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Abstract

Over the last decades, predictive microbiology has made significant advances in the mathe-

matical description of microbial spoiler and pathogen dynamics in or on food products.

Recently, the focus of predictive microbiology has shifted from a (semi-)empirical popula-

tion-level approach towards mechanistic models including information about the intracellular

metabolism in order to increase model accuracy and genericness. However, incorporation

of this subpopulation-level information increases model complexity and, consequently, the

required run time to simulate microbial cell and population dynamics. In this paper, results of

metabolic flux balance analyses (FBA) with a genome-scale model are used to calibrate a

low-complexity linear model describing the microbial growth and metabolite secretion rates

of Escherichia coli as a function of the nutrient and oxygen uptake rate. Hence, the required

information about the cellular metabolism (i.e., biomass growth and secretion of cell prod-

ucts) is selected and included in the linear model without incorporating the complete intracel-

lular reaction network. However, the applied FBAs are only representative for microbial

dynamics under specific extracellular conditions, viz., a neutral medium without weak acids

at a temperature of 37˚C. Deviations from these reference conditions lead to metabolic shifts

and adjustments of the cellular nutrient uptake or maintenance requirements. This metabolic

dependency on extracellular conditions has been taken into account in our low-complex

metabolic model. In this way, a novel approach is developed to take the synergistic effects

of temperature, pH, and undissociated acids on the cell metabolism into account. Conse-

quently, the developed model is deployable as a tool to describe, predict and control E. coli

dynamics in and on food products under various combinations of environmental conditions.

To emphasize this point,three specific scenarios are elaborated: (i) aerobic respiration with-

out production of weak acid extracellular metabolites, (ii) anaerobic fermentation with secre-

tion of mixed acid fermentation products into the food environment, and (iii) respiro-

fermentative metabolic regimes in between the behaviors at aerobic and anaerobic

conditions.
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Introduction

In the whole food production and distribution chain, accurate assessment and control of

microbiological quality and safety are indispensable. The European Food Safety Authority

(EFSA) and the European Centre for Disease Prevention and Control (ECDC) reported 5363

food-borne outbreaks in the EU in 2012, implying the need for more effective control mea-

sures [1]. As E. coli grows relatively fast on a wide variety of nutrition sources and oxygen con-

centrations under standard environmental conditions (i.e., a neutral medium with a high

water activity at room or body temperature), it is frequently used in experimental microbiolog-

ical studies. This study focuses on the growth dynamics of Escherichia coli K-12 MG1655 on

glucose. Abundant information is available about this nonvirulent E. coli substrain from sys-

tems biology and experimental microbiology, due to its frequent application as a host organ-

ism for recombinant DNA [2–7]. In addition, it is a suitable model organism for pathogenic

E. coli and Shigella strains, such as E. coli O157:H7 [8] and S. flexneri 2a [9]. Infection with

these pathogenic strains can result in gastrointestinal disorders, kidney failure and even death.

Pathogenic E. coli strains are particularly dangerous for young, elderly and immunity-compro-

mised people. An increasing trend of pathogenic E. coli infections has been observed in the EU

from 2008 to 2012 [1]. In addition, as a facultative anaerobe, E. coli can survive both in the

presence and absence of oxygen, increasing the risk of food contamination.

To enable adequate food preservation measures, predictive microbiology provides mathe-

matical models to describe and predict microbial dynamics in food products under various

environmental conditions resembling food processing and storage [10]. Traditionally, models

in predictive microbiology consider the behavior of microbial populations in a (semi-)empiri-

cal macroscopic way, and consist of a limited set of coupled differential and algebraic equa-

tions [11]. Due to this low-complexity mathematical structure, these population-level models

are frequently applied in industry. However, these macroscopic models are only accurate to

describe microbial population dynamics where every microorganism is exposed to more or

less the same environmental conditions, such as planktonic growth in homogeneous liquids.

In contrast, most food products constitute a heterogeneous environment, e.g., semi-solid food

structures with nutrient and pH gradients due to colony growth. Hence, in the last decade,

the attention of predictive microbiologists has shifted to the behavior of microbial subpopula-

tions and even individual cells, as illustrated by the recent application of the individual-based

modeling paradigm in which the microbial cell is taken as the basic modeling unit [12–17].

Mechanistic information about the individual cell metabolism can be obtained from FBAs

based on genome-scale models developed in systems biology [18]. However, the incorporation

of a genome-scale model in simulations with multiple cells would result in long run times, as

these models include a plethora of information about the intracellular metabolic reactions and

fluxes. In addition, the metabolic flux distribution is dependent upon the cell objective (e.g.,

maximization of biomass or metabolite production). This cell objective is often unknown,

especially under stressing environmental conditions [19].

In order to map the influence of dynamically changing environmental conditions (e.g.,

nutrient and oxygen conditions) on the cellular metabolism/growth, FBAs at different values

for these dynamic conditions within specific ranges are to be combined to constitue a so-called

phenotypic phase plane or PhPP, representing cellular growth or the production of cellular

metabolites as a function of the environmental conditions within these ranges [20, 21]. This

PhPP is composed as a piecewise plane comprising multiple flat subplanes, each associated

with a particular metabolic cellular regime. Therefore, it is possible to develop a low-complex-

ity linear model for the growth and metabolite secretion rates of E. coli cells on glucose and

oxygen, based on metabolic FBAs with, e.g., maximization of biomass formulation as the cell
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objective. More specifically, mechanistic results of the FBAs are used to calibrate a linear

model relating the specific cellular growth rate to the specific nutrient uptake rate of the cell.

As a result, this linear model contains the intracellular information from the FBAs without

explicitly incorporating it. However, these FBAs are only valid when the cell aims to maximize

its growth. Deviations from optimal conditions in the culture environment cause shifts in the

cell objective and metabolism. For this reason, the synergistic growth-inhibiting effect of high

temperatures, low pH values and the presence of undissociated acid cell products in the envi-

ronment is taken into account in the linear model by means of a novel approach, i.e., the

growth-inhibiting effect is not incorporated as a direct adjustment factor to the specific growth

rate, but as a set of adjustment factors and terms to the cellular maintenance coefficient and

specific nutrient uptake rate. In addition, metabolic shifts as a result of stressing environment

conditions are included in the linear model, such as the transition to a lactic acid producing

metabolism at low extracellular pH values under anaerobic conditions.

As a result, the developed model is applicable as a low-complexity tool for the description

of E. coli cells on/in food products under various combinations of environmental factors.

