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ABSTRACT

Introduction: Drug-induced liver injury (DILI)
is the most frequent cause of acute liver failure
in North America and Europe, but it is often
missed because of unstandardized diagnostic
methods and criteria. This study aimed to
develop and validate an automated algorithm
to identify potential DILI cases in routine
pharmacovigilance (PV) activities.
Methods: Post-marketing hepatic adverse
events reported for a potentially hepatotoxic
drug in a global PV database from 19 March
2017 to 18 June 2018 were assessed manually
and with the automated algorithm. The algo-
rithm provided case assessments by applying
pre-specified criteria to all case data and narra-
tives simultaneously.
Results: A total of 1456 cases were included for
analysis and assessed manually. Sufficient data
for algorithm assessment were available for 476

cases (32.7%). Of these cases, manual assess-
ment identified 312 (65.5%) potential DILI
cases while algorithm assessment identified 305
(64.1%) potential DILI cases. Comparison of
manual and algorithm assessments demon-
strated a sensitivity of 97.8% and a specificity of
79.3% for the algorithm. Given the prevalence
of potential DILI cases in the population stud-
ied, the algorithm was calculated to have posi-
tive predictive value 56.3% and negative
predictive value 99.2%. The time required for
manual review compared to algorithm review
suggested that application of the algorithm
prior to manual screening would have resulted
in a time savings of 42.2%.
Conclusion: An automated algorithm to iden-
tify potential DILI cases was developed and
successfully implemented. The algorithm
demonstrated a high sensitivity, a high negative
predictive value, along with significant effi-
ciency and utility in a real-time PV database.
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Key Summary Points

An automated algorithm was developed
and validated for identification of
potential DILI cases in a real-time, real-
world PV database.

The algorithm was designed and
optimized to maximize inclusion of
potential DILI cases.

The algorithm demonstrated a sensitivity
of 97.8% and a specificity of 79.3%.

Compared to manual case review,
application of the automated algorithm
resulted in an estimated time saving of
42.2%.

INTRODUCTION

Drug-induced liver injury (DILI) is a potentially
fatal adverse drug reaction that is the most fre-
quent cause of acute liver failure in North
America and Europe [1–3]. Concern for DILI is
one of the main barriers to marketing autho-
rization, one of the most frequent causes of
post-marketing restrictions, and one of the
major reasons for marketing withdrawal [4–8].
Despite significant downstream morbidity and
mortality, DILI eludes early upstream detection
because associated signs and symptoms are
nonspecific and pathognomonic biomarkers
remain unelucidated [3, 9–11]. As there is no
standardized method to predict DILI, creation
of a systematic approach for early detection is
currently the best strategy for prevention and
potential intervention [1, 12].

While several criteria have been proposed to
detect potential DILI cases, there is significant
variability in how these criteria can be applied
in stopping rules for clinical trial settings,
risk–benefit assessments in post-marketing set-
tings, reporting to health authorities, and to
physicians and patients [1, 12–14]. Further,
since most criteria involve a combination of

laboratory values and patient symptoms, man-
ual review may be needed in addition to auto-
mated filtering by laboratory criteria [15, 16]. A
recent meta-analysis of algorithms created to
identify potential DILI cases found a low range
of detection (1.0–40.2%) that varied with
threshold criteria, case definitions, diagnostic
codes, and study drugs [17]. Many of these
algorithms were applied to retrospective data,
and there remains a significant need to develop
more efficient automated methods to consider
cases prospectively as part of active, ongoing
pharmacovigilance surveillance.

Given the lack of standardized methods to
routinely monitor for DILI, we developed an
automated algorithm to facilitate detection of
potential DILI cases. The algorithm does not
confirm diagnosis of DILI. The objective of this
study was to evaluate the application of our
potential DILI detection algorithm in activities
related to routine pharmacovigilance. The logic
of the algorithm can be further applied to
identify other criteria-based pathologies.

METHODS

Datasets and Case Selection

The datasets used in this study compiled post-
marketing individual case safety reports (ICSRs)
from a real-time, global PV database between
19 March 2017 and 18 June 2018. Thirteen of 15
datasets corresponding to monthlong reporting
periods were included in the final analysis as
algorithm assessment was not performed for
two non-consecutive monthlong reporting
periods.

