10 8.47E + 10

min 3.46E + 10 7.11E + 10 8.1E + 10 0 7.82E + 10 1.61E + 10 6.33E + 10 7.13E + 10 8.33E + 10 8.42E + 10

std 1.13E + 10 2.38E + 09 3.7E + 08 2.43E + 10 9.28E + 08 1.14E + 10 2.76E + 09 2.24E + 09 3.48E + 08 1.14E + 08

Friedman 8.767 4.933 3.067 9.667 4.600 6.533 8.267 6.167 1.667 1.333

200-bar

average 2.51E + 10 2.34E + 10 2.85E + 10 2.09E + 10 2.68E + 10 2.64E + 10 1.99E + 10 2.72E + 10 2.94E + 10 2.85E + 10

max 2.72E + 10 2.59E + 10 2.88E + 10 2.64E + 10 2.75E + 10 2.74E + 10 2.16E + 10 2.83E + 10 2.94E + 10 2.91E + 10

min 2.05E + 10 2.22E + 10 2.83E + 10 1.04E + 10 2.57E + 10 2.37E + 10 1.86E + 10 2.53E + 10 2.93E + 10 2.74E + 10

std 1.6E + 09 7.71E + 08 1.37E + 08 3.58E + 09 4.42E + 08 8.84E + 08 7.27E + 08 6.85E + 08 20,332,826 3.7E + 08

Friedman 7.067 8.067 2.433 8.900 5.233 5.633 9.667 4.400 1.000 2.600

942-bar

average 1.8E + 14 1.55E + 14 1.97E + 14 1.89E + 14 1.81E + 14 1.87E + 14 1.32E + 14 1.84E + 14 2.1E + 14 1.97E + 14

max 1.89E + 14 1.65E + 14 1.99E + 14 2E + 14 1.87E + 14 2.01E + 14 1.4E + 14 1.93E + 14 2.1E + 14 2.04E + 14

min 1.55E + 14 1.41E + 14 1.94E + 14 1.67E + 14 1.76E + 14 1.54E + 14 1.28E + 14 1.74E + 14 2.09E + 14 1.91E + 14

std 8.25E + 12 5.98E + 12 1.33E + 12 7.84E + 12 2.8E + 12 1.02E + 13 3.31E + 12 4.4E + 12 2.74E + 11 3.41E + 12

Frank 6.467 9.000 2.867 4.633 7.100 5.133 10.000 6.100 1.000 2.700

Average Friedman 8.000 6.708 2.825 8.346 5.054 5.846 9.213 5.625 1.238 2.146

Overall Friedman 
rank 8 7 3 9 4 6 10 5 1 2

Table 2. The hypervolume (HV) of the considered truss structures.
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• To examine the difference among NDSs and Pareto front results, the Generational Distance (GD) metric 
values are acquired. Table 3 records the findings for the 10-bar to 942-bar configurations of truss designs. The 
lower the GD value, the more superior the non-dominant front. For 10-bar truss, the GD metric standard 
deviation of MOCRY2arc is 3.379615; for 25-bar truss, it was 1.333073; for 37-bar truss, it was 0.655056; for 
60-bar truss, it was 1.472132; for 72-bar truss, it was 2.878633; for 120-bar truss, it was 18.07715; for 200-bar 
truss, it was 6.960366 and for 942-bar truss, it was 1124.786. The results of the GD measure show that MOCR-
Y2arc performs better than alternative methods. The MOBA and NSGA-II perform poorly on the GD criteria. 
Additionally, MOCRY2arc sustains second rank overall for Friedman’s rank at a 95% significant level. The 
outcomes show that the algorithms are able to preserve appropriate variety among Pareto optimum fronts.