This applicability is illustrated by means of three case studies covering all standard metabolic

regimes of E. coli: (i) aerobic respiration as it is the case in well-aerated bioreactors, (ii) anaero-

bic conditions, e.g., in vacuum-packed food products and (iii) respiro-fermentative metabolic

regimes under micro-aerobic conditions. The performance, advantages, and further applica-

tions of the developed modeling approach are summarized in the Discussion section.

Materials and methods

In this section, two methods to correlate biomass growth and cellular nutrient uptake are com-

pared to each other: (i) a noncomplex linear function known as Pirt’s law, and (ii) metabolic

flux balance analyses based on a genome-based model.

Traditional approach: Linear correlation between biomass growth and

nutrient uptake rate

Microorganisms take up and consume nutrients from their environment, in the first place to

fulfill physiological maintenance requirements and, secondly, to support biomass growth and

cell reproduction. Maintenance processes comprise osmoregulation, proofreading and inter-

nal turnover of macromolecular compounds, cell motility, and defense mechanisms [22]. For

the modeling of microbial survival/growth on a single nutrient substrate, these processes are

conceptually aggregated as the maintenance coefficientmS [mol nutrient/(gDW�h)] in bio-

chemical models [23]. In addition to this maintenance coefficient, cell growth is determined

by the stoichiometric or theoretical biomass yield coefficient YX/S [gDW/mol nutrient].

The maintenance and biomass yield coefficient link the specific growth rate μ [h−1] and the

specific nutrient uptake rate qS [mol nutrient/(gDW�h)] of the microbial cells in a linear way

[23, 24]:

m ¼ ðqS � mSÞ � YX=S: ð1Þ

The specific nutrient consumption rate is a function of the extracellular nutrient concentra-

tion CS [mol nutrient/L] according to the Monod kinetics [25]:

qS ¼ qS;max �
CS

KS þ CS
; ð2Þ

with qS,max the maximum specific nutrient uptake rate [mol nutrient/(gDW�h)], and KS the

half-saturation Monod constant for nutrient uptake [mol nutrient/L]. Generally, the half-
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saturation constant has a very low value (in the order of 10−6 M). Hence, it only plays an

important role at very low nutrient concentrations.

Analogously to the linear growth law in Eq 1, the secretion of metabolic products into the

environment can be expressed as a linear function of the specific nutrient uptake rate:

qP ¼ YP=S � qS þ qPjqS¼0
; ð3Þ

where qP [mol product/(gDW�h)] is the specific secretion rate of metabolic product P, qP the

specific secretion rate at zero cellular nutrient uptake, and YP/S [mol product/mol nutrient] the

yield coefficient of product P on nutrient substrate S.

The systems biology approach: Phenotypic phase plane analysis

Flux balance analysis. The mathematical expressions in Eqs (1)–(3) only consider the

input-output behavior of individual microorganisms or cell populations, i.e., the dependency

of biomass growth and metabolite secretion on nutrient availability. However, these input-out-

put dynamics are the result of complex intracellular reaction networks, as depicted in Fig 1 for

the growth of E. coli on glucose. Information about the intracellular metabolism and flux dis-

tribution is obtained from metabolic flux balance analyses.

Flux balance analysis is a constrained-based mathematical method, based on systems biol-

ogy concepts, to analyze metabolic reaction networks for the prediction of cellular phenotypes

[18]. In systems biology, the intracellular metabolic network is represented by means of the

stoichiometric matrix S. This matrix maps the intracellular metabolic fluxes vector (v) onto a

vector containing the time derivatives of the metabolite concentrations (x):

dx
dt
¼ Sv � m � x: ð4Þ

The second term in the right-hand side of this equation represents the dilution of intracel-

lular metabolites due to microbial growth. This term is generally neglected, as the fluxes

affecting intracellular metabolite concentrations are normally much larger than these concen-

trations [26]. In this work, the metabolic flux vector should comprise the secretion fluxes

together with the intracellular reactions. Therefore, Eq (4) is extended with the external

metabolic fluxes (b), according to the concept of the exchange stoichiometric matrix Sexch

[18]:

dx
dt
¼ Sexch

v
b

� �

: ð5Þ

In a FBA, a steady-state solution of Eq (5) is found by optimizing a specific objective func-

tion J, e.g., biomass growth maximization [20, 21, 27], maximization of metabolite production

[28], or a combination of both [29–31]. Mathematically, this is generally expressed as the fol-

lowing optimization problem [18]:

min
v;b

J ¼ w � v
b

� �� �

; ð6Þ
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Fig 1. Central metabolic pathways of E. coli. Glucose is converted to phosphoenolpyruvate (PEP) and pyruvate through the

glycolysis pathway, indicated by the dashed line. Subsequently, under oxygen-rich conditions, pyruvate is converted to acetyl-CoA

through the pyruvate dehydrogenase (PDH) enzyme complex, whereupon acetyl-CoA enters the tricarboxylic acid cycle (TCA) as

citrate. Under oxygen-limited conditions, pyruvate reacts to lactic acid through the lactate dehydrogenase (LDH) pathway or to

formic acid and acetyl-CoA by means of the pyruvate formate lyase (PFL) complex. In the absence of a functional TCA cycle at

oxygen limitations, acetyl-CoA is transformed to acetic acid or ethanol.

https://doi.org/10.1371/journal.pone.0202565.g001
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subject to

Sexch
v
b

� �

¼ 0; ð7Þ

0 � vi � vi;max and ð8Þ

bi;min � bi � bi;max: ð9Þ

In Eq (6), the weights w define the properties of the intended objective. Eqs (8) and (9)

respectively express the maximal kinetic rates of the intracellular reactions (vi,max) and the

physicochemical constraints on the exchange fluxes due to environmental conditions (bi,min
and bi,max).

Phenotypic phase plane analysis. Assuming maximization of biomass growth (i.e.,

minimization of negative growth) as the cellular objective, the specific growth rate on glucose

is calculable at each glucose and oxygen uptake rate by means of a FBA using the iAF1260
genome-scale model of [32]. This leads to the phenotypic phase plane (PhPP) of the specific

growth rate under reference conditions (i.e., a neutral M9 minimal medium enriched with glu-

cose as carbon source at a temperature of 37 ˚C) as a function of specific glucose and oxygen

consumption rates in Fig 2, determined by means of the COBRA Toolbox in MATLAB1 [33].