To identify potential DILI cases among
reported hepatic adverse events, dataset inclu-
sion criteria consisted of (1) initial or follow-up
ICSR reporting for a specific potential hepato-
toxic agent during the respective monthlong
period and (2) at least one lower level MedDRA
(Medical Dictionary for Regulatory Activities)
term contained within the following five hep-
atic Standardized MedDRA Queries (SMQs) [18]:

1. Cholestasis and jaundice of hepatic origin
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2. Hepatic failure, fibrosis and cirrhosis and
other liver damage-related conditions

3. Hepatitis, non-infectious
4. Liver-related investigations, signs, and

symptoms
5. Liver-related coagulation and bleeding

disturbances

As the global PV database is maintained and
updated in real time, the same ICSR could
appear in successive datasets as additional fol-
low-up information was received and case
details and assessment evolved. While the study
period spanned MedDRA versions 20.0, 20.1,
and 21.0, SMQ parameters were maintained
throughout versioning by the MedDRA Main-
tenance and Support Services Organization [18].

Case Assessment

In practice, pharmacovigilance activities related
to potential hepatotoxic agents include identi-
fication of potential DILI cases that will then be
further evaluated by a hepatic adjudication
committee, consisting of an expert panel of
hepatologists. The case reviews and analyses
performed in this study occurred prior to sub-
mission to a hepatic adjudication committee,
reflecting the process of deciding which cases
describe potential DILI and merit hepatic adju-
dication. For the purposes of this study cases
identified as potential DILI cases through man-
ual review were considered to be ‘‘positive’’ and
were sent for additional assessment by a hepatic
adjudication committee, whereas cases that
were not identified as potential DILI cases were
considered to be ‘‘negative’’ and not sent for
hepatic adjudication. Assessments performed in
this study do not reflect the judgment of a
hepatic adjudication committee, nor do they
confirm diagnosis of DILI.

Conservatively expanding laboratory ranges
from the US Food and Drug Administration
(FDA) guidance for DILI evaluation to be
inclusive, increases of serum alanine transami-
nase (ALT), serum aspartate transaminase (AST),
serum total bilirubin (TB), or international
normalized ratio of prothrombin time (INR)
falling into any of the following ranges were

considered sufficient to identify a potential DILI
case [12]:

• ALT or AST C 7.5 9 ULN*
• ALT or AST C 5.0 9 ULN for more than

2 weeks
• ALT or AST C 3.0 9 ULN and (TB C

2.0 9 ULN or INR C 1.5)
• ALT or AST C 3.0 9 ULN with the appear-

ance of fatigue, nausea, vomiting, abdomi-
nal pain upper, fever, rash, and/or
eosinophilia ([ 5.0%)

*9 ULN denotes the proportion of how
many times the laboratory value is above the
upper limit of its normal reference range [19]

The FDA guidance also suggests surveillance
of cases that meet the following [12]:

• ALT or AST C 2.0 9 ULN or twofold
increases above baseline values for subjects
with elevated values before drug exposure

Cases meeting any of the aforementioned
criteria were assessed as ‘‘positive’’ for potential
DILI.

Manual Case Review

Once each dataset was generated, all cases in the
dataset were manually reviewed and analyzed
over a 2-week period. The manual reviewer was
the same individual for all datasets to maintain
consistency in case review, analysis, and
assessment throughout the study.

Assessment of each case consisted of apply-
ing medical judgment to evaluate laboratory
data as well as medical information in the case
narrative. ALT, AST, TB, and INR values were
evaluated in terms of the proportion of how
many times they were elevated above the upper
limit of the respective normal value ranges
provided. When normal value ranges were not
provided, 40 international units per liter (IU/L)
was used as the ULN for ALT and AST, 1 mg per
deciliter (mg/dL) was used as the ULN for TB,
and 1 was used as the ULN for INR. Elevations
from ULN as well as elevations from baseline
were calculated. Cases that met the selection
criteria described in the ‘‘Case Assessment’’ sec-
tion were assessed as ‘‘positive’’ for potential
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DILI. Cases that did not meet the selection cri-
teria were assessed as ‘‘negative’’ for potential
DILI.

