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Abstract: Apricot (Prunus armeniaca L.) is a nutritious fruit, rich in bioactive compounds, known
for their health benefits. The present study attempts to evaluate nutritional (sugars, organic acids,
minerals) and nutraceutical traits (total phenolics, flavonoids, carotenoids, antioxidant activity) of
six commercial apricot genotypes grown in India. Antioxidant activity was determined using three
in-vitro assays, namely CUPRAC (cupric reducing antioxidant capacity), FRAP (ferric reducing
antioxidant power) and DPPH (1,1-diphenyl-2-picryl-hydrazyl). Significant (p < 0.05) differences
were observed in the genotypes concerning nutritional and nutraceutical traits. Sucrose accounted
for more than 60% of total sugars in most genotypes, followed by glucose and fructose. Citric acid
accounted for more than 50% of the total organic acids present, followed by malic and succinic
acids. Apricot is a good source of potassium (1430.07 to 2202.69 mg/100 g dwb) and iron (2.69 to
6.97 mg/100 g dwb) owing to its mineral composition. Total carotenoids content ranged from 0.44 to
3.55 mg/100 g, with β-carotene accounting for 33–84% of the total content. The results strongly
suggest that genotypes ‘CITH-A-1’ and ‘CITH-A-2’, which have high dry matter and carotenoids
content, are well suited for drying. ‘Roxana’ and ‘CITH-A-3’ are great for fresh consumption, while
‘Shakarpara’ and ‘Gold Cot’ are excellent for juice processing.

Keywords: apricots; antioxidant activity; sugars; organic acids; minerals; phytochemicals

1. Introduction

Apricot enjoys an eminent position amongst the common temperate fruit grown across
the globe and is the 3rd most economically important stone fruit after plum and peach [1].
The total global apricot production is 3.8 million tonnes, with Turkey (730,000 tonnes) being
the largest producer, followed by Uzbekistan (490,000 tonnes) and Iran (340,000 tonnes) [2].
Apricot production in India has nearly doubled in the last 20 years, reaching 15 thousand
tonnes per year [2].

Apricot is coined as the ‘golden fruit’ from the viewpoint of its nutritional value and
medicinal properties. The fruit contains a high concentration of bioactive phytochemicals
such as carotenoids, flavonoids, phenolics, and antioxidants and is regarded as a functional
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food [3]. The fruit has a distinct flavour, a heavy fragrance, and an appealing yellow to
orange colour with a reddish random overlay [4]. The fruit is typically consumed fresh,
but it can also be processed into jam, juice, and dried fruits by sun drying [5].

The major determinants of taste, colour, and nutrition in apricots are phytochemicals,
and their content is directly impacted by genotype, ripening stage environmental condi-
tions, and cultivation practises [1]. Apricots are high in phenolics; the main phenolics are
chlorogenic, gallic, ferulic, caffeic, 4-aminobenzoic, procatechin, salicylic, and p-coumaric
acid, and the major flavonols are quercetin, glycoside rutin, resveratrol, and vanillin [6].

These fruit are also rich in carotenoids, including β-carotene, γ-carotene, lycopene, β-
cryptoxanthin, phytoene, phytofluene, and lutein [7–9]. β-carotene has potent antioxidant
activity and is proven to provide important health benefits such as reducing oxidative
stress, boosting the immune system, decreasing the risk of heart disease and some forms of
cancer, and protecting against age-related macular degeneration [8,9].

Sugars and organic acids are essential primary metabolites in apricots that are linked
with nutrition and the fruit’s delicate fragrance [9]. Sucrose is the most abundant sugar,
followed by glucose, fructose, and sorbitol [10]. Sucrose and fructose are important com-
ponents of fruit sweetness, fragrance, and customer satisfaction. Citric and malic acids
predominate in apricot, with minor quantities of quinic, succinic, and ascorbic acids [11].

Due to favourable eco-geographical and climatic conditions, the northern Indian re-
gion (i.e., hills of Himachal Pradesh, Jammu and Kashmir, and Uttar Pradesh) is well suited
for apricot production. The area has a rich diversity, characterized by self-incompatibility,
small to medium-sized fruits, a long ripening time, and high chilling requirements [1]. A
plethora of publications report the chemical composition of apricots from various regions
of the world [7,12–15], but there are few reports on the nutritional diversity of apricots
from India [1,10,16], and a thorough study is still warranted. As a result, the current study
was planned to evaluate the nutritional (sugars, organic acids, minerals) and nutraceutical
properties of new Indian genotypes with those of European genotypes grown in north
India. Breeders, horticulturists, and processing units can benefit from information on the
quality and processing characteristics of apricot genotypes in order to identify potential
genotypes suitable for the fresh consumer market as well as the processing industry.

2. Material and Methods
2.1. Experimental Material

Six apricot (Prunus armeniaca L.) genotypes, including three Indian genotypes (viz.,
‘CITH-A-1’, ‘CITH-A-2’, and ‘CITH-A-3’) and three European genotypes (viz., ’Roxana’,
‘Gold Cot’, and ‘Shakarpara’), were provided by the Regional Horticultural Research
Station, Bajaura, Himachal Pradesh, India on June 2019 (Figure 1). The research field
was located at 31◦10′ N, 77◦6′ E and 1090 m above mean sea-level. The harvesting of the
apricot fruit was performed in the same period with the same degree of maturity. The
sample was representative of a total of 120 fruit which were collected from six trees in the
research field and then sorted and cleaned. Mature, healthy fruits were transported to the
Division of Food Science and Postharvest Technology, ICAR–Indian Agricultural Research
Institute, New Delhi, in a refrigerated van for analysis. The fruit were washed, air-dried,
and deseeded. Later, pulp along with peel was crushed and converted into fine pulp and
stored at −80 ◦C until the nutritional and nutraceutical content was determined. Whole
fruit along with peels was used to prepare a homogenous sample; since, peels are usually
consumed with the apricot fruit.