The obtained phenotypic phase plane consists of four zones: the respiratory metabolism

where glycolytic pyruvate is completely converted through the pyruvate dehydrogenase (PDH)

enzyme complex towards the tricarboxylic acid cycle (TCA) due to an excess of oxygen as oxi-

dizing agent (Sector 1 in Fig 2(b)), and three respiro-fermentative zones where the oxygen

consumption rate is limiting with respect to the oxidation of the assimilated glucose (Sectors 2,

3, and 4). On the boundary line between Sector 1 and 2, the intracellular metabolic network is

optimally utilized to maximize the observed biomass yield on glucose (μ/qS). Hence, this line is

called the line of optimality (LO). Due to excess glucose uptake with respect to the TCA cycle

capacity, acid metabolites are secreted into the environment: acetic acid in Sector 2; acetic and

formic acid in Sector 3; acetic acid, formic acid and ethanol in Sector 4.

Results

The two modeling approaches from the previous section are linked by the phenotypic phase

plane concept. In the following section, three case studies will be elaborated based on the

obtained phase plane: (i) fully aerobic conditions characterized by a respiratory metabolism

above the line of optimality (Sector 1 in Fig 2), as it is the case in well-aerated bioreactors, (ii)
anaerobic conditions, e.g., in vacuum-packed food products and(iii) respiro-fermentative met-

abolic regimes in which weak acid cell products are secreted (Sectors 2, 3, and 4 in Fig 2). A

schematic overview of the metabolic models developed for the first two case studies is included

in S1 Text.

Case study I: Respiratory metabolism

Respiratory growth on glucose at reference conditions. The PhPP in Fig 2 forms the

link between the detailed iAF1260 genome-scale model and the classic Pirt’s law [23, 24], as

the projection of Sector 1 and the LO on a plane perpendicular to the oxygen uptake axis is

described by Eq (1) (see Fig 3). It should be noted that the COBRA PhPP analysis does not

take into account the existence of negative growth rates predicted by Pirt’s law. Hence, the

COBRA profile is adapted to fit Eq (1), as illustrated with the dotted line in Fig 3. This leads to

Low-complexity model E. coli
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Fig 2. Phenotypic phase plane analysis, after [34]: Specific cellular growth rate as a function of specific glucose and

oxygen uptake rates with maximization of biomass growth as cellular objective, presented as (a) 3D plot and (b) contour

plot. The phenotypic phase plane consists of four phases, each representing a different metabolic regime. In Sector 1 glucose

is completely converted to CO2 through the tricarboxylic (TCA) cycle. The other sectors are characterized by the secretion of

weak acid cell products in the cellular environment: acetic acid in Sector 2; acetic and formic acid in Sector 3; acetic acid,

formic acid and ethanol in Sector 4. On the boundary between Sector 1 and 2, glucose is converted to biomass at a maximal

observed yield. For this reason, this boundary is indicated as the line of optimality (LO). This figure has been reprinted from

[34]. The original figure has been published under a CC BY license.

https://doi.org/10.1371/journal.pone.0202565.g002
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the following mathematical correlation for E. coli K-12 growth on glucose at reference environ-

mental conditions:

m
ð1Þ

ref ¼ qG � m
ð1Þ

G;ref

� �
� Y ð1ÞX=G ¼ qaG;max �

CG
KG þ CG

� mð1ÞG;ref

� �

� Y ð1ÞX=G ð10Þ

with m
ð1Þ

ref [h−1] the specific growth rate in Sector 1 of the PhPP at reference conditions, and

qaG;max the maximum specific glucose uptake under aerobic conditions. As a mather of fact, this

correlation implicitly includes the intracellular information of the iAF1260model while

maintaining the simple mathematical structure of Pirt’s law. Values for the parameters in this

equation are listed in Table 1.

Influence of extracellular pH and undissociated acid cell products on maintenance

requirements. Maintenance requirements are influenced by the environmental pH. Decreas-

ing pH values exhibit an inhibitory effect on microbial growth, proportional to the external

proton concentration [39, 40]. Weak organic acids, such as acetic, formic and lactic acid have

an additional restrictive influence, mainly in their undissociated form [41]. The lipophilic

undissociated acid is able to pass through the cell membrane, disturbing the transmembrane

pH gradient and disrupting the concomitant proton-motive force upon intracellular dissocia-

tion [42]. It is hypothesized that growth inhibition by weak acids is linearly dependent on the

concentration of the undissociated acid form, similarly to the aforementioned proton effect.

Fig 3. Specific growth rate as a function of specific glucose uptake rate under fully aerobic conditions. The full line represents the

results obtained by the PhPP analysis with the COBRA toolbox. These results are adapted to the linear mathematical structure of

Pirt’s law, as indicated by the dashed line.

https://doi.org/10.1371/journal.pone.0202565.g003
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This leads to the following mathematical expression for the maintenance coefficient:

mð1ÞG ¼ m
ð1Þ

G;ref þ Að1Þ �
½Hþ� � 10� 7

½Hþ�min � 10� 7
þ
X

i

Bð1Þi �
½Ui�

½Ui�
a
min

: ð11Þ

In this equation, the maintenance coefficient is split up in three terms: (i) the reference

maintenance coefficientmð1ÞG;ref at neutral pH and zero weak acid concentrations in the food sys-

tem, (ii) an additional maintenance term due to increasing environmental proton concentra-

tions [H+], and (iii) supplementary maintenance requirements due to the presence of

undissociated lipophilic acids [Ui] in the environment.

To determine the value of the parameters A(1) and Bð1Þi , this expression for the maintenance

coefficient is replaced in Eq (1). In a glucose-rich environment (i.e., qG� qG,max) without weak

acids, the microbial growth rate decreases to zero when the environmental proton concentra-

tion reaches a minimum inhibitory value [H+]min. Hence, the coefficient of the proton

Table 1. Parameter values in the metabolic models.

Symbol Explanation Value Reference

Eaa;g Microbial growth activation energy under aerobic reference conditionsa 6.1334 �104 J/mol Derived from data in Fig 4

Eaa;m Maintenance activation energy under aerobic reference conditionsa 3.4664 �105 J/mol Derived from data in Fig 4

[H+]min Minimum inhibitory proton concentration under reference conditionsa 10−3.95 mol/L [35]

KG Monod half-saturation constant for glucose 2.994 �10−6 mol/L [36]

mð1ÞG;ref Maintenance coefficient of the LO under reference conditionsa
3.496 �10−4 mol

gDW�h FBA with iAF1260 model

mLDH
G;ref Maintenance coefficient for the LDH metabolism under reference conditionsa

4.195 �10−3 mol
gDW�h FBA with iAF1260 model

mPFL
G;ref Maintenance coefficient for the PFL metabolism under reference conditionsa