• The IGD parameter measures both the diversity and convergence of Pareto fronts. A lower IGD value displays 
the superior NDS. Table 4 displays the results of the IGD measures. MOCRY2arc yields the best IGD values, 

GD MOALO MODA MOMVO MOWCA MSSA NSGA-II DEMO MOBA MOCRY2 A MOCRY

10-bar

average 82.7131 87.59163 70.47981 22.25105 102.9799 86.96031 263.2339 63.40685 64.29878 54.38849

max 119.3397 144.2261 97.65523 63.64834 208.0006 147.1875 334.439 124.9234 71.08283 65.8335

min 38.66082 52.93379 47.77595 0 57.97036 52.3558 204.2038 38.17118 59.21368 45.42797

std 18.88218 21.73929 13.35028 14.66381 38.25931 23.44446 33.98838 20.99984 3.379615 4.817122

Friedman 6.333 6.667 5.267 1.167 7.400 6.700 10.000 4.100 4.567 2.800

25-bar

average 33.79893 53.56172 32.56686 31.33904 74.24278 38.25654 105.0261 26.51217 21.75229 27.26952

max 96.1072 74.45301 50.27021 162.4908 111.4386 61.07276 143.5362 36.25331 24.68517 35.29048

min 12.45335 30.46007 25.1618 0 36.69979 19.19497 61.42248 18.35706 18.50279 20.55782

std 16.14679 11.56095 6.225057 31.55113 19.02154 9.924137 20.15427 4.213317 1.333073 3.431376

Friedman 4.667 7.700 5.167 3.733 8.900 5.833 9.800 3.533 1.900 3.767

37-bar

average 17.32447 32.88394 14.84693 11.17736 25.96413 25.39695 73.72979 26.50876 11.60565 16.44128

max 26.51095 44.42958 20.94492 27.08912 52.86685 33.85097 127.366 35.30699 13.31615 29.01149

min 12.12212 19.50391 10.06001 3.5325 13.47319 12.95461 37.49198 20.56015 10.34733 9.78902

std 3.658182 6.797258 2.528716 5.257875 9.152806 5.415314 25.77997 4.365317 0.655056 4.110909

Friedman 4.567 8.133 3.467 2.000 6.967 6.800 9.967 7.133 1.833 4.133

60-bar

average 43.14495 83.82058 31.94236 27.38585 58.5019 54.61234 187.102 90.49675 23.33581 66.88495

max 65.4209 112.5462 43.17429 151.7614 84.88041 71.80981 226.557 168.1119 26.71557 120.3429

min 30.78355 63.31996 25.32175 11.44169 37.4402 37.01083 126.52 58.90248 21.11755 47.25334

std 8.411214 13.27017 4.295376 25.67342 12.61553 9.450814 23.20639 27.05104 1.472132 14.54626

Friedman 4.333 8.167 2.900 1.900 5.833 5.467 10.000 8.033 1.600 6.767

72-bar

average 113.7969 234.7376 65.99277 48.06035 194.0539 121.5656 462.2427 123.9398 46.41081 113.6702

max 183.4317 397.1979 108.5688 131.2342 273.7678 235.1241 683.9107 197.313 53.11109 196.6088

min 64.33269 110.3297 47.91745 10.33995 119.5942 56.75353 266.5388 68.81717 41.62294 54.38655

std 32.09438 64.54584 13.55068 28.36304 43.96003 35.63233 90.47534 34.31015 2.878633 40.20948

Friedman 5.233 8.500 3.267 1.733 7.900 5.700 10.000 5.800 1.633 5.233

120-bar

average 566.4333 440.1025 446.7862 158.2029 609.7665 395.7652 905.7258 296.5587 438.6884 360.4737

max 748.9397 600.1568 576.058 501.967 933.3694 576.8113 1298.245 355.8445 474.6862 396.6171

min 346.0603 309.9338 340.298 0 407.4997 231.6233 574.8111 241.4981 408.557 330.7751

std 105.3897 72.12498 65.42489 123.7237 129.2193 84.38627 154.9107 30.46965 18.07715 15.90806