2.2. Estimation of Quality Traits

Dry matter was determined by placing 5 g of pulp in a hot air oven at 60 ◦C till
constant weight was achieved. The TSS (total soluble solids) was measured using a digital
hand refractometer (ATAGO CO. LTD., Tokyo, Japan) and expressed as ◦Brix. The TA
(titratable acidity) of fruit pulp was determined by titrating the pulp extract against sodium
hydroxide and expressed as a percentage of malic acid [17].
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Figure 1. Variation in skin colour of different apricot genotypes.

2.3. Estimation of Colour

A colour meter was used to determine the colour of the fruits (ColorFlex EZ, Hunter
Associates Laboratory, Inc., Mumbai, India). The results were expressed in terms of CIE
L*, a*, b*, hue angle (h◦), and chroma. The values of hue angle (h◦ = arctan (b*/a*)) and
chroma (C* = (a*2 + b*2)0.5) were computed from a* and b* values.

2.4. HPLC Estimation of Sugars and Organic Acids

Standards of sugars (sucrose, glucose, and fructose) and organic acids (citric acid,
malic acid, succinic acid, and ascorbic acid) were purchased from Sigma. The HPLC
system (Waters India Pvt Ltd., New Delhi, India) comprised of a binary pump (model 515),
refractive index (2414), photodiode array detector (PDA, 2998), and an Aminex HPX-87H
column (Bio-Rad Laboratories, Hercules, CA, USA). The separation was carried out in
isocratic mode with 5 mM H2SO4 as mobile phase flowing at 0.5 mL/min and a column
temperature of 50 ◦C. For the identification of individual organic acids and sugars, PDA
(210 nm) and RI detectors were used in sequence. Individual sugars and organic acids were
quantified by comparing their corresponding peaks to those of a standard as a function of
retention time and peak area.

The fruit sweetness index (SI) was calculated according to Roussos et al. [15], the relative
quantities of individual sugars and their sweetness properties were computed as follows:

Sweetness index (SI) = 1 × glucose conc. + 1.35 × sucrose conc. + 2.30 × fructose conc.

2.5. Estimation of Total Carotenoids

Total carotenoids content of apricot genotypes was determined using the method
reported by Rodriguez-Amaya and Kimura [18] with slight modification. Five grammes
of the sample were extracted with 15 mL of acetone, and the extract was transferred to
a 500 mL separation funnel. This process was repeated three times, or until the sample
residues became colourless. After that, 40 mL of petroleum ether was added. The acetone
aqueous phase was eliminated by slowly adding milli-Q water, separating the mixture into
two layers, and discarding the bottom layer. This process was repeated three times until
no residual acetone remained. The extract was then passed through 15 g of anhydrous
sodium sulphate to remove the aqueous phase completely. Petroleum ether was used to
make up the volume, and the samples were read at 450 nm. Results were expressed in
terms of mg per 100 g.
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2.6. HPLC Estimation of β-Carotene

The petroleum ether fraction from the previous carotenoids extract was evaporated to
dryness in a rotary vacuum evaporator at 40 ◦C. The residue was reconstituted with 2 mL of
methyl tert-butyl ether (MTBE) and filtered into an HPLC glass vial using a 0.22 m syringe
filter. The HPLC measurement of carotenoids was performed as per method described
by Huang et al. [19] with small modifications, using a UHPLC system (Dionex UltiMate
3000, Thermo Fisher Scientific, Bremen, Germany) fitted with a YMC C30 RP column
(250 × 4.6 mm, 5 µm; Waterco., Milford, MA, USA) held at 20 ◦C, 500G pump, and S-3210
PDA detector. The chromatography was performed in gradient mode with two buffers,
buffer A (methanol containing 1% (v/v) double-distilled water and 0.01% (w/v) ammonium
acetate) and buffer B (100% MTBE), and a linear gradient from 0 to 90% B over 40 min at
a flow rate of 1 mL/min, with detection at 450 nm. The quantification of β-carotene was
accomplished by comparing the corresponding peak to that of the standard as a function of
retention time and peak area. The parameters are presented in mg of β-carotene per 100 g.

2.7. Determination of Proximate Content and Minerals

The AOAC methods were used to determine the proximate composition of apricot
genotypes. The protein content was estimated using the Kjeldahl distillation apparatus,
the total nitrogen was estimated and then converted to protein using the conversion factor
(N × 6.25). Crude fat was determinated by solvent extraction in a Soxhlet apparatus. The
crude fibre content was determined after sample digestion with 2.5 M H2SO4 and 2.5 M
NaOH, respectively. The samples were then filtrated and dried in a hot air oven at 100 ◦C,
before being incinerated at 600 ◦C in a muffle furnace till constant weight was obtained.
The ash content was estimated by incineration of samples in a muffle furnace at 550 ◦C for
5–6 h until constant mass was achieved.

2.8. Determination of Mineral Composition

The ash obtained in previous step was dissolved in 50 mL of 5% HCl, and the volume
was used to determine mineral elements (Fe, Zn, Mn, and Cu) using atomic absorption
spectroscopy (AAS, AA4000, Spectrum-SP, Darmstadt, Germany), sodium (Na) and potas-
sium (K) using a flame photometer (128, Systronics, Ahmedabad, India), and phosphorus
(P) using a UV–VIS spectrophotometer [20]. The results were given in mg per 100 g dried
weight basis (dwb).

2.9. Estimation of Total Phenolics, Flavonoids, and Antioxidants Activity

Two grams of pulp sample were extracted with 10 mL of 80% methanol, sonicated for
30 min, then centrifuged for 10 min at 10,000× g and 4 ◦C, the supernatant was collected,
and the residue was extracted twice in the same manner. All extracts were combined, and
the volume was reduced to 30 mL before being filtered through a nylon filter (0.22 m) for
estimation of total phenolics, total flavonoids, and antioxidant assays.

Total phenolics content (TPC) was estimated according to Singleton et al. [21], using
the Folin–Ciocalteu reagent (FCR). In total, 100 µL of the previous extract was mixed
with 2.9 mL of deionized water, 0.5 mL of FCR, and 2 mL of Na2CO3 (20%). The mixture
was incubated at room temperature for 60 min before being measured for absorbance at
750 nm with a UV–VIS spectrophotometer (Varian Cary 50). The results were expressed in
milligrams of gallic acid equivalents (GAE) per 100 g.