3.051 �10−3 mol
gDW�h FBA with iAF1260 model

qPFLA;ref jqG¼0 Specific acetic acid secretion rate under glucose-free reference conditionsa
6.073 �10−4 mol

gDW�h FBA with iAF1260 model

qPFLF;ref jqG¼0 Specific formic acid secretion rate under glucose-free reference conditionsa
9.174 �10−4 mol

gDW�h FBA with iAF1260 model

qaG;max Maximum specific glucose uptake rate under aerobic conditions 9.02 �10−3 mol
gDW�h [37]

qanG;max Maximum specific glucose uptake rate under anaerobic conditions 17.3 �10−3 mol
gDW�h [37]

qLDHL;ref jqG¼0 Specific lactic acid secretion rate under glucose-free reference conditionsa
1.2043 �10−3 mol

gDW�h FBA with iAF1260 model

½UA�
a
min Mean aerobic MIC of undissociated acetic acid in a pH range from 4.2 to 5.4 9.5 �10−3 mol/L [38]

½UF �
a
min Mean aerobic MIC of undissociated formic acid in a pH range from 4.2 to 5.4 0.95 �10−3 mol/L [38]

½UL�
a
min Mean aerobic MIC of undissociated lactic acid in a pH range from 4.2 to 5.4 7.0 �10−3 mol/L [38]

½UA�
an
min Mean anaerobic MIC of undissociated acetic acid in a pH range from 4.2 to 5.4 6.25 �10−3 mol/L [38]

½UF �
an
min Mean anaerobic MIC of undissociated formic acid in a pH range from 4.2 to 5.4 1.075 �10−3 mol/L [38]

½UL�
an
min Mean anaerobic MIC of undissociated lactic acid in a pH range from 4.2 to 5.4 4.75 �10−3 mol/L [38]

Y ð1ÞX=G Biomass yield coefficient on glucose under fully aerobic conditions 96.300 gDW/mol FBA with iAF1260 model

YLDHL=G Lactic acid yield coefficient on glucose for the LDH metabolism 1.713 mol/mol FBA with iAF1260 model

YLDHX=G Biomass yield coefficient on glucose for the LDH metabolism 19.465 gDW/mol FBA with iAF1260 model

YPFLA=G Acetic acid yield coefficient on glucose for the PFL metabolism 0.801 mol/mol FBA with iAF1260 model

YPFLF=G Formic acid yield coefficient on glucose for the PFL metabolism 1.699 mol/mol FBA with iAF1260 model

YPFLX=G Biomass yield coefficient on glucose for the PFL metabolism 27.075 gDW/mol FBA with iAF1260 model

a Reference conditions: M9 minimal medium enriched with glucose, pH = 7.0, T = 37 ˚C, and [Ui] = 0 mol/L.

https://doi.org/10.1371/journal.pone.0202565.t001
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maintenance term A(1) is calculable from Eq (11):

qaG;max � m
ð1Þ

G;ref � Að1Þ
� �

� Y ð1ÞX=G ¼ 0) Að1Þ ¼ qaG;max � m
ð1Þ

G;ref : ð12Þ

Similarly, ½Ui�
a
min is the minimum inhibitory concentration (MIC) of the undissociated form

of weak acid i in an aerobic nutrient-rich system. Decreases in the intracellular pH due to

weak acid dissociation in the cell are associated to significant increases in the cellular glucose

uptake rate [43]. It is inferred that this surplus glucose consumption is conducted through the

Embden-Mayerhof-Parnas (EMP) glycolytic pathway (see Fig 1), resulting in higher ATP pro-

duction to fulfill the additional maintenance requirements. From experimental data for E. coli
K-12 of [43], it is derived that, per molar of undissociated acetic acid in the food system, the

specific glucose uptake rate increases at a rate ΔqG/A of 0.025575
mol glucose

gDW�h�M acetate. Taking this

increase in glucose uptake into account, the coefficient Bð1ÞA of the acetic acid maintenance

term can be derived from the mean MIC of undissociated acetic acid under aerobic conditions

½UA�
a
min in a pH range from 4.2 to 5.4, experimentally measured by [38]:

�

qaG;max þ DqG=A � ½UA�
a
min � m

ð1Þ

G;ref �

Að1Þ �
10� 4:2 þ 10� 5:4 � 2 � 10� 7

2 � ð½Hþ�min � 10� 7Þ
� Bð1ÞA

�

� Y ð1ÞX=G ¼ 0;

ð13Þ

resulting in

Bð1ÞA ¼ qaG;max þ DqG=A � ½UA�
a
min � m

ð1Þ

G;ref � Að1Þ �
10� 4:2 þ 10� 5:4 � 2 � 10� 7

2 � ð½Hþ�min � 10� 7Þ
: ð14Þ

For other weak acids, it is hypothetized that the increase in glucose uptake rate at their MIC

is equal to the rise in glucose consumption at the aerobic MIC of acetic acid:

DqG=i � ½Ui�
a
min ¼ DqG=A � ½UA�

a
min: ð15Þ

Hence, the Bð1Þi coefficients have the same value for each weak acid. Experimental values for

the mean MIC in the pH range from 4.2 to 5.4 of formic and lactic acid from [38] are summa-

rized in Table 1.

Influence of temperature on the aerobic cellular metabolism. In the normal physiologi-

cal temperature range (NPTR) for E. coli from 21˚C to 37˚C, the dependence of microbial

growth on the environmental temperature can be described by Arrhenius kinetics [44]:

mð1Þ ¼ mð1Þ;1 � exp �
Ea;g
R � T

� �

; ð16Þ

with μ(1),1 the specific growth rate under fully aerobic conditions at infinite temperature, Ea,g

the microbial growth activation energy J
mol

� �
, R the universal gas constant 8:3145 J

mol�K

� �
, and T

the temperature [K].

As both the maintenance and biomass yield coefficient are approximately constant with

respect to temperature in the NPTR for E. coli [45], the maximum specific glucose consump-

tion rate qaG;max exhibits approximately an Arrhenius-type behavior with respect to temperature
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as well, according to Pirt’s law (Eq (10)):

qaG;max ¼
mð1Þ;1

Y ð1ÞX=G
� exp �

Eaa;g
R � T

� �

þmð1ÞG;ref ; ð17Þ

In addition, the reference maintenance coefficient is relatively small with respect to the

maximum specific glucose uptake rate in the NPTR, so that

qaG;max � q
a;1
G;max � exp �

Eaa;g
R � T

� �

; ð18Þ

The maximum specific glucose uptake rate at infinite temperature, qa;1G;max, can be calculated

from the maximum specific glucose uptake rate at a reference temperature Tref of 310.15 K

(37 ˚C):

qa;1G;max ¼ qaG;maxjT¼Tref � exp
Eaa;g
R � Tref

 !

