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ABSTRACT: A 139-π-electron nanographenoid radical was obtained
by expanding the periphery of a naphthalimide−azacoronene hybrid
with a methine bridge. The radical was isolated in the form of its σ-
dimer, which was shown to possess a conformationally restricted two-
layer structure both in the solid state and in solution. The dimer is
cleaved into its parent radicals when exposed to ultraviolet or visible
radiation in toluene solutions but is resistant to thermally induced
dissociation. Under inert conditions, the radicals recombine quantita-
tively into the σ-dimer with observable kinetics, but they are oxidized
into a ketone derivative in the presence of atmospheric oxygen.
Combined structural, spectroscopic, and theoretical evidence shows
that the σ-dimer contains a weak C(sp3)−C(sp3) bond, but is stabilized
against thermal dissociation by a very strong dispersive interaction between the overlapping π surfaces.

■ INTRODUCTION

Dimerization of π-conjugated radicals is a fundamentally
important process providing control over magnetism and
reversible covalent bond formation in organic materials.1 Two
π radicals can recombine by formation of a covalent bond to
produce a so-called σ-dimer, in which one atom of each π
system has been converted into a tetrahedral center. As these
bonds often have relatively low dissociation energies, σ-
dimerization provides an important mechanism for assembly of
complex architectures by dynamic covalent bonding.2−11 σ-
Dimerization of radical cation moieties is also involved in
radical cation couplings in inter-12 and some intramolecular13

oxidative coupling reactions. Alternatively, two radicals may
undergo π-dimerization, which occurs without the formation of
a covalent bond. In the resulting dimer, the two radicals are
stacked, to produce a strong interaction (“pancake bond”)
between the π systems. π-Dimers can be observed in solution
and in the solid state and may produce unusual temperature-
dependent magnetic phenomena.14−23

The ability of π radicals to form dimers can be inhibited by
such structural features as large extent of spin delocalization,
charge, or steric hindrance.24 Large π-radical systems often
have a limited tendency to dimerize, and instances of σ-dimers
with extended π surfaces are rarely reported.5,11,25−28 Among
recent examples, nickel(II) pyrimidinenorcorrole radical 1•

(Chart 1) regioselectively forms a σ-dimer that reversibly
dissociates upon heating in solution.27 The (β-porphyrinyl)-
dicyanomethyl radical 2• showed temperature-dependent
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Chart 1. Examples of σ-Dimerizing π Radicalsa

aThe position of the radical dot indicates the observed σ-dimerization
site. Formal π electron counts are provided in parentheses.
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exocyclic σ-dimerization, while its meso-porphyrinyl isomer was
found not to dimerize at all.5 Similarly, the azabuckybowl
radical cation 3• was observed to σ-dimerize in the solid state
and in solution at low temperatures, whereas only π-
dimerization was observed for its near-planar analogue.28 In
the related case of the C59N σ-dimer,26 dissociation into
radicals could be observed by ESR at 500 K.29 Generally, the
preference for σ-dimerization and its regioselectivity depends
on fine structural details and is not readily predictable.
Here we describe the interconversion between a giant radical

4•, containing 139 electrons in its π system (Chart 1), and the
corresponding σ-dimer 42 (Scheme 1). This radical is derived
from hexapyrrolohexaazacoronene (HPHAC),30 a versatile
platform for structural modification that has so far been
transformed by subunit replacement,31,32 edge expansion,32−34

core replacement,35 peripheral fusion,36,37 and helical dis-
tortion.37 These alterations have produced π-conjugated
systems exhibiting variable emission behavior,31 susceptibility
to multiple oxidation33 or reduction,36,37 and tunable
aromaticity.32,34 The present design combines radial fusion
of electron-deficient subunits with edge expansion, to produce
an odd-electron donor−acceptor π system, which undergoes

spontaneous σ-dimerization. The resulting dimer is thermo-
dynamically stabilized by balancing dispersion, distortion, and
covalent forces, but can be cleaved into the π radicals using
photochemical excitation.