The TFC (total flavonoids content) was determined using the method described
by Zhishen et al. [22]. A known volume (0.3 mL) of sample extract was mixed with
0.3 mL of NaNO2 (5%) before adding 0.3 mL of AlCl3 (10%) and 2 mL NaOH (1 M). The
mixture was thoroughly homogenised until a pink to yellow colour appeared. A UV–VIS
spectrophotometer (Varian Cary 50) was used to measure absorbance at 510 nm. The results
were expressed as mg of catechin equivalent (CE) per 100 g.

The antioxidant activity was estimated using three assays, namely CUPRAC, DPPH,
and FRAP. The cupric reducing antioxidant power assay (CUPRAC) was determined
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according to Apak et al. [23]. The assay consisted of mixing 0.1 mL of sample extract
and 1 mL each of CuCl2 solution (1.0 × 10−2 mol/L), neocuproine alcoholic solution
(7.5 × 10−3 mol/L), and NH4Ac (1 mol/L, pH 7.0) buffer solution, and water to make the
final volume 4.1 mL. The mixture was incubated for 30 min, and absorbance was recorded
at 450 nm against the reagent blank. The results were expressed as µmol Trolox equivalent
(TE) per g.

The DPPH (2,2-diphenyl-1-picrylhydrazyl) assay was used to measure free radical
scavenging activity [24]. Briefly, a DPPH solution of 0.0634 mmol/L was prepared in 70%
methanol (v/v). An amount of 3.9 mL of DPPH solution was mixed with 0.1 mL of sample
extract and vigorously shaken. The mixture was incubated in the dark for 30 min before
measuring the difference in absorbance of the sample extract versus the control at 517 nm
using a UV–VIS spectrophotometer. The results were expressed in terms of µmol TE per g.

The ferric reducing antioxidant power (FRAP) assay was estimated by the method
described by Benzie and Strain [25]. A known amount of sample extract (0.1 mL) was
introduced to 3 mL of FRAP reagent. The mixture was vortexed and then incubated for
4 min in a 37 ◦C water bath. The absorbance was measured at 593 nm using a UV–VIS
spectrophotometer (Varian Cary 50). The findings were expressed as µmol TE per g.

2.10. Heat Map Analysis

The heat map depicting the relative content of each attribute in each variety and
illustrating the Pearson’s correlation coefficient between selected attributes was generated
using the MetaboAnalyst 3.0’s statistical package [26].

2.11. Statistical Analysis

All analyses were performed in triplicate, and the results were presented as mean
values standard deviation. With the help of the SPSS (20.0) software, the analysis of
variance (ANOVA) was performed to identify significant differences (p < 0.05) among the
apricot genotypes, and the post hoc Duncan test was performed for a pair-wise comparison
of genotypes for each of the parameters. Pearson’s correlation coefficient was used to show
the relationship between selected traits. The correlation analysis was carried out with
jamovi version 1.2.27 and a 5% degree of significance.

3. Results and Discussion
3.1. Fruit and Stone Weight

The physicochemical composition of apricot genotypes is presented in Table 1. Fruit
weight is an important economic characteristic, and large-sized fruit attract a high market
price. The fruit and stone weight ranged from 20.13 to 38.18 g and 1.62 to 2.96 g, respectively,
according to our results. The genotype ‘Gold Cot’ had the most fruit and stone weight,
while ‘Shakarpara’ had the least. Gupta et al. [27] previously recorded fruit and stone
weight variations in the range from 8.0 to 15.1 g and 1.78 to 1.92 g, respectively, which
are lower than our values. However, apricot genotypes grown in China had a higher
fruit weight value (51.1 to 119.9 g). Similarly, many researchers have previously identified
variations in apricot fruit weight [5,11,13].

3.2. Dry Matter

Apricot dry matter (DM) content is a significant factor that determines the fruit’s
susceptibility to handling and transportation, as well as its suitability for processing and
dehydration [28]. The DM content of apricots ranged significantly (p < 0.05) from 13.07%
in ‘Shakarpara’ to 19.11% in ‘CITH-A-2’ (Table 1). In general, genotypes with low DM
are preferred for fresh consumption [28], whereas those with high DM are best suited
for drying and processing. Our findings are consistent with those published for apricot
genotypes grown in Greece (9.6 to 15.9%) [13], Pakistan (14.7 to 21.2%) [14], and Turkey
(11.8 to 25.8%) [28]. The observed differences may be attributed to genetics, climatic
conditions, and cultivation practices [14].
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Table 1. Variation in physicochemical composition of apricot genotypes.

Genotypes Fwt (g) Swt (g) Fwt/Swt DM (%) TSS TA (%) TSS/TA

CITH-A-1 32.40 ± 1.12 c 2.42 ± 0.09 b 13.23 ± 0.32 a,b 18.91 ± 0.71 a 17.82 ± 0.59 a 1.98 ± 0.06 b 9.00 ± 0.36 a

CITH-A-2 28.40 ± 0.98 d 2.12 ± 0.08 c 13.21 ± 0.32 a,b 19.11 ± 0.57 a 17.77 ± 0.54 a 1.88 ± 0.11 b 9.47 ± 0.66 a

CITH-A-3 34.93 ± 1.20 b 2.53 ± 0.10 b 13.65 ± 0.33 a 16.07 ± 0.38 b 15.37 ± 0.43 b 1.92 ± 0.15 b 8.04 ± 0.49 b

Gold Cot 38.18 ± 1.31 a 2.96 ± 0.11 a 12.73 ± 0.30 b,c 14.54 ± 0.51 c 13.10 ± 0.46 c 2.53 ± 0.07 a 5.18 ± 0.19 e

Roxana 27.57 ± 0.95 d 2.14 ± 0.08 c 12.71 ± 0.30 b,c 16.27 ± 0.65 b 14.99 ± 0.57 b 2.05 ± 0.08 b 7.31 ± 0.01 c

Shakarpara 20.13 ± 0.69 e 1.62 ± 0.06 d 12.28 ± 0.29 c 13.07 ± 0.39 c 12.13 ± 0.32 d 2.04 ± 0.07 b 5.95 ± 0.06 d

CD (0.05) 1.89 0.16 0.56 0.98 0.87 0.17 0.67

Values are a mean of three replicates ± standard deviation. All values are on fresh weight basis. Same superscript (a, b, c, d, or e) in the
same column represents no significant differences between values (p < 0.05). CITH—Central Institute of Temperate Horticulture; Fwt—fruit
weight; Swt—stone weight; DM—dry matter; TSS—total soluble solids; TA—titratable acidity.