Friedman 7.700 5.500 6.100 1.500 8.267 4.433 9.933 2.133 5.900 3.533

200-bar

average 504.2952 1079.169 202.0283 192.4569 528.5552 458.281 1946.389 373.6981 117.5304 421.148

max 975.138 1557.253 285.2356 1011.762 840.6578 704.8619 2644.011 600.5547 132.3248 920.977

min 188.5615 370.3282 114.4864 78.26861 366.8544 209.2656 1222.997 202.3372 98.64228 178.6481

std 203.0758 291.6666 49.83722 199.4698 113.6445 126.2982 369.6485 101.7148 6.960366 154.0638

Friedman 6.133 8.800 2.867 2.167 6.933 5.900 10.000 5.100 1.667 5.433

942-bar

average 86058.33 56955.03 32728.55 30084.31 37891.12 35905.57 68258.63 57,636 12084.55 68672.54

max 134,469 102314.4 40297.92 116011.2 72321.96 75063.23 104764.9 115118.7 14469.82 101319.7

min 59956.43 31619.95 22398.71 17926.01 19731.02 16425.43 42376.25 37133.42 9476.139 34707.09

std 15309.76 18582.65 4312.804 18688.92 13892.61 11719.56 16710.12 17998.39 1124.786 16831.67

Frank 9.367 6.800 3.733 3.000 4.267 4.167 7.800 6.867 1.000 8.000

Average Friedman 6.042 7.533 4.096 2.150 7.058 5.625 9.688 5.338 2.513 4.958

Overall Friedman 
rank 7 9 3 1 8 6 10 5 2 4

Table 3. The generational distance (GD) metric of the considered truss structures.
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with MOCRY and MOCRY following closely behind. Due to their lack of diversity, MOWCA and DEMO 
provide the lowest IGD values for the challenges under consideration.

• Table 5 shows the results for the STE metrics analysis, which gives the concept of spacing and the extent of Pa-
reto fronts at the same venue. Accordingly, the lower the values of the STE metric, the better the performance 
of the optimizer. According to the recorded results in Table 5, MOCRY2arc achieves the lowest maximum 
values for the fitness functions of 10-bar, 25-bar, 37-bar, 60-bar, and 72-bar, which are 0.006796, 0.00601, 
0.008455, 0.007639, and 0.009052, respectively. Subsequently, MOCRY2arc achieved 0.006344, 0.008082, 
and 0.006244 for the fitness functions of 120-bar, 200-bar, and 942-bar, respectively. Moreover, MOCRY2arc 
achieved the 1.767 and 1 average and overall F-rank, respectively, for the STE tests, which shows a clear dom-
inance and superior performance of the algorithm. Furthermore, MOCRY, MSSA, and MOCRY achieved the 
second, third, and fourth overall F-rank, demonstrating competitive results with MOCRY2arc.

IGD MOALO MODA MOMVO MOWCA MSSA NSGA-II DEMO MOBA MOCRY2 A MOCRY

10-bar

average 2744.358 2730.352 370.7354 6961.392 1214.04 702.6752 2976.37 2765.809 187.7996 290.6504

max 6931.381 4530.439 665.0549 7767.213 3101.79 1881.333 4225.918 4124.009 275.5526 635.8286

min 555.1642 1332.01 302.9059 3308.406 434.176 304.4011 1499.589 1557.788 116.4364 120.9599

std 1489.442 874.0142 65.21475 1082.834 572.4337 356.9155 655.951 675.6004 44.36289 133.9163

Friedman 7.200 7.133 2.800 9.967 5.233 4.033 7.767 7.533 1.267 2.067

25-bar

average 1072.365 618.6892 125.2119 1824.829 270.8738 215.3233 864.3381 409.8013 147.3373 52.45578

max 2065.221 1586.182 167.7059 2516.887 878.8984 335.7962 1598.996 1049.033 287.8849 100.5114

min 300.6858 101.9471 91.34614 956.0153 161.154 110.3097 429.7239 84.39536 80.30067 37.42533

std 494.0962 382.3997 18.79522 455.4833 145.1585 65.69537 342.0581 223.1668 45.15699 13.46233