ð19Þ

At temperatures higher than the NPTR, the maintenance coefficient increases rapidly

according to the Arrhenius kinetic model, while the biomass yield coefficient is not signifi-

cantly affected [45, 46]. This leads to a double Arrhenius model for the specific microbial

growth rate, according to Pirt’s law:

mð1Þ ¼ qa;1G;max � exp �
Eaa;g
R�T

� �

� mð1ÞG;ref

� �

� Y ð1ÞX=G

for 21
�

C � T < 37
�

C;
ð20Þ

mð1Þ ¼ qa;1G;max � exp �
Eaa;g
R�T

� �

� mð1Þ;1G � exp �
Eaa;m
R�T

� �� �

� Y ð1ÞX=G

for T � 37
�

C;
ð21Þ

withmð1Þ;1G the maintenance coefficient at infinite temperature, and Eaa;m the maintenance acti-

vation energy under aerobic conditions. The maintenance coefficientmð1Þ;1G at infinite temper-

ature is calculated in an analogous way to the maximum specific glucose uptake at infinite

temperature (Eq (19)):

mð1Þ;1G ¼ mð1ÞG;ref � exp
Eaa;m
R � Tref

 !

: ð22Þ

Growth and maintenance activation energies Eaa;g and Eaa;m are derived from experimental

growth data for E. coli K-12 MG1655 of [47, 48] and [49], as presented in Fig 4. The obtained

value for Eaa;m of 346.64 kJ/mol (see Table 1) matches with the range of 212-515 kJ/mol deter-

mined by [45].

The developed expression for temperatures above 37 ˚C (Eq (21)) is particularly similar to

the Hinshelwood equation for the influence of temperature on the specific microbial growth

rate [50]:

m ¼ k1 � exp �
E1

R � T

� �

� k2 � exp �
E2

R � T

� �

: ð23Þ
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In this model, the microbial growth rate is controlled by a single enzyme reaction. This

enzyme reaction produces a heat-sensitive product that is irreversibly denatured at high tem-

peratures, as represented by the second exponential term. The scaling constants k1 and k2

[h−1], and activation energies E1 and E2 [ J
mol] define the microbial growth and denaturation

reaction, respectively. It should be noted that in this kind of Hinshelwood models the micro-

bial growth does not become negative at low temperatures. Unfortunately, the effect of low

temperatures on the parameters in Pirt’s law (Eq 1) are not known from literature.

Case study II: Anaerobic conditions

Anaerobic microbial growth on glucose at reference environmental conditions. Similar

to the procedure in Case Study I, anaerobic growth dynamics of E. coli can be obtained from

fitting the PhPP with Pirt’s law, as illustrated in Fig 5. According to the PhPP analysis, under

optimal anaerobic growth conditions, glycolytic phosphoenolpyruvate (PEP) is completely

converted to pyruvate and subsequently through the pyruvate formate lyase (PFL) reaction

(Fig 6). This results in the secretion profiles of acetic acid, ethanol, and formic acid in Fig 5.

The following mathematical correlations describe E. coli K-12 growth on glucose at reference

anaerobic environmental conditions, when the glycolytic PEP is completely converted through

Fig 4. Specific microbial growth rate as a function of temperature according to Eqs (20) and (21). Experimental data are taken

from [47] (^), [48] (▫), and [49] (∘). A rescaling factor of 0.382 is used to take into account that these data were obtained from

experiments in BHI medium supporting higher specific growth rates than M9 media [37, 49].

https://doi.org/10.1371/journal.pone.0202565.g004
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the PFL reaction:

mPFLref ¼ ðqG � mPFL
G;ref Þ � Y

PFL
X=G ð24Þ

qPFLP;ref ¼ YPFLP=G � qG þ q
PFL
P;ref jqG¼0 ð25Þ

with mPFLref [h−1] the specific growth rate at reference conditions, and qPFLP;ref [mol/(gDW�h)] the

reference specific secretion rate of metabolic product P (acetic acid, ethanol or formic acid).

The specific metabolite secretion rates are linearly related to the specific glucose uptake rate qG
by means of a product yield coefficient YPFLP=G. Values for the parameters in these equations are

summarized in Table 1. The positive values for the specific metabolite secretion rates at zero

glucose uptake can be explained by presuming that cellular biomass is converted into cell

products at this zero glucose uptake in order to satisfy the maintenance requirements of the

cell.

Influence of the extracellular pH on the conversion of glycolytic pyruvate to metabolic

products. Under neutral anaerobic conditions, pyruvate formate lyase (PFL) catalyses the

reaction from pyruvate to acetyl-CoA and formic acid, according to the microbial growth

maximization objective. One molecule of acetic acid or ethanol is formed from acetyl-CoA. To

maintain the cellular NAD+/NADH redox balance, approximately equal amounts of acetic

acid and ethanol are generated [51, 52]. The results of the PhPP analysis are in accordance to

this 2:1:1 ratio between the formic acid, acetic acid and ethanol secretion rates, as illustrated in

Fig 5.

Fig 5. Specific growth rate and metabolite secretion rates as a function of specific glucose uptake rate. Full lines represent the

FBA results with the iAF1260model. Dashed lines illustrate the model of [23] fitted on the FBA output.

https://doi.org/10.1371/journal.pone.0202565.g005
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However, at low environmental pH values, formic acid from the PFL pathway is decom-

posed to carbon dioxide and dihydrogen by the formate hydrogen lyase (FHL) complex to

limit internal acidification of the cell [51, 53]. It is assumed that the fraction of decomposed

formic acid α follows a sigmoid curve as a function of pH (see Fig 7):

aðpHÞ ¼
1

1þ exp ð11:3021 � ðpH � 6:3133ÞÞ
: ð26Þ

In addition to formic acid decomposition, low environmental pH values result in the pro-

duction of D-lactate by lactate dehydrogenase (LDH) [51, 54–57]. For every mole of acetic acid

and two moles of formic acid generated under neutral conditions through the PFL pathway,

two moles of less growth-inhibiting lactic acid are formed by the LDH enzyme. However, per

mole of consumed glucose, the LDH metabolic pathway produces one mole of ATP less, due

to the elimination of the acetate kinase (ACKA) reaction to acetic acid. Hence, the biomass

Fig 6. Anaerobic metabolism of E. coli. From phosphoenolpyruvate (PEP) and pyruvate, metabolic products are formed in

reactions catalyzed by lactate dehydrogenase (LDH), pyruvate formate lyase (PFL), phosphotransacetylase (PTA), acetate kinase

(ACKA), alcohol dehydrogenase (ADH), and formate hydrogen lyase (FHL). The underlined metabolic products are secreted to the

environment.

https://doi.org/10.1371/journal.pone.0202565.g006
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yield coefficient at lactic acid production conditions YLDHX=G declines, while the reference mainte-

nance coefficientmLDH
G;ref is higher compared to the PFL metabolism. Lactic acid production is

simulated with the COBRA toolbox by eliminating the PFL (and aerobic PDH) reaction from

the iAF1260model (Fig 8).