■ RESULTS AND DISCUSSION

Formation of the Nanosandwich. The target radical 4•

is an analogue of the previously reported HPHAC fused with
six naphthalenemonoimide (NMI) units,36 which is further
modified by insertion of an extra methine bridge on the
periphery. Given its unique size, 4 is of inherent interest as a
model of a paramagnetic defect in a two-dimensional π-
conjugated system. In our efforts to synthesize 4•, we initially
followed our earlier strategy,33 trying to obtain bridged
hexapyrrolylbenzenes by acid-catalyzed condensation between
various aldehydes and the naphthaleneimide-fused precursor
536,38,39 bearing bulky 2,6-diisopropylphenyl (dipp) substitu-
ents (Scheme 1). Compound 5 showed however insufficient
selectivity in its reactions with aldehydes to be used for
efficient bridging. We therefore turned our attention to the
quintuply coupled system 6, which is easily obtained in high
yields by mild oxidation of 5 with ferric chloride. We

Scheme 1. Synthesis of the Nanosandwich 42 by Electrophilic Bridginga,b

aReagents and conditions: (a) 10 equiv FeCl3, 5% MeNO2 in DCM, 1 h, 18 °C; (b) 6 equiv 10-camphorsulfonic acid, 4 equiv paraformaldehyde,
CHCl3, pressure tube, 90 °C, 17 h. bParaformaldehyde-d2 and paraformaldehyde-13C were used to synthesize 42-d2 and 42-c2, respectively.

Figure 1.Molecular structure of 42 determined in an X-ray diffraction analysis. The location of the C(sp3)−C(sp3) bond is indicated with an arrow.
(A) Perspective view with H atoms and solvent molecules removed for clarity. (B) van der Waals representation with the two subunits shown
respectively in red and blue. (C) Structure with the top subunit removed and sub van der Waals contacts indicated in red.
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anticipated that the presence of only two reactive pyrrolic α
positions in 6 should improve the selectivity of condensation
reactions. However, 6 would not react with aromatic
aldehydes, presumably because of the combined steric bulk
of the NMI units in 6 and the aryl substituent of the aldehyde.
Instead, it underwent intramolecular oxidative coupling to the
fully fused HPHAC system under these conditions.
We reasoned that efficient condensation might be achievable

by reducing the steric bulk of the aldehyde reactant. Indeed,
when paraformaldehyde was reacted with 6 in the presence of
10-camphorsulfonic acid as the catalyst, it produced a single
well-defined product in a 73% isolated yield. Unexpectedly,
this product was identified as the σ-dimer 42, on the basis of
detailed structural and spectroscopic data (vide infra). The
expected primary product of condensation between 6 and a
formaldehyde equivalent, 4-H, possesses a saturated methylene
bridge, which might be subjected to final dehydrogenation to
yield 4• (Scheme 1). However, we were not able to observe 4-
H among the products, possibly because of its rapid
subsequent oxidation to the dimer. Isotope-labeled derivatives
42-d2 and 42-c2, containing respectively 12C−2H and 13C−1H
bridges, were conveniently obtained by condensing 6 with
appropriately labeled paraformaldehydes.
Structure of the σ-Dimer. The dimeric structure of 42 was

revealed in an X-ray diffraction (XRD) analysis (Figure 1). The
molecule has the shape of an irregularly ruffled disk, decorated
with bulky dipp groups, with an approximate van der Waals
diameter of 3.5 nm. The two monomer subunits are linked via
an elongated C−C bond (1.64(1) Å) and adopt a relative
gauche arrangement with a torsion of ca. 65°. As a
consequence, the central benzene rings of the two subunits
are set apart by 5.14 Å. Nevertheless, a significant overlap of
the aromatic surfaces is retained, leading to extensive
interdigitation of the tilted NMI subunits. Because of the
strong nonplanar distortion of the surfaces, the stacking
distance cannot be uniquely defined; however, interatomic
distances between subunits as short as 3.18 Å can be found in
the solid-state geometry. The van der Waals envelopes of the
two subunits intersect at multiple points (Figure 1C),
indicating a strong dispersive interaction between the π
surfaces, which may be enhanced by contributions from the
bulky dipp substituents. In comparison, a recently reported
bilayer nanographene showed a graphite-like interlayer

separation of ca. 3.56 Å.40 Shorter interplanar distances were
observed in phenalene π-dimers (3.2−3.3 Å)17 and anti-
aromatic norcorrole dimers (3.05−3.09 Å),41,42 a feature
attributable to 3D π-conjugation effects. As discussed below,
the local compression of interlayer distances in 42 is more
likely caused by a combination of dispersive and steric forces
rather than by additional bonding interactions between the π
systems.
Each of the monomer subunits shows a very significant out-

of-plane distortion, caused by steric congestion of the outer
NMI fragments and interactions with the other subunit. This
feature resembles the monkey-saddle distortion of the original
NMI-HPHAC system,36 which displayed alternating helicities
of the bay regions around the HPHAC core, with a
(P,M,P,M,P,M) relative stereochemistry.37 In 42, each subunit
has only five regions with defined helicity, because the sixth
bay is expanded by the inserted sp3 bridge. Relative helicities
for the front subunit of 42 (as oriented in Figure 1, clockwise)
are (P,P,M,P,M), whereas the back subunit has a different
stereochemistry, namely, (P,M,P,P,M). Thus, the two subunits
of 42 are stereochemically nonequivalent in the solid state, and
neither of them preserves the alternating helicity pattern found
in the HPHAC parent.