Friedman 8.467 6.933 2.533 9.833 4.933 4.333 7.933 5.933 3.100 1.000

37-bar

average 466.9905 539.2546 109.7838 850.437 331.3302 197.1149 616.4427 466.9954 91.51411 98.47713

max 1166.69 877.8927 172.7865 1389.121 570.0807 568.6185 900.3673 841.8574 141.4256 265.3774

min 192.4607 178.1916 66.23636 495.3954 155.1149 56.77685 361.4781 212.4002 42.11174 32.38007

std 218.1968 171.3273 24.48297 209.9577 109.5864 104.6836 164.5285 140.4578 26.12303 47.05607

Friedman 6.733 7.467 2.533 9.733 5.567 3.800 8.267 6.833 1.933 2.133

60-bar

average 1762.582 1189.572 369.6954 2085.805 1331.702 603.7896 1365.876 1216.377 234.6057 189.9643

max 2163.957 2120.893 534.2461 3124.152 1966.718 1054.247 1772.853 1732.629 387.7638 571.686

min 1372.709 485.514 189.1424 1391.642 642.9563 238.5766 868.1966 889.187 64.05481 73.62395

std 194.9818 425.2922 89.9813 405.3676 361.504 227.0562 229.767 203.9372 83.93164 105.6752

Friedman 8.800 6.500 3.100 9.333 6.867 3.800 7.067 6.333 1.733 1.467

72-bar

average 1671.779 1982.489 531.9122 3178.688 1204.654 705.4993 2816.354 2058.69 281.8292 1091.045

max 3444.548 3120.34 669.802 5456.157 2568.598 1965.585 3904.449 3550.061 864.9589 2292.418

min 783.7408 963.5836 336.5824 1290.591 480.42 330.7954 1971.18 842.7337 119.2682 324.398

std 542.8913 611.9677 70.32905 1001.697 677.6934 361.5506 519.872 667.9315 149.8946 500.5578

Friedman 6.300 7.233 2.400 9.267 4.833 3.200 8.967 6.900 1.200 4.700

120-bar

average 26448.1 15978.95 2430.496 46176.96 9061.295 6095.773 24663.64 19914.3 1393.466 2316.573

max 53476.48 35163.48 3639.952 58037.57 19658.88 24885.19 35148.36 31462.48 2705.278 4883.482

min 8151.234 4350.534 1883.099 10075.61 4921.344 2025.021 14941.02 7418.649 665.8734 1063.466

std 12465.59 6587.395 437.166 12512.62 3806.574 4487.697 5150.295 4667.766 469.5698 1050.035

Friedman 8.033 6.467 2.567 9.667 5.033 4.333 8.067 7.267 1.233 2.333

200-bar

average 4641.748 6843.539 3053.324 9355.436 5983.023 3325.558 7046.48 5058.751 1235.321 1028.825

max 6925.92 8945.574 4146.575 11846.7 7406.105 5439.907 8646.937 7088.337 1948.653 1744.178

min 2979.263 4568.283 1522.721 6384.765 4049.683 1339.217 5428.189 3541.39 817.1641 539.7179

std 1171.38 1173.361 631.7064 1224.396 904.7937 856.9758 742.695 848.531 262.0008 347.1538

Friedman 5.400 8.100 3.533 9.700 6.967 3.833 8.367 6.100 1.733 1.267

942-bar

average 568951.9 628659.1 502202.6 489260.9 467396.3 205191.3 769642.2 420366.4 185484.7 80153.4

max 1,003,714 764264.6 791105.7 1,035,919 657278.4 482,036 823017.5 596,232 321,115 116669.6

min 210611.9 525717.1 372563.1 271,556 372468.5 130453.6 660737.4 284844.5 105739.9 50446.25

std 205,822 61108.45 93434.22 147504.9 62041.23 69499.03 39174.65 73458.63 54235.26 20338.69

Frank 7.367 8.333 6.400 6.200 5.767 2.800 9.733 5.067 2.333 1.000

Average Friedman 7.288 7.271 3.233 9.213 5.650 3.767 8.271 6.496 1.817 1.996

Overall Friedman 
rank 8 7 3 10 5 4 9 6 1 2

Table 4. The inverted generational distance (IGD) metric of the considered truss structures.
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• During the algorithm’s execution, the diversity curves, as depicted in Fig. 22, can determine the average dis-
tance between the solutions. The results are plotted for the 50,000 functional evaluations. Moreover, MOCR-
Y2arc shows higher diversity in the solution space compared to other optimizers. This being said, the aug-
mentation of two archives results in effective performance for the MOCRY algorithm.