3.3. Total Soluble Solids (TSS)

TSS ranged from 12.13 to 17.82 Brix, indicating significant genotype variation (Table 1).
The highest content was found in ‘CITH-A-1’ (17.82◦ Brix), and the lowest in ‘Shakarpara’
(12.13◦ Brix). These results are consistent with previous findings for apricot genotypes
grown in Greece, Shimla (India), and Italy, where TSS ranged from 11.5 to 19.3◦ Brix [12],
10.7 to 19.6◦ Brix [15], and 11.9 to 16.3◦ Brix [3,4], respectively.

3.4. Titratable Acidity (TA)

The titratable acidity (%) ranged from 1.88 in ‘CITH-A-2’ to 2.53 in ‘Gold Cot’ (Table 1).
Our results are comparable to those published in Greece (0.27 to 1.91%) [12] and Spain
(0.77 to 2.39 g/100 mL) [29]. The relationship between TSS and TA is an excellent predictor
of fruit ripening and eating efficiency. TSS/TA values ranged from 5.18 in ‘Gold Cot’ to
9.47 in ‘CITH-A-2’. Fruit with a TSS/TA ratio of 10 to 15 are considered to be of acceptable
eating quality [30].

3.5. Fruit Colour

Fruit colour is a significant predictor of ripening stage and carotenoids content [7,13],
as well as a discriminating factor that determines customer acceptability. In the fresh
market, consumers favour genotypes with appealing colours when making a purchasing
decision. In contrast, colour is an essential element in industry for sorting, grading, and
directing to subsequent process. In the current study, genotypes differed significantly
(p < 0.05) in terms of colour attributes (Table 2). The values of L* (lightness) ranged from
52.10 to 71.51. ‘Shakarpara’ had the highest L* value among genotypes, while ‘CITH-A-1’
had the lowest. Similarly, the a* (redness) value ranged from 1.03 to 39.85. ‘CITH-A-2’
had the highest value among genotypes, while ‘Shakarpara’ had the lowest. The b* value
(yellowness) ranged between 40.56 and 62.94. Genotype ‘Gold Cot’ had the highest b*
value among genotypes, while ‘Shakarpara’ had the lowest. The determined colorimetric
indices C* and h, which were derived from a* and b*, ranged from 40.59 to 69.48 and 54.84
to 88.43, respectively. Previous research in apricots revealed a strong inverse relationship
between h◦ and fruit carotenoids content. Apricot genotypes with the lowest h◦ values
may be defined as a carotenoids-rich source [7].

3.6. Soluble Sugars

Total sugar content ranged from 9.79 to 15.59 g/100 g, with significant differences
(p <0.05) between genotypes (Table 3 and Figure 2). As shown in Figure 2, sucrose was
the dominant sugar, accounting for more than 63% of total sugars and ranging from
4.15 to 10.13 g/100 g, glucose contributed about 22% of total sugars and ranged from
2.28 to 4.31, and fructose contributed about 15% of total sugars and ranged from 1.22 to
4.19 g/100 g. The genotype ‘Roxana’, on the other hand, had almost identical amounts of
sucrose, glucose, and fructose, with fructose content that was two to three times higher
than other genotypes. The lowest sugar content was found in ‘Shakarpara’ (9.79 g/100 g),
while the highest was found in ‘CITH-A-2’ (15.59 g/100 g). This is consistent with previous
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findings by Fan et al. [11] and Akin et al. [28]. Furthermore, the composition of individual
sugars in the current study agrees with that documented by Fan et al. [11] for different
Chinese apricot genotypes.

Table 2. Variation in skin colour of apricot genotypes (reflectance measurements L*, a*, b*, hue angle, and chroma).

Genotypes L* a* b* H◦ C*

CITH-A-1 52.10 ± 1.76 b 38.18 ± 0.89 a 56.58 ± 1.04 b 55.99 ± 0.51 c,d 68.26 ± 1.22 a,b

CITH-A-2 54.65 ± 4.81 b 39.85 ± 2.82 a 56.67 ± 4.69 b 54.84 ± 5.33 d 69.48 ± 2.08 a

CITH-A-3 55.94 ± 4.17 b 32.56 ± 2.44 b 54.42 ± 0.47 b 59.13 ± 2.08 c,d 63.45 ± 0.92 c

Gold Cot 67.19 ± 0.73 a 16.82 ± 2.45 c 62.94 ± 0.88 a 75.06 ± 1.89 b 65.17 ± 1.45 b,c

Roxana 54.22 ± 0.92 b 30.89 ± 2.82 b 55.40 ± 0.49 b 60.90 ± 1.99 c 63.46 ± 1.81 c

Shakarpara 71.51 ± 3.6 a 1.03 ± 1.19 d 40.56 ± 3.74 c 88.43 ± 1.88 a 40.59 ± 3.70 d

CD (0.05) 5.24 4.89 4.50 4.82 3.69

Values are a mean of three replicates ± standard deviation. Same superscript (a, b, c, or d) in the same column represents no significant
differences between values (p < 0.05). CITH—Central Institute of Temperate Horticulture; H◦—hue angle; C*—chroma; L* (lightness); a*
(redness); b* (yellowness).

Table 3. Variation in the approximate composition and sweetness of apricot genotypes.