NMR Spectroscopy. The 1H NMR spectrum of 42
(CDCl3, Figure 2) corresponds to an effective C2 molecular
symmetry, which can be inferred from the number of NMI
signals (12 AB spin systems) and the number of CH signals of
the dipp substituents (12). The symmetry observed in solution
is therefore higher than that found in the crystal (C1) and
indicates complete equivalence of the two subunits. Thus, the
helical stereochemistry of both subunits is identical in solution
or, more likely, the helicities are dynamically averaged to
produce a more symmetrical spectrum. However, the rotation
around the C(sp3)−C(sp3) bond is slow on the NMR time
scale, because a higher symmetry spectrum (C2v or C2h) would
be observed for rapidly rotating subunits. A DOSY spectrum
recorded for 42 showed a reduced diffusion coefficient relative
to that of 6, consistent with the formation of a dimeric
structure.
Signal overlaps in the 1H NMR spectrum precluded

complete assignment of resonances, but a partial analysis
could nevertheless be performed with the aid of 2D correlation
methods (Figures 2A,B, S5). The C(sp3)−H resonance of the

Figure 2. NMR spectroscopic analysis for 42. (A)
1H NMR connectivities established in 42 on the basis of 2D spectra (see Figure S5 for assignment

details). (B and C) 1H NMR spectrum of 42 (600 MHz, CDCl3, 300 K). (D through G) The appearance of the C(sp3)−H resonances (m) in the
1H and 13C NMR spectra of 42 and 42-c2. Simulated spectra correspond to an AA′XX′ spin system (A = 1H, X = 13C) with 1JCH = 132 Hz, 1JCC = 28
Hz, 2JCH = −5.8 Hz, 3JHH = 3.4 Hz.
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sp3 bridge appears as a singlet at 6.88 ppm, and its identity was
further verified by a correlation with a 13C signal at 47.9 ppm
found in the HSQC spectrum. The bridge signal was also
absent in the 1H NMR spectrum of the deuterated derivative
42-d2. The

13C-labeled dimer, 42-c2, showed a characteristic
AA′XX′ spin system in its 1H and 13C NMR spectra, the latter
recorded with gated 1H decoupling (Figure 2E,G). The
splitting pattern was successfully simulated by assuming strong
coupling between the two 13C centers (1JCC = 132 Hz),
consistent with the formation of a direct C−C bond between
the two bridges.
Mass Spectrometry. The positive-ion MALDI mass

spectrum of 42, obtained using DCTB (trans-2-[3-(4-tert-
butylphenyl)-2-methyl-2-propenylidene]malononitrile) as the
matrix material, is shown in Figure 3. The most prominent

signal, (M/2)+, corresponds to the cation of the azacoronene
monomer fragment (4+, Figure 3B). A sizable M+ signal,
corresponding to the radical cation [42]

•+, was however also
observed (Figure 3C). The MALDI spectrum of 42-c2 showed
an analogous pair of (M/2)+ and M+ ions, with expected mass
shifts of one and two mass units, respectively (Figure 3D and
E). The formation of the radical cation [42]

•+ is expected, as
DCTB operates as an electron transfer matrix.43 The abundant
formation of 4+ in the MALDI experiment is due to either (a)
direct photodissociation of 42 followed by ionization of 4• to
4+ or (b) dissociation of the initially formed [42]

•+ into 4• and
4+. Unexpectedly, 42 formed an abundant sodium adduct
MNa+ (Figure 3C and E). Sodiation is here likely to occur by
binding adventitious Na+ during sample preparation rather
than in the gas phase during the MALDI process. The sodium
cation is thought to be chelated by a pair of spatially adjacent
imide CO groups located at the periphery of the stacked
azacoronenes in 42. Sodiation of the azacoronene monomer 4•

is much less abundant (2.6% relative intensity compared to
4+). This apparent lower propensity of 4• for the addition of
Na+ is consistent with the absence of chelating sites in the
azacoronene monomer.