• Figs. 23 and 24 record the HV convergence and GD convergence plots of the compared algorithms for all truss 
configurations. Accordingly, these plots provide a potential optimizer that realizes converged results with a 
global optimum solution. Furthermore, the HV and GD convergence plots of the MOCRY2arc are stable and 
well-distributed, in contrast to the erratic nature commonly observed in DEMO, MSSA, and MOBA.

• The aggregate Friedman rank that the examined algorithms produced for each truss issue is shown in Table 6. 
The MOCRY2arc’s overall Friedman rank value improves when compared to NSGA-II, MOALO, MOCRY, 
MSSA, DEMO, MOBA, MODA, MOWCA, and MOCRY, suggesting a significant rate of convergence. The 

STE MOALO MODA MOMVO MOWCA MSSA NSGA-II DEMO MOBA MOCRY2 A MOCRY

10-bar

average 0.020809 0.018669 0.009111 0.051763 0.008267 0.014964 0.029956 0.018337 0.005532 0.008404

max 0.033979 0.051609 0.014763 0.1 0.025432 0.037686 0.054524 0.049681 0.006796 0.013253

min 0 0.005336 0.005495 0 0.001879 0.007133 0.009302 0.005035 0.004643 0.005848

std 0.009169 0.012814 0.002213 0.040742 0.005792 0.005407 0.01282 0.01032 0.000539 0.001776

Friedman 7.033 6.400 4.067 7.400 3.200 6.433 8.467 6.433 1.800 3.767

25-bar

average 0.020259 0.016676 0.008119 0.033849 0.009753 0.014816 0.018139 0.016143 0.005119 0.007483

max 0.034885 0.05081 0.01361 0.1 0.018962 0.029527 0.052892 0.031566 0.00601 0.012279

min 0 0.00568 0.003444 0 0.003625 0.008305 0.008973 0.007695 0.004484 0.005012

std 0.00837 0.010468 0.002588 0.024506 0.004262 0.004858 0.008615 0.006388 0.000439 0.001511

Friedman 7.700 6.467 3.400 8.400 4.100 6.500 7.367 6.733 1.400 2.933

37-bar

average 0.020991 0.0172 0.008933 0.022961 0.008412 0.014127 0.02089 0.011604 0.006201 0.007572

max 0.032439 0.05944 0.013925 0.048603 0.033887 0.031732 0.038693 0.028485 0.008455 0.012487

min 0.003899 0.00567 0.005734 0 0.002881 0.000965 0.007602 0.004997 0.004614 0.00523

std 0.007471 0.01289 0.001703 0.012533 0.005893 0.006437 0.007924 0.00571 0.000978 0.001403

Friedman 8.300 6.267 4.333 8.033 3.300 6.267 8.033 5.133 2.000 3.333

60-bar

average 0.027057 0.01987 0.008803 0.020327 0.008559 0.012721 0.033298 0.011054 0.005639 0.008792

max 0.045569 0.045381 0.012664 0.073296 0.023047 0.024923 0.059218 0.027904 0.007639 0.012077

min 0 0.005361 0.004696 0 0.003912 0.005097 0.013349 0.005549 0.004043 0.005363

std 0.013076 0.011645 0.001902 0.015485 0.004683 0.004319 0.012276 0.00544 0.000924 0.001589