Genotype Protein
g/100 g

Fat
g/100 g

Fibre
g/100 g

Ash
g/100 g

Total Sugars
g/100 g SI Ascorbic Acid

(mg/100 g)

CITH-A-1 0.61 ± 0.16 0.24 ± 0.14 1.23 ± 0.37 0.37 ± 0.16 15.54 ± 0.57 a 22.24 ± 0.87 a 11.52 ± 0.34 b

CITH-A-2 0.55 ± 0.24 0.18 ± 0.11 1.51 ± 0.54 0.37 ± 0.09 15.59 ± 0.57 a 22.30 ± 0.71 a 9.90 ± 0.26 c

CITH-A-3 0.24 ± 0.20 0.19 ± 0.09 1.41 ± 0.44 0.40 ± 0.08 13.16 ± 0.32 b 18.77 ± 0.44 b 10.50 ± 0.92 c

Gold Cot 0.43 ± 0.22 0.24 ± 0.16 1.02 ± 0.35 0.38 ± 0.12 10.27 ± 0.44 c 14.15 ± 0.43 c 4.83 ± 0.17 d

Roxana 0.54 ± 0.15 0.11 ± 0.12 1.27 ± 0.53 0.31 ± 0.05 12.65 ± 0.49 b 19.54 ± 0.80 b 15.71 ± 0.39 a

Shakarpara 0.40 ±0.28 0.27 ± 0.14 1.43 ± 0.50 0.34 ± 0.06 9.79 ± 0.25 c 13.58 ± 0.35 c 4.35 ± 0.24 d

CD (0.05) NS NS NS NS 0.81 1.13 0.82

Total sugars represent the sum of individual sugars, i.e., glucose, fructose and sucrose. Values are a mean of three replicates ± standard
deviation. Same superscript (a, b, or c) in the same column represents no significant differences between values (p < 0.05). All values
are on a fresh weight basis. NS—indicates non-significant differences between values (p < 0.05); CITH—Central Institute of Temperate
Horticulture; SI—sweetness index.

Figure 2. Sugar content of apricot genotypes from India. The same letter (a, b, c or d) inside a
similarly coloured block indicates no statistically significant differences in values (p < 0.05).

3.7. Sweetness Index (SI)

Individual sugars differ in sweetness, with fructose perceived as sweeter than sucrose
and sucrose perceived as sweeter than glucose [15]. The sweetness is important to apricot
consumers and breeders, and it also leads to market acceptance of the fruit [5]. The
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sweetness index (SI) ranged from 13.58 to 22.30 in the current study (Table 3). ‘CITH-A-2’
had the highest SI (22.30), followed by ‘CITH-A-1’ (22.24) and ‘Shakarpara’ (13.58). Our
findings are consistent with those published SIs for Spanish apricot genotypes ranging
from 8.5 to 15.9 [29]. Despite the fact that SI determines taste, the final perception of fruit
sweetness is influenced by the presence of other compounds such as phenolics and other
aroma compounds [11].

3.8. Organic Acids

Organic acids (OA) and sugars contribute significantly to the sensory consistency
of fruits by providing a pleasant taste and aroma [20]. As shown in Figure 3, citric acid
comprised approximately 55% of the OA present and ranged from 0.55 to 1.17 g/100 g,
followed by malic acid, which comprised approximately 25% of the OA and ranged from
0.40 to 1.43 g/100 g, and succinic acid, which comprised approximately 20% of the OA
and ranged from 0.329 to 0.56 g/100 g. The highest concentration of citric acid was found
in ‘Roxana’, whereas the highest concentration of malic and succinic acids was found in
‘Gold Cot’. The malic acid content in ‘Gold Cot’ was two to three times higher than in
other genotypes. Malic acid is the main contributor to fruit sourness despite being the
second most abundant acid in apricots [11]. Biologically, OA play important roles. They
inhibit the growth of microorganisms, which aids in the preservation of fruits. Moreover,
OA have the ability to diffuse through cell membranes and dissociate to subsequent ions
and protons, which lead to the acceleration of cell metabolic disorders caused by increased
intercellular acidity. Furthermore, because of their ability to chelate metals, OA may serve
as antioxidants and, thus, be labelled as preventive or synergistic [20]. Furthermore, these
OA can aid in the stabilisation of water-soluble vitamins B and C, the enhancement of
appetite and digestion, and the absorption of minerals such as potassium, copper, zinc,
iron, and calcium [31].

Figure 3. Organic acids content of apricot genotypes from India. The same letter (a, b, c, or d) inside
a similarly coloured block indicates no statistically significant differences in values (p < 0.05).

The concentration of ascorbic acid ranged from 4.35 mg/100 g in ‘Shakarpara’ to
15.71 mg/100 g in ‘Roxana’ (Table 3). Apricot contained low amounts of ascorbic acid,
which is consistent with previous reports by Fan et al. [11] and Roussos et al. [15] for apricot
genotypes from China (7 to 18 mg/100 g) and Greece (11 to 47 mg/100 g), respectively.

Apricots are high in carotenoids, which influence the colour and visual appearance
of the fruit; the colour of the fruit can vary from yellow to orange depending on the
carotenoids content [7,32]. Carotenoids are also essential dietary sources of vitamin A.
In the genotypes, total carotenoids content ranged from 0.44 mg/100 g in ‘Shakarpara’
to 3.50 mg/100 g in ‘CITH-A-2’ (Figure 4). Similarly, Kafkaletou et al. [12] estimated
that the total carotenoids content of Greek apricots ranged from 0.755 to 2.740 mg/100 g.
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Many researchers have previously identified variations in apricot total carotenoids [7,13].
Carotenoids have antioxidant properties and can protect the cell membrane from oxidative
stress. Carotenoids content varies due to differences in climate, variety, geographical origin,
harvest year, and cultivation methods [14].

Figure 4. Total carotenoids and β-carotene content of apricot genotypes from India. The same letter (a,
b, c, d, e or f) above a similarly coloured column indicates no significant differences in values (p < 0.05).