According to the iAF1260model, the maximum yield of lactic acid on glucose is 1.713

moles of lactic acid per mole glucose when all glycolytic pyruvate is conducted through the

LDH pathway. From data of [58], the dependence of lactic acid production on extracellular pH

conditions is resolved. It is assumed that the lactic acid yield coefficient exhibits a sigmoid

behavior as a function of extracellular pH, like the fraction of decomposed formic acid in the

PFL pathway (Fig 9):

YL=G ¼ YLDHL=G � bðpHÞ ¼ 1:713 �
1

1þ exp ð1:9547 � ðpH � 5:7809ÞÞ
: ð27Þ

Finally, the production of succinic acid from polyenolpyruvate (PEP) in Fig 6 is not taken

into account. Secretion of succinic acid requires energy [27]. Hence, the production of succinic

acid is negligible with respect to the other acid metabolites for a wild type E. coli strain [51, 53,

58, 59]. For a wild type E. coli strain, the yield of succinic acid on glucose is typically not higher

than 0.2 moles of succinic acid per mole of consumed glucose [60].

Influence of extracellular pH and undissociated acid cell products on maintenance

requirements. The dependence of the anaerobic maintenance coefficient on the extracellular

proton and undissociated acid concentrations is composed of three terms, similarly to the aer-

obic case study (Eq (11)):

m�G ¼ m
�
G;ref þ A

� �
½Hþ� � 10� 7

½Hþ�min � 10� 7
þ B� �

X

i

½Ui�

½Ui�
an
min

; ð28Þ

Fig 7. Fraction of decomposed formic acid α fit as a function of pH (MSSE = 0.0085). Experimental data (∘) are taken from [53],

[59], and [61].

https://doi.org/10.1371/journal.pone.0202565.g007
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where the � superscript denotes the metabolic regime of the microbial cells (LDH or PFL). For

E. coli, the inhibitory proton concentration [H+]min has the same value under aerobic and

anaerobic conditions [38]. In contrast, MICs of undissociated acids under anaerobic condi-

tions ½Ui�
an
min are in general slightly lower than their aerobic counterpart (see Table 1).

The A� and B� coefficients are defined in the same way as their aerobic equivalents (Eqs

(12) and (14)):

A� ¼ qanG;max � m
�

G;ref ; ð29Þ

B� ¼ qanG;max þ DqG=i � ½Ui�
an
min � m

�

G;ref � A
� �

10� 4:2 þ 10� 5:4 � 2 � 10� 7

2 � ð½Hþ�min � 10� 7Þ

� �

: ð30Þ

under the assumptions that the cellular metabolism is homolactic (i.e., all glycolytic pyruvate is

converted to lactic acid) for the calculation of ALDH and BLDH, or that glycolytic pyruvate is

completely converted through the PFL pathway for APFL and BPFL.
Values for the MIC of acetic, formic and lactic acid under anaerobic conditions are

included in Table 1. Finally, the inhibitory effect of anaerobic ethanol production on microbial

growth is not taken into account, as it is much lower than the growth-limiting influence of the

lipophilic acids [62].

Combination of PFL and LDH metabolism. The sigmoid function β of Eq (27) is used to

calculate a general biomass yield and maintenance coefficient for the combined PFL and LDH

Fig 8. Specific growth rate and lactic acid secretion rate at the homolactic metabolic regime. Full lines are obtained from FBA

with the iAF1260model in which the PFL reaction is eliminated. The FBA results are fitted by the linear model of [23], as

represented by the dashed lines.

https://doi.org/10.1371/journal.pone.0202565.g008
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metabolism as a function of the extracellular pH:

YX=G ¼ b � YLDHX=G þ ð1 � bÞ � YPFLX=G; ð31Þ

mG ¼ b �mLDH
G þ ð1 � bÞ �mPFL

G ; ð32Þ

with YLDHX=G andmLDH
G the biomass yield coefficient and maintenance coefficient if the metabolic

regime would be completely homolactic. The yield coefficient YPFLX=G and maintenance coeffi-

cientmPFL
G are representative for an exclusively PFL-mediated conversion of pyruvate.

Under anaerobic conditions, the additional required ATP production due to low pH values

and the presence of undissociated acids is generated from the glycolytic EMP pathway and the

secretion of mixed acid fermentation products. Hence, the total amount of acetic, formic, and

lactic acid produced is calculated as follows:

qA ¼ ð1 � bÞ � YPFLA=G � qG þ
mPFL
G

mPFL
G;ref
� qPFLA;ref jqG¼0

 !

; ð33Þ

qF ¼ ð1 � bÞ � ð1 � aÞ � YPFLF=G � qG þ
mPFL
G

mPFL
G;ref
� qPFLF;ref jqG¼0

 ! !

; ð34Þ

qL ¼ b � YLDHL=G � qG þ
mLDH
G

mLDH
G;ref
� qLDHL;ref jqG¼0

 !

: ð35Þ

Fig 9. Lactic acid yield coefficient YL/S fitted as a sigmoid function of pH (MSSE = 0.0022). Experimental data (∘) are taken from

[58]. The maximum lactic acid yield YLDHL=S;max in the homolactic LDH metabolic regime at low pH values is determined by means of an

FBA analysis with the iAF1260metabolic model [32] in the COBRA toolbox for MATLAB [33].

https://doi.org/10.1371/journal.pone.0202565.g009
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Case study III: Respiro-fermentative metabolism

Respiro-fermentative growth on glucose at reference conditions. In the previous two

case studies, metabolic regimes at the extreme edges of the phenotypic phase plane are consid-

ered, viz. the respiratory metabolism at oxygen uptake rates higher than the line of optimality

in Fig 2 (Sector 1) and the fermentative metabolism at anaerobic conditions. In between these

two metabolic behaviors, the PhPP contains several respiro-fermentative metabolic regimes in

which a range of weak acid products are produced by the microbial cells (Sectors 2, 3, and 4 in

Fig 2). At a constant oxygen uptake rate, the specific growth rate exhibits a piecewise linear

behavior as a function of the specific glucose uptake rate, as shown in Fig 10. Each of the linear

phases corresponds to a metabolic regime characterized by its own biomass yield coefficient

Y ðiÞX=G. Mathematically, the specific growth rate at a certain specific oxygen uptake rate is

expressed as follows:

m
ðiÞ
ref ¼ qð1Þ!ð2ÞG � mðiÞG;ref

� �
� Y ð1ÞX=G þ

Xn� 1

i¼2

qðiÞ!ðiþ1Þ

G � qði� 1Þ!ðiÞ
G

� �
� Y ðiÞX=G

þ qG � q
ðn� 1Þ!ðnÞ
G

� �
� Y ðnÞX=G

ð36Þ

in which n is the number of the PhPP sector correesponding to the (qG, qO) coordinates. The

specific glucose uptake rates qðiÞ!ðiþ1Þ

G corresponding to the boundary lines between two PhPP

sectors or metabolic regimes i and i + 1 (e.g., qð1Þ!ð2ÞG corresponds to the specific glucose uptake

rate on the line of optimality).