Friedman 7.967 6.700 4.467 6.800 3.233 6.000 9.033 5.100 1.667 4.033

72-bar

average 0.018453 0.014414 0.009108 0.022816 0.010175 0.01569 0.028996 0.011782 0.005321 0.008869

max 0.032673 0.046202 0.015139 0.048061 0.031563 0.028129 0.052959 0.02305 0.009052 0.017778

min 0 0.004682 0.004493 0.006513 0.003163 0.004148 0.012183 0.004409 0.003677 0.005183

std 0.009572 0.009029 0.002605 0.009959 0.006932 0.006166 0.010736 0.004935 0.001114 0.002984

Friedman 6.700 5.700 4.000 8.300 3.800 6.700 9.067 5.133 1.800 3.800

120-bar

average 0.019445 0.015131 0.008771 0.040425 0.011435 0.013901 0.027635 0.016096 0.005293 0.009223

max 0.036795 0.032996 0.015161 0.099394 0.041673 0.024686 0.067413 0.033283 0.006344 0.012546

min 0 0.005727 0.004654 0 0.001964 0.002052 0.013646 0.006159 0.004395 0.00546

std 0.012656 0.007003 0.002076 0.032281 0.008047 0.004871 0.012557 0.006473 0.000496 0.00152

Friedman 6.683 6.000 3.667 7.850 4.567 5.867 8.467 6.233 1.633 4.033

200-bar

average 0.019023 0.020412 0.008898 0.027136 0.007728 0.012643 0.028385 0.008866 0.004986 0.006997

max 0.034847 0.048721 0.012112 0.093322 0.016703 0.018835 0.047233 0.028255 0.008082 0.014419

min 0 0.008042 0.004093 0 0.000799 0.008252 0.016331 0.004432 0.00404 0.00465

std 0.009364 0.010497 0.001871 0.027114 0.003645 0.003313 0.008837 0.004919 0.00072 0.002126

Friedman 7.2 7.666667 4.833333 6.933333 3.533333 6.5 9.166667 4.266667 1.6 3.3

942-bar

average 0.03013 0.016377 0.008005 0.014792 0.008876 0.01057 0.017724 0.00985 0.005559 0.005162

max 0.043191 0.044962 0.012651 0.052419 0.021353 0.025773 0.025382 0.01696 0.006244 0.006377

min 0.004861 0.005804 0.004858 0.006559 0.003388 0.002339 0.010652 0.004933 0.004753 0.003825

std 0.011734 0.010282 0.001987 0.011609 0.004534 0.005227 0.003689 0.003072 0.000375 0.000676

Frank 9.200 7.333 4.400 6.433 4.267 5.500 8.367 5.467 2.233 1.800

Average Friedman 7.598 6.567 4.146 7.519 3.750 6.221 8.496 5.563 1.767 3.375

Overall Friedman 
rank 9 7 4 8 3 6 10 5 1 2

Table 5. The Spacing - To- extent (STE) metric values obtained for the truss problems.
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greatest and lowest average Friedman values are 2.6083 and 1.4063 for MOCRY2arc. The result tables clearly 
show that MOCRY2arc tops the Friedman rank overall, followed by MOCRY, MOCRY, and NSGA-II. Fried-
man’s rank indicates MOCRY2arc supremacy and superior performance at a 95% confidence level.

Conclusion
The current study used MOCRY2arc, an effective version of the MOCRY optimizer enhanced with the 2-archives 
technique, for multiple objective optimization problems. The method used a leader selection strategy to choose 
solutions from the archive and a set of basic MOCRY optimizers to retain the NDS acquired. MOCRY2arc 
was tested on eight difficult structural optimization issues to assess its convergence, local optima avoidance, 
exploratory, and exploitative properties. Four commonly used performance criteria are used to compare the 
MOCRY2arc results with those of nine other methods. On the basis of the NDS set and their patterns close 
to Pareto fronts, both quantitative and qualitative studies have been carried out. One significant element that 
improves computational time and convergence for the MHs is the archiving approach. The average Friedman 
rank test grades the recommended MOCRY2arc approach highest for all technical issues. When dealing with a 
range of usually conflicting objectives in truss optimization, the results provide a fresh viewpoint on the benefits 

Fig. 6. Best Pareto fronts of the 10-bar truss.