The β-carotene content of apricot genotypes varied significantly, ranging from 0.19
to 2.93 mg/100 g (Figure 4). Among the genotypes, ‘CITH-A-2’ had the most β-carotene
(2.93 mg/100 g) and ‘Shakarpara’ had the least (0.19 mg/100 g). As a result, β-carotene ac-
counted for 33 to 84% of the total carotenoids present. The findings are consistent with pre-
vious studies that found high levels of β-carotene in apricot fruit [8,12–14]. Akin et al. [28]
noticed that β-carotene accounted for 34 to 69% of total carotenoids in orange apricots.
However, according to Kafkaletou et al. [12], β-carotene accounted for 87 to 97% of total
carotenoids in apricots in Greece. β-carotene is the precursor of vitamin A and involved in
retina health. It was also involved in the defence system against oxidative stress in human
tissues [33].

3.9. Proximate Composition

The proximate composition of apricot genotypes is presented in Table 3. The genotypes
had a low protein and fat content, as seen in the table. Protein content ranged from
0.24 g/100 g in ‘CITH-A-1’ to 0.61 g/100 g in ‘CITH-A-3’, while fat content varied from
0.11 g/100 g in ‘Roxana’ to 0.27 g/100 g in ‘Shakarpara’. The variation in the protein and
fat content was determined to be statistically insignificant (p < 0.05). Our findings confirm
the previous report by Fratianni et al. [32]. However, higher amounts of protein (1.12 to
1.39%) and fat (0.31 to 0.54%) were recorded by Ali et al. [14] in apricot genotypes grown
in Pakistan.

Furthermore, partial differences in fibre content (1.02 to 1.51%) and ash content (0.31
to 0.40 g/100 g) were found in the genotypes studied. Recently, there has been a rise in
global awareness of the importance of minerals and fibres in one’s daily diet. Minerals
and fibres are considered important for sustaining wellbeing and proper physiological
processes when consumed on a daily basis. The apricot genotypes in the present study
provided a substantial amount of fibres and minerals. Our results are comparable to those
reported by Fratianni et al. [32]. However, elsewhere higher amounts of crude fibre (1.78
to 2.57%) and ash content (1.39 to 2.44%) were recorded by Ali et al. [14]. The variation
in proximate composition could be influenced by climate, variety, geographical origin,
harvest year, and cultivation practices.
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3.10. Mineral Content

The composition of mineral content of different genotypes differed significantly (p < 0.05),
(Table 4). Potassium was the most abundant mineral, with concentrations ranging from 1430.07
to 2202.69 mg/100 g dwb, followed by phosphorous (74.91 to 249.66 mg/100 g dwb), sodium
(9.32 to 13.62 mg/100 g dwb), iron (2.69 to 6.97 mg/100 g dwb), copper (0.31 to 2.73 mg/100 g
dwb), zinc (0.52 to 2.28 mg/100 g dwb) and manganese which was the minor mineral (0.16 to
0.83 mg/100 g dwb). Humans require minerals to meet their physiological needs. Manganese
is integrated with arginase and superoxide dismutase enzymes and also plays an important
role as a co-factor of certain enzymes. Iron is a key component of haemoglobin as a core
ion. Zinc is a mineral that plays a role in the body’s immune system [34]. Potassium is an
electrolyte that aids in the maintenance of proper fluid balance, regulates heartbeat, maintains
normal blood pressure, and lowers the risk of stroke [32]. Our findings revealed that apricot
genotypes contained significant amounts of minerals; however, the genotypes ‘CITH-A-3’
and ‘CITH-A-2’ were found to be an abundant source of iron, suggesting that they could
be a potential source of iron deficiency, particularly for pregnant women [35]. Previously,
Ali et al. [14], Gergely et al. [34], and Akin et al. [28] found a similar pattern in apricots grown
in Pakistan, Hungary, Morocco, and Turkey, respectively, with few differences in the values.
The potassium content reported by Ali et al. [14] was between 2040 and 3000 mg/100 g dwb;
similarly, iron content reported was 5.14–12.20 mg/100 g dwb which was lesser than reported
in our study. The difference in the mineral content may be due to the difference in the location,
climatic condition, soil type and genotypes used in the study.

Table 4. Variation in mineral content of different apricot genotypes.

Genotypes Potassium (K) Phosphorus
(P) Sodium (Na) Iron (Fe) Copper (Cu) Manganese

(Mn) Zinc (Zn)

CITH-A-1 1787.13 ± 22.85 b 74.91 ± 5.85 d 9.32 ± 0.03 c 2.69 ± 0.12 d 0.31 ± 0.01 f 0.83 ± 0.06 a 0.52 ± 0.01 d

CITH-A-2 1586.00 ± 73.25 c 162.56 ± 5.28 c 13.62 ± 0.67 a 6.97 ± 0.61 a 2.73 ± 0.08 a 0.22 ± 0.06 d 0.94 ± 0.06 c

CITH-A-3 2157.79 ± 50.30 a 162.15 ± 2.50 c 11.56 ± 0.20 b 6.39 ± 0.03 b 1.67 ± 0.03 b 0.50 ± 0.01 b 1.38 ± 0.14 b

Gold Cot 2105.95 ± 75.21 a 249.66 ± 4.25 a 12.11 ± 1.23 b 4.75 ± 0.06 c 1.16 ± 0.07 d 0.80 ± 0.01 a 2.28 ± 0.10 a

Roxana 1430.07 ± 54.26 d 204.81 ± 8.40 b 11.32 ± 0.61 b 4.74 ± 0.14 c 1.46 ± 0.06 c 0.16 ± 0.01 d 1.30 ± 0.06 b

Shakarpara 2202.69 ± 39.65 a 162.54 ± 3.08 c 11.24 ± 0.35 b 5.51 ± 0.16 c 0.47 ± 0.03 e 0.33 ± 0.04 c 1.31 ± 0.10 b

CD (0.05) 99.03 9.37 1.14 0.48 0.09 0.06 0.15

RDA for adults 3500 1200 2400 15 1.5 to 3 2 to 5 15

Values are a mean of three replicates ± standard deviation. Results were expressed as mg per 100 g on a dry weight basis. The same
superscript (a, b, c, d, or e) in the same column represents no significant differences between values (p < 0.05). CITH—Central Institute
of Temperate Horticulture; RDA for adults—recommended dietary allowance for adults and pregnant women mg/day as given by the
National Academy of Science [35].