Influence of extracellular pH and undissociated acid cell products on maintenance

requirements. The influence of pH and undissociated acid cell products in the cellular envi-

ronment can be taken into account by means of adaptation of the maintenance coefficient,

analogously to Eqs (11) or (28). Decreasing the value of the extracellular pH results in the

increase of the maintenance coefficient leading to a shift of the different sectors in the PhPP.

Fig 10. Specific growth rate as a function of specific glucose uptake rate at a constant specific oxygen uptake rate of 5 mmol/

(gDW.h). The function exhibits a piecewise linear behavior in which each of the linear phases corresponds to one of the metabolic

regimes (Sectors 1,2,3 and 4 in the PhPP in Fig 2).

https://doi.org/10.1371/journal.pone.0202565.g010
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However, the biomass yield coefficient in a specific PhPP sector stays constant as each of the

PhPP sectors is associated to a specific metabolic regime. The maintenance coefficient at a cer-

tain value of the extracellular pH is illustrated as a function of the specific oxygen uptake rate

in Fig 11. As can be derived from Eqs (11) or (28), similar graphs can be generated for the

influence of undissociated acid cell products on the maintenance coefficient at a certain spe-

cific oxygen uptake rate (not shown here).

Discussion

Performance of the low-complexity model in comparison to FBA with the

COBRA toolbox

To compare the run time of simulations with the developed low-complexity correlations ver-

sus explicit FBA computations, the case study of a fully aerobic batch experiment has been

investigated. This batch experiment is mathematically described by the following equations:

dCX
dt

¼ m � CX ¼ ðqG � mGÞ � YX=G � CX; ð37Þ

dCG
dt

¼ � qG � CX; ð38Þ

with CX [gDW/L] and CG [mol/L] the concentrations of biomass and available glucose, respec-

tively. An initial biomass and glucose concentration of respectively 0.1 gDW/L and 200 g/L are

selected. The differential equations are solved by means of the ode45 solver of MATLAB1

[63]. For this solution, the time dimension is discretized in 100 equal intervals.

As expected, applying the linear correlation between the specific glucose uptake and growth

rate reduces the required run time significantly. Without taking the initialization of the

COBRA toolbox and the loading of the iAF1260model into account, application of the linear

correlation already results in a run time reduction of more than 99%. In addition, the simula-

tion results are the same for both approaches, except when the specific glucose uptake rate

drops below the critical value necessary to fulfill the cellular maintenance requirements. In the

latter case, a zero specific growth rate is obtained from FBA, while the linear model predicts a

Fig 11. The influence of extracellular pH on the maintenance coefficient as a function of the specific oxygen uptake rate.

https://doi.org/10.1371/journal.pone.0202565.g011
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negative growth (see Fig 12). However, the zero growth rate obtained from FBA is an artifact,

merely indicating that no metabolic flux distribution resulting in a positive growth rate could

be found.

As a conclusion, the developed linear model can be applied to provide fast and accurate

predictive assessments of microbial bioprocesses, opening the way for real-time monitoring

and robust control. Within this respect, the similarity between this model and the indirect

coupling method of [64] should be stressed. In the method of [64], a look-up table is

generated containing the FBA simulations constituting the reference PhPP in Fig 2. The

specific cellular growth rate at a certain combination of specific glucose and oxygen

uptake rates is determined by means of linear interpolation in this look-up table. However,

the use of numerical data about the reference PhPP in table format renders it difficult to

incorporate the influence of extracellular pH and undissociated acid cell products on the

cellular growth. The advantage of our approach is that it is based on the use of linear equa-

tions with a biologically interpretable parameters (e.g., the maintenance coefficient) whose

dependence on extracellular conditions can be easily understood and integrated in the

model.

In addition, the linear model is deployable as an efficient tool for spatially-explicit individ-

ual-based simulations with a large number of microbial cells (e.g., to simulate microbial colony

dynamics on/in semi-solid food products), in which knowledge about both cellular growth

and local nutrient uptake from the cellular environment is necessary. This has been shown by

the incorporation of the linear metabolic model in MICRODIMS, an in-house developed IbM

platform for the simulation of microbial colony and biofilm dynamics, which has been

described in [34].

Novel approach to model the synergistic influence of stressing

environmental conditions on microbial growth

The combined influence of environmental factors on microbial growth is traditionally mod-

elled on the basis of the gamma hypothesis of [65]. This hypothesis states that different growth-

inhibiting factors act independently. Mathematically, this implies that the effects of different

environmental factors on microbial growth are multiplicative:

mmaxðpH;T; ½I1�; :::; ½In�Þ ¼ mopt � g1ðpHÞ � g2ðTÞ �
Yn

i¼1

giþ2ð½Ii�Þ: ð39Þ

In this formula, [Ii] are the concentrations of growth-inhibiting substances, μmax is the max-

imum specific growth rate under nutrient-rich conditions, and μopt is the maximum specific

growth rate under optimal pH, temperature and weak acid concentrations. The gamma

hypothesis has been used in, e.g., the model of [66], taking into account the separate influences

of the environmental pH and the presence of undissociated and dissociated lactic acid on the

maximum specific growth rate:

mmaxðpH; ½UL�; ½DL�Þ ¼ mopt � 1 �
10pHmin

10pH

� �

� 1 �
½UL�

½UL�min

� �

� 1 �
½DL�

½DL�min

� �

ð40Þ

with pHmin the minimal pH value supporting microbial growth, [UL] and [DL] the respective

concentration of undissociated and dissociated lactic acid in the system, and [UL,min] and