 

MOALO MODA MOMVO MOWCA MSSA NSGA-II DEMO MOBA MOCRY2 A MOCRY

10-bar 7.2167 6.4083 3.8000 7.1167 5.0083 5.8917 8.6833 6.0583 2.2833 2.5333

25-bar 7.4917 6.5917 3.6333 7.8667 5.8417 5.8500 8.3333 5.1000 2.0167 2.2750

37-bar 6.9333 7.2000 3.3250 7.0333 4.9917 5.7250 8.9417 6.2333 1.7083 2.9083

60-bar 7.2500 7.0333 3.2583 6.6417 5.3167 4.8833 8.9833 6.4250 1.5000 3.7083

72-bar 6.6167 7.1750 2.9667 6.6333 5.2333 5.4083 9.4333 5.9333 1.4083 4.1917

120-bar 7.7958 5.7250 3.8500 7.1708 5.6167 5.2917 8.6833 5.4500 2.6083 2.8083

200-bar 6.4500 8.1583 3.4167 6.9250 5.6667 5.4667 9.3000 4.9667 1.5000 3.1500

942-bar 8.1000 7.8667 4.3500 5.0667 5.3500 4.4000 8.9750 5.8750 1.6417 3.3750

Average Friedman 7.2318 7.0198 3.5750 6.8068 5.3781 5.3646 8.9167 5.7552 1.8333 3.1188

Overall Friedman rank 9 8 3 7 5 4 10 6 1 2

Table 6. The overall Friedman rank obtained for the truss problems.
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and drawbacks of evolutionary multi-objective optimization techniques. The proposed framework aids in the 
development of original solutions for real-world design optimization problems in addition to making it easier 
to examine them.

Future directions and managerial implications
Further research into additional real-world critical and imperative challenges is required to evaluate 
MOCRY2arc’s potential, even if it shows efficiency in the design problems studied. The interested researcher 
can expand this study to include functional technical issues with several conflicting aims that are multimodal 
and multidimensional. The research study details numerous strategies for enhancing MOCRY’s performance.

The proposed algorithm can be further applied to globally optimize multiple objective challenges across 
the multidisciplinary domains. Accordingly, not limited but including to, mechanical engineering design 
optimization, fuzzy logic circuits optimization, work and batch scheduling optimization, automobile system 
optimization and parametric optimization of solar photovoltaic panels41.

Fig. 8. Best Pareto fronts of the 37-bar truss.

 

Fig. 7. Best Pareto fronts of the 25-bar truss.
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Fig. 10. Best Pareto fronts of the 72-bar truss.

 

Fig. 9. Best Pareto fronts of the 60-bar truss.
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Fig. 13. Best Pareto fronts of the 942-bar truss.

 

Fig. 12. Best Pareto fronts of the 200-bar truss.

 

Fig. 11. Best Pareto fronts of the 120-bar truss.
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Fig. 15. Boxplots of 25-bar truss.

 

Fig. 14. Boxplots of 10-bar truss.
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Fig. 17. Boxplots of 60-bar truss.

 

Fig. 16. Boxplots of 37-bar truss.
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Fig. 19. Boxplots of 120-bar truss.

 

Fig. 18. Boxplots of 72-bar truss.
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Fig. 21. Boxplots of 942-bar truss.

 

Fig. 20. Boxplots of 200-bar truss.
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Fig. 22. Diversity curves for 10-bar to 942-bar trusses.
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Fig. 22. (continued)
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Fig. 22. (continued)
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Fig. 22. (continued)
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Fig. 23. Hypervolume convergence plots.
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Fig. 23. (continued)
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Fig. 23. (continued)
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Fig. 23. (continued)
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Fig. 24. GD convergence plots.
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Fig. 24. (continued)
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Fig. 24. (continued)
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Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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Fig. 24. (continued)
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