3.11. Total Phenolics Content (TPC)

Phenolics and flavonoids are essential measures of nutraceutical quality and have been
linked to the treatment of a variety of chronic diseases, including cancer, cardiovascular
disease, and neurodegeneration. TPC content varied by more than threefold, ranging from
25.31 to 89.95 mg GAE/100 g (Table 5). Among genotypes, ‘Roxana’ had the highest TPC
value (89.95 mg GAE/100 g), while ‘Shakarpara’ had the lowest (25.31 mg GAE/100 g).
Wani et al. [1] and Leccese et al. [4] previously reported similar findings in apricot genotypes
from India and Italy, respectively. Similarly, Kafkaletou et al. [12] and Carbone et al. [13]
recorded a spectrum of TPC in various apricot genotypes ranging from 33.5 to 113.4 and
64.3 to 208.3 mg GAE/100 g, respectively. In another study, Ruiz et al. [36] reported an
average of 62.1–79.2 mg GAE/100 g of phenolics in the edible portion (91% flesh and 9%
peel) of white, yellow, light orange and orange coloured varieties of apricot from Spain. The
authors also concluded that peels of apricot have higher content of phenolic compounds
(procyanidin, hydroxycinnamic acid and flavonols) than flesh. However, a high phenolic
content is associated with browning reactions caused by chemical and enzymatic reactions,
resulting in a brownish colour in the manufactured product [12].
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Table 5. Variation in total phenolics, flavonoid, and antioxidant activity in different apricot genotypes.

Genotypes Total Phenolics
(mg GAE/100 g)

Total Flavonoids
(mg CE/100 g)

Antioxidants Activity (µmol TE/g)

CUPRAC DPPH FRAP

CITH-A-1 60.42 ± 2.43 b 9.81 ± 0.69 b 14.40 ± 0.73 a 7.25 ± 1.08 a 11.13 ± 0.71 a,b

CITH-A-2 50.30 ± 1.74 c 9.90 ± 0.95 b 13.80 ± 0.72 a 7.15 ± 0.67 a 10.65 ± 0.40 b

CITH-A-3 55.35 ± 6.48 b,c 15.46 ± 0.63 a 12.74 ± 0.64 b 6.84 ± 0.92 a 11.32 ± 0.67 a,b

Gold Cot 26.24 ± 1.36 d 5.00 ± 0.83 d 3.45 ± 0.39 c 2.47 ± 0.24 b 3.88 ± 0.21 c

Roxana 89.95 ± 2.39 a 10.46 ± 0.43 b 12.73 ± 0.41 b 7.84 ± 1.03 a 12.03 ± 0.66 a

Shakarpara 25.31 ± 1.82 d 7.71 ± 0.64 c 1.65 ± 0.26 d 2.00 ± 0.23 b 3.61 ± 0.22 c

CD (0.05) 5.71 1.27 0.99 1.38 0.93

Values are a mean of three replicates ± standard deviation. Results were expressed on a fresh weight basis. The same superscript (a, b, c, or
d) in the same column represents no significant differences between values (p < 0.05). CITH—Central Institute of Temperate Horticulture.
CUPRAC—cupric ion antioxidant reducing activity; FRAP—ferric reducing antioxidant power; DPPH—2, 2-diphenyl-1-picrylhydrazyl;
GAE—gallic acid equivalents; CE—catechin equivalent; TE—Trolox equivalent.

3.12. Total Flavonoid Content (TFC)

TFC amounts in apricot genotypes ranged from 5.00 mg CE/100 g in ‘Gold Cot’ to
15.46 mg CE/100 g in ‘CITH-A-3’ (Table 5). Our results are consistent with those reported
by Carbone et al. [13], who reported TFC values ranging from 1.9 to 12.0 mg CE/100 g for
different apricot genotypes. Kafkaletou et al. [12] and Wani et al. [1] found TFC values
ranging from 16.87 to 41.42 and 12.2 to 36.2 mg/100 g in apricot genotypes grown in Greece
and India, respectively.

3.13. Total Antioxidant Activity (AOX)

Antioxidant activity (AOX) was measured using various assays (namely, CUPRAC,
FRAP, and DPPH) to detect a wide variety of compounds with different mechanisms in the
plant matrix, including synergistic or antagonistic effects. Thus, varying the AOX assay
with specific mechanisms, reaction pH, time, and temperature could provide significant
benefits in terms of precision, performance, simplicity, and ease of use [37]. The CUPRAC
assay yielded values ranging from 1.65 to 14.40 µmol TE/g, the DPPH assay yielded values
ranging from 2.00 to 7.84 µmol TE/g, and the FRAP assay yielded values ranging from
3.61 to 12.03 µmol TE/g (Table 5). The CUPRAC values were found to be significantly
higher than those of the FRAP and DPPH assays, which may be due to CUPRAC’s higher
sensitivity to the presence of flavonoids, specifically quercetin and kaempferol. Flavonoids’
antioxidant potential is slightly influenced by their total OH-group material, especially
the o-dihydroxy moiety in the B-ring [38]. Several researchers have previously reported
similar findings [12,13]. Because of its lower redox potential, the CUPRAC assay has many
benefits and is more selective.

Our findings for AOX are consistent with those of Kafkaletou et al. [12], Ali et al. [14],
and Sochor et al. [6] for apricot genotypes grown in Greece, Pakistan, and the Czech Republic,
respectively, with some variations in the values. Kafkaletou et al. [12], reported antioxidant
parameters in the range of 57.79 to 248.40 µmol TE/100 g fresh weight. The difference in the
antioxidant capacity may be due to the difference in the location, climatic condition, soil type,
content of bioactive compounds, and genotypes used in the study. Overall, the genotypes
‘Roxana’ and ‘Shakarpara’ had the highest and lowest AOX levels, respectively. It is now well
established that high AOX levels are primarily due to high levels of phenolic and flavonoid
compounds, both of which have potential health benefits. AOX is now considered as an
appropriate index for assessing the nutraceutical content of fruit.