Algorithm Development and Case Review

The categories of laboratory value ranges used
above for manual case assessment were used to
design and develop an algorithm to identify
potential DILI cases. The algorithm was pro-
grammed using procedural language for struc-
tured query language (PL/SQL) to analyze PV
data stored in Oracle System Tables (Oracle
Corporation, Redwood City, CA). From user-
specified inputs of time period, drug, SMQs, and
ICSR source (e.g., clinical trial, post-marketing),
the algorithm identified a subset of the global
PV database upon which to apply selection cri-
teria. This initial process recreated the same
datasets that were assessed manually; however,
as the algorithm was applied to a real-time PV
database, data were current up to the time of
the algorithm run, which occurred after manual
review.

Next, the algorithm applied the case selec-
tion criteria itemized in the ‘‘Case Assessment’’
section. Using case data entered into laboratory,
event, narrative, and date fields, the algorithm
simultaneously identified which criteria, if any,
were satisfied by the cases. ALT, AST, TB, and
INR values were compared to respective ULNs
and narratives were scanned for keywords fati-
gue, nausea, vomiting, abdominal pain upper,
fever, rash, and/or eosinophilia.

For assessment, the algorithm designated a
case as ‘‘positive’’ for potential DILI if it deter-
mined that the case met any one of the selec-
tion criteria categories previously described. The
algorithm assessed cases as ‘‘negative’’ for
potential DILI if the selection criteria were not
met. Throughout the course of the study, sev-
eral practical optimizations and modifications
were made to the algorithm in order to improve
its accuracy and ability to detect specified
selection criteria. These optimizations included
improvements of the user-facing output to
delineate exact criteria met for potential DILI
identification and exact 9 ULN of laboratory
value elevation.

Cases lacking laboratory values for ALT, AST,
TB, and INR were unable to be assessed by the
algorithm as these laboratory values are part of
the selection criteria that the algorithm was
programmed to identify. Such cases were asses-
sed only by manual review.

Efficiency Evaluation

To evaluate the standard practice of manual
case review, a sample of ‘‘positive’’ and ‘‘nega-
tive’’ potential DILI cases were assessed by the
manual reviewer and the time required for
review and analysis was determined for each
assessment. This was used to determine the
average amount of time required to manually
review ‘‘positive’’ and ‘‘negative’’ potential DILI
cases, respectively.

To evaluate the effect on time savings of
prescreening the dataset with the algorithm, a
sample of ‘‘positive’’ and ‘‘negative’’ potential
DILI cases as assessed by the algorithm was then
assessed manually, with the manual reviewer
being aware of the algorithm outcome before-
hand. This was used to determine the average
amount of time required to review prescreened
‘‘positive’’ and ‘‘negative’’ potential DILI cases,
respectively.

The difference in time required for standard
manual review as compared with manual review
following prescreening with algorithm review
was determined as a measure of time difference.
Time difference as a proportion of time required
for standard manual review was used to evaluate
efficiency as in Eq. (1):

Efficiency

¼ TimeManualreview � TimePrescreenedmanualreview

TimeManualreview

:

ð1Þ

Statistical Analyses

To calculate the sensitivity and specificity of
this algorithm case assessment, the manual case
assessment was used as the comparator gold
standard since it is the only standard method to
perform this surveillance pharmacovigilance
activity. The positive likelihood ratio (LR?) and
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negative likelihood ratio (LR-) were then
derived from calculated sensitivity and speci-
ficity. Calculations for true positive rate (TPR)
and false positive rate (FPR) were used to gen-
erate a receiver operating characteristic (ROC)
curve. The trapezoidal rule was used to calculate
the area under the ROC curve (AUROC) [20].

For the population sampled in this study, the
prevalence of potential DILI cases was deter-
mined from manual case review as the propor-
tion of cases assessed that were positive for
potential DILI. Using this as the population
prevalence of potential DILI, the positive pre-
dictive value (PPV) and negative predictive
value (NPV) of the algorithm were calculated
per standard practice [21]. Accuracy of algo-
rithm performance was calculated in terms of
overall percentage agreement with manual
review [22]. All statistical analyses were per-
formed using Microsoft Excel, v.16.0 (Microsoft
Corporation, Redmond, WA).