Computational Analysis. Because of the size of the 42
dimer (652 atoms, 1918 electrons), a complete high-level
density functional theory (DFT) analysis was unfeasible.
Grimme’s extended tight-binding model (GFN2-xTB),44,45

including dispersion and solvation corrections, was therefore
used as a cost-effective alternative. Reoptimization of the solid-
state geometry at this level of theory produced only minor
structural changes (Figure S23), while retaining all key
characteristics of the dimer. Specifically, the calculation
reproduced the elongated C(sp3)−C(sp3) bond (1.601 Å).
This value is in good agreement with the analogous bond
lengths reported for the neutral σ-dimers of 2,6-di-tert-butyl-4-
methoxyphenoxyl (DBMP2, 1.606 Å, XRD)

46 and C59N (1.609
Å, DFT)47 and is larger than the corresponding distance in
7,7′-bi-1,3,5-cycloheptatriene (1.533 Å, XRD),48 which is
formally a fragment of 42. The torsion between subunits in
42 is reduced to 62° in the xTB geometry, leading to a
somewhat smaller distance between centroids of the inner
benzene rings (4.954 Å). The area of sub van der Waals
contacts between the two subunits is larger than in the XRD
geometry. It extends in the vicinity of the C(sp3)−C(sp3)
linkage, suggesting its largely steric origin.

Electronic Properties. The absorption spectrum of 42 is
very similar to that of the bridge-free precursor 6, with a nearly
identical λmax of the lowest-energy band (600 vs 601 nm in
CH2Cl2, respectively, Figure S2). These features indicate that
the ground-state electronic structure of the chromophore is
insignificantly affected in the dimer. Similarly to 6, 42 showed
deep-red fluorescence, with an apparently lower quantum yield
of emission (ΦF = 0.22 vs 0.40 in toluene, λex = 360 nm). The
ΦF value determined for 42 may however be underestimated
because of partial photodissociation of the sample during
measurements (see below). 42 could be separated into
enantiomers using chiral HPLC, indicating that the C2
conformer observed by NMR is configurationally rigid. CD
spectra of the enantiomers showed significantly lower
intensities than those of the related propeller-shaped
HPHACs.37 Voltammetric analyses of 42 showed two
oxidations at 0.60 and 0.85 V and at least eight reduction
events in the −1.37 to −1.99 V potential range (vs Fc/Fc+, cf.
Figures S7−S10). Such an extended electron-accepting ability
is a general characteristic of multi-NMI-fused nanocarbon
systems.36,37,39,49−51 For 42, however, electroreduction was
partly irreversible, producing a new species when held at
potentials below −1.37 V. The latter unidentified species was
identifiable by an emerging redox couple at −0.75 V.
Electrooxidation of 42 above its first oxidation potential
(0.60 V) produced small amounts of another new species
yielding characteristic redox couples at −0.11 and −1.13 V.

Cleavage and Recombination of the Dimer. The
spontaneous formation of 42 is reminiscent of formal σ-
dimerizations previously reported for certain macrocyclic
oligopyrroles,25,52−55 and we similarly suspected that it could
originate from a radical recombination process. We were
however intrigued whether, in contrast to the above reports,
the parent radical 4• could actually be observed experimentally.
The long C(sp3)−C(sp3) distance observed in 42 is generally
characteristic of weak covalent bonding; however, such
elongated bonds are not always easily dissociated.56 Samples
of 42 were found to always yield a moderately intense ESR
signal both in solution and in the solid state (see below). The
intensity of the ESR signal showed however a negligible
increase upon heating in toluene in the 300−420 K

Figure 3. Positive-ion MALDI mass spectrum of 42 (A) and isotopic
profiles for key ions (B and C). Isotopic profiles for 42-c2 are shown
for comparison (D and E).
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temperature range, indicating that thermal cleavage of 42 did
not occur. Subsequently, we found that in toluene solutions 42
underwent dissociation when irradiated with either UV
radiation or visible light. Interestingly, the process did not
occur in other typical solvents, i.e., methanol, dichloromethane,
benzene, and cyclohexane. Under optimized conditions (3.8 ×
10−5 M in degassed toluene, 365 nm UV source), we observed
a gradual conversion of 42 into a new species. The process was
monitored using absorption spectroscopy (Figure 4), yielding
well-defined isosbestic points, when irradiation was carried out
in short intervals.

The photoproduct has a smaller optical bandgap (ca. 1.01
eV), with near-infrared absorptions extending in a ca. 700−
1200 nm wavelength range, and was identified as the radical 4•

on the basis of the strong increase of ESR signal intensity
observed after irradiation. The electronic spectrum of 4• was
semiquantitatively reproduced in a time-dependent (TD)-DFT
calculation (Figure S25). Interestingly, the optical bandgap of
the radical matches the electrochemical gap determined for the
oxidation product of 42 observed in voltammetric experiments,
suggesting that the radical 4• might form by spontaneous
dissociation of the radical cation dimer [42]

•+. This process
would be analogous to the route (b) proposed above for the
formation of 4+ observed in the MALDI spectra.