[DL,min] the minimal concentrations of both lactic acid forms inhibiting growth. From the

mathematical structure of Eq (40), it can be observed that there are no interactions between

the different environmental factors.
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Fig 12. Simulation results of the aerobic batch experiment in Eqs (37) and (38) with FBA and the developed linear

model: (a) biomass growth, and (b) glucose consumption. In Subfigure (a) the simulation with the FBA model does not

exhibit declines in the biomass concentration, as the FBA with the COBRA toolbox is not capable to predict negative

specific growth rates.

https://doi.org/10.1371/journal.pone.0202565.g012
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However, the general applicability of the gamma hypothesis has been contested by experi-

mental observations demonstrating that the growth-inhibiting effects of low pH values, undis-

sociated acid concentrations, and high temperature are acting synergistically on microbial

growth [35, 67–69], challenging the gamma hypothesis. Synergism between the growth-inhib-

iting conditions implies that, in contrast to the gamma hypothesis, the interval wherein a spe-

cific environmental factor allows microbial growth is dependent on the other factors. An

accurate description of the interactions between different growth-inhibiting factors is impor-

tant in terms of the hurdle technology, wherein several microbial stress factors are combined

to find an optimal trade-off between organoleptic and nutritional quality, microbiological

safety, and economic viability of food products [70].

To include the synergistic interaction between environmental stress factors, [67] adjusted

Eq (39) with an interaction factor ξ:

mmaxðpH;T; ½I1�; :::; ½In�Þ ¼ mopt � g1ðpHÞ � g2ðTÞ �
Yn

i¼1

giþ2ð½Ii�Þ

 !

� xðpH;T; ½I1�; :::; ½In�Þ: ð41Þ

In the current paper, a novel approach has been developed to incorporate the synergistic

effects of different stress factors. Instead of extending the expression for the specific growth

rate with an interaction factor, adjustment terms and factors are applied to the maintenance

coefficient and the specific glucose uptake rate of E. coli to incorporate the influence of low pH

values, undissociated organic acids, and high temperatures. Synergetic interactions between

these environmental stress conditions are simulated for fully aerobic conditions and presented

in Fig 13. The obtained concave down increase of Tmax as a function of pH in the upper graph

of Fig 13(a) is consistent with the experimental results of [35], while the increase of the undis-

sociated acid MICs with pH (see the second graphs in Fig 13(c)–13(e)) matches with the obser-

vations of [38]. In Fig 13, it is demonstrated that the extreme value of a specific environmental

Fig 13. Interaction between cardinal parameters. (a) Maximum growth temperature Tmax as a function of pH and undissociated

acid concentrations; (b) pHmin as a function of temperature and undissociated acid concentrations; (c) Minimum inhibitory

concentration of acetate [UA]min as a function of temperature, pH, and formate and lactate concentrations; (d) Minimum inhibitory

concentration of formate [UF]min as a function of temperature, pH, and acetate and lactate concentrations; (e) Minimum inhibitory

concentration of lactate [UL]min as a function of temperature, pH, and formate and lactate concentrations.

https://doi.org/10.1371/journal.pone.0202565.g013
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condition (i.e., Tmax, pHmin or [Ui]min) is less critical when the other environmental conditions

are more optimal for growth.

The main advantage of the developed approach is that the synergistic effect of environmen-

tal factors on the maintenance coefficient and specific glucose uptake rate is explicitly incorpo-

rated in the metabolic models of the case studies. This makes the developed metabolic models

particularly suitable to incorporate in spatially-explicit individual-based models taking local

cellular glucose uptake from the environment into account.

Further extensions to the developed metabolic model

In this work, a metabolic model has been developed for E. coli. The model may probably also

be used for other food pathogens which are similar to E. coli, such as the gram-negative rod-

shaped Salmonella Typhimurium for which a genome-scale model is available from [71], or

even for metabolically engineered microorganisms producing valuable metabolic products,

such as biocatalysts and bioactive molecules ([72, 73]).

In addition, to model microbial dynamics under glucose-limited conditions, the uptake of

acetic and lactic acid as carbon source has to be taken into account. However, when the pres-

ence of organic acids in the food medium is only the result of glucose fermentation (i.e., weak

acids are not initially present due to external addition), the concentrations of produced acids

are too low to cause significant additional biomass growth.

Finally, the developed model is only valid for acid pH values and in a temperature range

above 21˚C. To model microbial growth under 21˚C, an additional function has to be added to

the piecewise expression in Eqs (20) and (21). This additional function should be arranged

such that (i) at 21˚C, there is a smooth transition between this function and the function in Eq

(20), and (ii) at lower temperatures of around 0-5˚C, the specific microbial growth rate goes to

zero.

Conclusions

In predictive microbiology, accurate descriptions of microbial growth dynamics are the pri-

mary goal. However, some other, more practical concerns need to be taken into account, like

the required simulation time, model complexity and genericness. Fast simulation run times

are indispensable for real-time monitoring and contol of microbial bioprocesses, implying that

the cellular metabolism needs to be modeled in the least complex way that is still accurate

enough for the considered biosystem, as complex metabolic models lead to high computa-

tional loads and simulation run times. In the same way, the least complex metabolic model

needs to be applied to individual-based simulations of multiple cell systems, as each cell is sim-

ulated separately. Furthermore, when the individual-based simulation is spatially-explicit,

attention should be paid to the genericness of the metabolic model in order to simulate the

impact of heterogeneous and dynamic environmental conditions on the cellular growth

dynamics accurately.

In this paper, metabolic models are built for the description of E. coli growth dynamics

under aerobic, micro-aerobic, and anaerobic conditions, based on the linear dependency

between the specific microbial growth and nutrient consumption rate of [23]. Although their

low-complexity structure, these models can be completed without empirical calibration with

information about the intracellular cell metabolism by fitting them to the results of flux bal-

ance analyses (FBA) with the genome-scale iAF1260model. In this way, the intended trade-

off between model complexity, accuracy and genericness is achieved.

Flux balance analyses with iAF1260 are only valid for specific reference environmental

conditions, viz., a neutral M9 medium enriched with glucose at a temperature of 37 ˚C. The
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influences of low pH values, weak acid cell products and high temperatures as growth-inhibit-

ing environmental factors have been incorporated in the form of adjustment terms or factors

on the maintenance coefficient or specific nutrient uptake rate in Pirt’s law. For anaerobic

conditions, the shift to a lactic acid producing metabolism at low pH values has been imple-

mented as well. This leads to a novel and more intuitive approach to simulate the synergistic

effect of the considered microbial stress conditions on microbial growth. As a result, this

approach is an excellent low-complexity tool within the context of hurdle technology to find

combinations of growth-inhibiting conditions optimizing quality, safety and, economic value

of food products.
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