Ethics Compliance

This study is based on previously reported data
and does not contain any new studies with
human participants or animals performed by
any of the authors. Permission to access and
analyze deidentified data was granted by Otsuka
Pharmaceutical Development & Commercial-
ization, Inc. (Princeton, NJ).

RESULTS

Patient Demographics

A total of 1456 cases were manually reviewed
during 13 monthlong periods for detection of
potential DILI in patients receiving the same
potential hepatotoxic agent. These cases repre-
sent 719 unique patients with demographics
described in Table 1. Demographic information
is displayed by outcome of manual assessment.
Of the total cases assessed, 312 of them (21.4%)
were identified as potential DILI cases; 165 of
these potential DILI cases (52.9%) occurred
among female patients, while 462 of 1144 cases
negative for potential DILI (40.4%) occurred

among female patients. Age distribution was
similar for both positive and negative potential
DILI cases with mean age 55 years and 52 years,
respectively, and median age 52 years and
50 years, respectively. The majority of these
cases from the study period were from Japan.

Algorithm Performance

The algorithm assessed 476 cases (32.7%) using
selection criteria with laboratory values for ALT,
AST, TB, and INR. Table 2 shows a comparison
between manual case assessments and algo-
rithm case assessments. On the basis of these
comparisons, the algorithm was calculated to
have a sensitivity of 97.8% and a specificity of
79.3%. Likelihood ratios were calculated as LR?
4.73 and LR- 0.03.

Of the six case assessments categorized as
false negatives, five were due to a conservative
lowering of thresholds during manual case
assessment, and one was due to a concern for
serious liver injury based on adverse event terms
reported (Table S1 in the supplementary mate-
rial). For the 43 case assessments categorized as
false positives, 26 were due to serum enzyme
elevations that did not persist for 2 weeks, nine
were due to patient symptoms that did not
correlate with enzyme elevations (lack of tem-
poral association, confounding from non-hep-
atic adverse event), and eight were due to
laboratory values being unavailable at the time
of manual review that then subsequently
became available at the time of algorithm
review (Table S1 in the supplementary
material).

Since analyses were performed in monthlong
intervals, sensitivities and specificities were also
calculated for each month of data reviewed
(Table 3). These data were also used to generate
an ROC curve with an AUROC of 0.95 (Fig. 1).
Given that manual review identified 21.4% of
cases as potential DILI, the positive predictive
value of the algorithm for this population was
calculated as 56.3% and the negative predictive
value was calculated as 99.2%. Algorithm accu-
racy was calculated as 89.7% overall percentage
agreement with manual review.
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Table 1 Patient demographics of cases assessed manually

Manual review

Positive Negative

Patients (n) 312 1144

Gender

Female 165 462

Male 147 615

Unknown 0 67

Age (n) 293 968

Mean (SD) 55 years (15 years ) 52 years (14 years )

Median (IQR) 52 years (45–64 years ) 50 years (42–60 years )

Range 18–95 years 8 months–100 years

COI

Armenia 0 1

Austria 0 3

Belgium 1 16

Canada 6 203

China 0 4

France 3 22

Germany 10 55

Italy 3 6

Japan 275 744

Netherlands 0 1

Norway 5 0

South Korea 0 10

Spain 5 4

Switzerland 1 13

Thailand 0 3

UK 1 44

USA 2 15

COI country of incidence, IQR interquartile range, SD standard deviation
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Algorithm Efficiency

Manual review and analysis of cases that were
identified as positive potential DILI cases
required an average of 18.5 min per case for
evaluation, whereas cases that were identified as
negative, required an average of 7.5 min per
case for evaluation. This difference was
attributable to additional time being spent to
calculate the extent of hepatic function test
elevations, coupled with a narrative review to
assess duration and associated symptoms.