The correlation between TPC, TFC, CUPRAC, DPPH, FRAP, total carotene, and β-
carotene was further explored by measuring Pearson’s correlation coefficient between
these traits (Figure 5). TPC correlated significantly with CUPRAC (r = 0.768, p < 0.001),
DPPH (r = 0.839, p < 0.001), and FRAP (r = 0.863, p < 0.001). Several researchers obtained
similar findings [39]. This strong positive correlation is due to phenolics’ ability to accept
an electron, resulting in the formation of substantially stable phenoxyl radicals and, as a
result, disintegrating the chain of oxidation reactions [40].
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Figure 5. A heat map depicting Pearson’s correlation coefficients between TPC, TFC, CUPRAC, DPPH, FRAP, total
carotenoids, and β-carotene. TPC—total phenolics content (mg GAE/100 g); TFC—total flavonoids content (mg CE/100 g);
CUPRAC—cupric ion antioxidant reducing capacity (µmol TE/g); FRAP—ferric reducing antioxidant power (µmol
TE/g); DPPH—2,2-diphenyl-1-picrylhydrazyl (µmol TE/g); GAE—gallic acid equivalents; CE—catechin equivalent; TE—
Trolox equivalent.

Similarly, TFC had a significant positive correlation with CUPRAC (r = 0.659, p < 0.001),
DPPH (r = 0.666, p < 0.001), and FRAP (r = 0.744, p < 0.001). A number of researchers
reported similar findings. Flavonoids exhibit antioxidant properties by inhibiting the
development of reactive oxygen species (ROS) by chelation of trace elements involved in
free radical production or enzyme inhibition. Flavonoids have been found to inhibit ROS-
producing enzymes such as NADH oxidase, mitochondrial succinoxidase, Glutathione
S-Transferase, microsomal monooxygenase, lipoxygenase, and cyclooxygenase.

Flavonoids may also chelate copper and iron, which are potential ROS enhancers [41].
Total carotene was found to be positively correlated with CUPRAC (r = 0.898, p < 0.001),
DPPH (r = 0.798, p < 0.001), and FRAP (r = 0.800, p < 0.001). This correlation is due to
the fact that carotenoids act as effective antioxidants by scavenging peroxyl radicals and
singlet molecular oxygen. The singlet oxygen energy is passed to the carotenoid molecule,
resulting in ground state oxygen and an excited carotene molecule. The carotenoid then
returns to its ground state by dissipating more energy into the surrounding medium [42]

3.14. Heat Map Analysis

The heat map (Figure 6) is an advanced method for visualising variations in samples
and assisting in the drawing of fast and precise conclusions relevant to efficient data



Foods 2021, 10, 1344 13 of 16

utilisation. The distinct characteristics of each genotype are depicted in an efficient, basic,
and concise way. The heat map, for example, revealed that genotypes ‘CITH-A-1’ and
‘CITH-A-2’ had high levels of DM, TSS/TA, sugars, SI, minerals, carotenoids, and AOX.
CITH-A-3, on the other hand, demonstrated good balance in all parameters, as well as a
high flavonoids and carotenoids content. The genotype ‘Roxana’ was distinguished by
high amounts of TPC, AOX, fructose, citric acid, and ascorbic acid, as well as average
to high levels in the remaining parameters. The organic acid content of ‘Gold Cot’ was
high, with relatively large-sized fruit and stone, but its content of other parameters was
low. ‘Shakarpara’ was the genotype with the lowest overall content as compared to the
other genotypes. Figure 7 illustrates the measured attributes and their highest and lowest
amounts in the specific variety.

Figure 6. Heat map analysis of apricot genotypes and parameters. The genotypes and parameters
are presented in ‘X’ and ‘Y’ dimensions, respectively. The blue–red colour map visualizes the relative
value of the parameter for each genotype in a scale of low value (intensity of blue), to high value
(intensity of red). L*—lightness; a*—redness; b*—yellowness; TA—titratable acidity; TFC—total
flavonoids content; TPC—total phenolics content; DM—dry matter, TSS—total soluble solids; CITH—
Central Institute of Temperate Horticulture; CUPRAC—cupric ion antioxidant reducing activity;
FRAP—ferric reducing antioxidant power); DPPH—2,2-diphenyl-1-picrylhydrazyl.
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Figure 7. Graphical illustration indicating the evaluated attributes and their highest and lowest amount in the specific
variety. (A) Fruit and stone weight; (B) total soluble solids; (C) titratable acidity; (D) skin colour where L* (lightness), a*
(redness) and b* (yellowness); (E) soluble sugars; (F) phenolic and flavonoid content; (G) antioxidant activity through
CUPRAC, FRAP and DPPH; (H) β-carotene content; (I) ascorbic acid content; (J) organic acid content.

4. Conclusions

A comprehensive evaluation of nutritional and nutraceutical attributes of apricot
genotypes commercially grown in India was attempted for the first time. Dry matter,
minerals, sugars, β-carotene, phenolics, and antioxidant activity were found to vary sig-
nificantly between genotypes. Genotypes exhibited a relevant source of nutraceutical
compounds such as β-carotene (i.e., ‘CITH-A-2’ and ‘CITH-A-1’), phenolics (i.e., ‘Roxana’),
and flavonoids (i.e., ‘CITH-A-3’). Furthermore, the mineral profile showed that apricots
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are a good source of potassium and iron. While the sugars and organic acids profiles
revealed that sucrose and citric acid predominated in apricot genotypes. The ‘CITH-A-1’
and ‘CITH-A-2’ genotypes were associated with high DM and carotenoids and appear to
be suitable for dehydrating apricots. ‘Roxana’ and ‘CITH-A-3’ offered great potential for
the fresh consumer market. Whereas ‘Shakarpara’ and ‘Gold Cot’ are characterised by high
acidity and moisture content, they may be more appropriate for juice processing.
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