The automated algorithm was able to pro-
vide assessments for all supplied cases within
1 s. Confirmation of the algorithm’s assess-
ments required an additional 1.5 min on aver-
age, for positive potential DILI cases only. Given
the distribution of positive and negative cases in
each monthlong assessment period and given
that the algorithm was applied to cases with
relevant laboratory values, Fig. 2 illustrates the
potential time savings if the algorithm had been
applied to screen all cases prior to manual
review.

Overall, using the algorithm to screen all
1456 cases prior to manual review would be
expected to save 101 h (42.2% of time

expended). Time savings per month ranged
from 6.3 to 9.5 h with a time savings range of
35.4–47.7% in hours expended.

DISCUSSION

This study evaluated the application of an
automated, multifactorial, algorithm in pre-
screening ICSRs with hepatic adverse events, for
identification of potential DILI cases in a real-
time, real-world PV database. The algorithm was
found to have a sensitivity of 97.8% and a
specificity of 79.3% with an AUROC of 0.95.
Moreover, given the high prevalence (21.4%) of
potential DILI cases in the population studied,
the algorithm demonstrated a positive predic-
tive value of 56.3% and a negative predictive
value of 99.2%. Application of the algorithm in
prescreening datasets for potential DILI cases
was estimated to save 42.2% of time expended
from manual case review.

Despite the utility of the algorithm in facili-
tating identification of potential DILI cases, it
must be restated that DILI itself remains diffi-
cult to predict. The liver functions at the inter-
section of numerous metabolic pathways and is
equally subject to the effects of active metabo-
lites as well as drugs, other agents, and the
potential interactions between them [9, 23, 24].
Patient genetics, demographics, comorbidities,
behavior, and environment all may play a role
in precipitating DILI [9, 23, 25–27]. DILI may
also occur with delayed onset, adding com-
plexity to assessment of the temporal interplay
between all these factors [28]. Thus, predicting
DILI from a weighted analysis of risk factors
remains difficult to validate consistently,
though there has been much progress in the
field. The focus of the current study was on the
commonly reported pharmacovigilance infor-
mation from which case assessments need to be
made in deciding whether or not hepatic adju-
dication is required.

For pharmacovigilance purposes, it is essen-
tial that no potential DILI case is overlooked
[1, 2, 9, 12]. To this end, the algorithm devel-
oped for this study was designed to optimize its
sensitivity and negative predictive value. This is
reflected in the algorithm’s LR- of 0.03 and

Table 2 Manual case assessments vs. algorithm case
assessments

Manual review

Positive Negative

Algorithm review

Positive 262 (TP) 43 (FP)

Negative 6 (FN) 165 (TN)

Sensitivity = 97.8%; Specificity = 79.3%; Positive predic-
tive value = 56.3%; Negative predictive value = 99.2%;
Overall percentage agreement = 89.7%
TP true positive, FP false positive, FN false negative,
TN true negative
Using manual review outcomes as the gold standard for
comparison, algorithm sensitivity and specificity were cal-
culated. Positive predictive value and negative predictive
value were calculated using an estimated population
prevalence of 312/1456 potential DILI cases (21.4%)
among ICSRs selected using 5 hepatic SMQs

Adv Ther (2021) 38:4709–4721 4715
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LR? of 4.73, where a ‘‘negative’’ potential DILI
assessment would greatly decrease post-test
probability and a ‘‘positive’’ potential DILI
assessment would only moderately increase
post-test probability by Bayes’ theorem [20].

However, it must be acknowledged that other
algorithms and methods aimed at detecting
potential DILI that optimize specificity do so by
reducing sensitivity and increasing the risk of
false negative, or missed potential DILI cases
[17, 20–22, 29]. The algorithm was tested for
5 months beyond the study period to confirm
accuracy and efficiency before it was incorpo-
rated into daily use. During this testing period
and thereafter, algorithm assessments were
made available during manual review, allowing
for direct verification as opposed to indepen-
dent comparison.

Time savings are a clear benefit of using
automated methods and tools to perform
pharmacovigilance activities. Though automa-
tion may never fully replace the ability to apply
medical judgment in assessing case narratives
and contextualizing laboratory findings,
automation can usefully minimize the time
spent performing repetitive comparisons and
calculating laboratory values relative to set
limits. Efforts to optimize this algorithm’s effi-
ciency revealed areas for improvement in case

Fig. 1 Receiver operating characteristic curve for algo-
rithm assessment. Receiver operating characteristic (ROC)
curve (dashed line) constructed using monthly case
assessments from Table 3 with monthly true positive rates
and false positive rates plotted as ordered pairs (blue dots).
Area under the ROC curve (AUROC) was calculated as
0.95 using the trapezoidal rule

Fig. 2 Estimated time savings with algorithm review prior
to manual review. Blue bars represent time required in
hours for completion of manual case review and analysis.
Orange bars represent estimated time required in hours for

completion of case review and analysis following pre-
screening with algorithm. Labeled values indicate time
saved as percentage of total time expended for manual
review and analysis
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assessment methodology, as well as in case
intake and case processing. The algorithm’s
dependence on proper entry of laboratory val-
ues identified opportunities to improve internal
processes involved in ensuring that this
happens.

Limitations of the algorithm included its
inability to parse narrative information to cor-
relate with laboratory findings. For example, a
patient with ALT or AST elevation C 3ULN
reporting ‘‘no fever’’ would have been identified
by the algorithm as positive for potential DILI as
the existence of the word ‘‘fever’’ in the narra-
tive would have been interpreted as the patient
having the symptom. One potential solution
would be to incorporate natural language pro-
cessing capabilities into the algorithm to inter-
pret narrative context [30, 31]. Machine
learning processes could provide additional
input into making case assessments [32, 33].

Additionally, the algorithm was not always
able to determine if the timing of symptoms
corresponded to the timing of laboratory ele-
vations. The algorithm also was not always able
to determine duration of enzyme elevations.
Operationally, one limitation of the preceding
analysis was that the algorithm was often
applied on a date after the initial period of
manual review. The algorithm used case iden-
tifiers in the extracted dataset to assess corre-
sponding laboratory values in the global safety
database. As the global safety database is main-
tained in real time, on occasion the algorithm
evaluated laboratory values that were not
available at the time of manual review, resulting
in a number of false positive case assessments.
Finally, the datasets derived from ICSRs report-
ing hepatic adverse events would be expected to
have a higher prevalence of potential DILI cases
compared to the general population receiving a
potential hepatotoxic agent [2, 3, 9]. As the
algorithm was designed for analysis of a specific
population with hepatotoxic injury and poten-
tial hepatotoxic agent use, its application to a
generalized population would be difficult to
interpret.

Nevertheless, the algorithm had many
strengths in addition to its high sensitivity,
high negative predictive value, and potential for
significant time savings. The algorithm has no

dependency on software or MedDRA version-
ing, which makes it suitable to perform case
assessment at any time past, present, or future
[18]. The programming is also easily adaptable,
allowing for changes in set thresholds as health
authority guidance documents are updated.

As an example, the FDA’s guidance for DILI
evaluation in clinical trial cases is different from
the post-marketing setting of this study, and the
corresponding criteria could be easily pro-
grammed into the algorithm [12]. Though the
algorithm’s language processing was noted as a
limitation, it is nevertheless a useful function-
ality that now has been adapted to identify
serious liver injury event terms (e.g., hepatic
failure, hepatitis fulminant, liver transplant)
since the time of the study, further ensuring
that potential DILI cases are not missed.

Finally, the algorithm may be adapted to
identify other pathologies with multifactorial
laboratory value selection criteria, such as drug
reaction with eosinophilia and systemic symp-
toms (DRESS) syndrome, tumor lysis syndrome,
neuroleptic malignant syndrome, and drug-in-
duced renal injury [34–37].

CONCLUSION

We successfully developed and implemented a
screening algorithm to assist in identifying
potential DILI cases in support of routine
pharmacovigilance activities. The algorithm
demonstrated a high sensitivity, a high negative
predictive value, along with significant effi-
ciency and adaptability in a real-time PV data-
base, which will ultimately result in cost
savings. Notably, the algorithm’s key features
for pharmacovigilance purposes is a focus on
sensitivity and negative predictive value, at the
expense of specificity and positive predictive
value, in our effort to maximize patient safety.
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