1H NMR spectra of a 8 × 10−5 M solution of 42 in toluene-
d8 showed a 64% decrease of signal intensities following
irradiation with a 365 nm UV source. This value under-
estimates the actual conversion to 4•, because the sample
partly recovered prior to the NMR measurement. Thus, even
though the completeness of photodissociation could not be
precisely determined, high conversions can nevertheless be
expected for dilute solutions. In degassed toluene, irradiation
with a variety of UV and visible-light sources produced an
identical initial absorption spectrum, suggesting that either the
dissociation is indeed driven to completion or the photosta-
tionary state is independent of the wavelength. The photo-
generated 4• quantitatively recombined into 42 when the
samples were stored for 10−12 h in the dark, provided that
dioxygen was rigorously excluded. Accordingly, the ESR signal
of the photogenerated radical was found to decay exponen-
tially, indicating well-defined recombination kinetics. Irradi-
ation of solutions exposed to air produced a markedly different
result. At 5 × 10−7 M, the accumulation of 4• was not

detectable, a behavior previously observed for other benzylic π
radicals.57 Instead of 4•, a different species was formed,
characterized by an absorption spectrum resembling that of 42
and a somewhat enhanced fluorescence (Figure S4C). This
intermediate, which we presume to be the peroxide R−O−O−
R (Scheme 2), subsequently decayed to produce ketone 7 as

the final oxidation product. The above oxygenation sequence is
analogous to that proposed for oxophlorin radicals.52 7 was
also obtained on a preparative scale by exposing solutions of 42
to air and ambient light for extended periods of time and was
completely characterized using spectroscopic methods (Sup-
porting Information).

Properties of the Radical. In toluene solution, 4• yields
an ESR spectrum with g = 2.00292 and hyperfine coupling with
aH = 6.8 G, which was attributed to the proton of the methine
bridge (Figure 5). Indeed, the deuterated radical 4•-d, obtained
by splitting 42-d2, shows no resolvable splitting (aD < 1 G),
consistent with the above assignment. The ESR spectrum of

Figure 4. Photodissociation of 42 into 4• and subsequent
recombination (365 nm irradiation, toluene, rt).

Scheme 2. Photodissociation and Photooxidation of 42
a−c

aReagents and conditions: (a) degassed toluene, 365 nm irradiation
ca. 80 s; (b) room temperature, darkness, overnight; (c) toluene, 365
nm irradiation, air. bHypothetical steps are shown in gray; reversibility
is not indicated. cR is the azacoronene moiety bound to oxygen via
the peripheral bridge carbon.

Figure 5. Left: ESR spectra of 4• and its isotope-labeled derivatives
(toluene, 300 K). Right: Spin density distribution for 4• (ωB97XD/6-
31G(d,p), dipp substituents omitted for clarity).
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the 13C-labeled radical 4•-c contained an additional splitting
(aC = 12.3 G), indicating that a significant amount of spin
density resides on the methine carbon. The calculated spin
density distribution (Figure 5) shows that the unpaired
electron is distributed predominantly in one-half of the π
system surrounding the methine bridge with significant
amplitudes in the imide fragments. Mulliken spin densities at
the methine C and H atoms are respectively 0.498 and −0.022.
Interestingly, the spin is insignificantly delocalized into the
central benzene ring of 4•.
Computational data indicate that 4• preferentially adopts a

monkey-saddle conformation with alternating helicities of the
adjacent bay regions (Figure S20). This conformer is
analogous to the structure reported for the parent HPHAC−
NMI hybrid.36 However, since the subunits of 42 adopt
different stereochemistry in the solid-state structure, the radical
appears to be sufficiently flexible to adjust its geometry upon
dimerization. 4• features a very large π system, formally
containing 139 electrons. This system is however only partially
involved in spin delocalization, with the methine bridge acting
as a “spin defect” in the π-conjugated framework. As this
methine bridge is not sterically protected, the radical remains
susceptible to dimerization and addition of dioxygen. Both of
these processes are consistent with relatively low stabilization
of the radical.
Energetics of Dimerization. The energetics of dimeriza-

tion were probed for 42 (Table 1) and the reference system 82

devoid of NMI-dipp units (Scheme 3, Table S1). Initially, the
ground-state singlet (S0) and triplet (T1) energy hypersurfaces
were scanned for each system at the GFN2-xTB level of theory
(CH2Cl2 solvation), as a function of the C(sp3)−C(sp3)
distance d (Figures 6 and S22). For S0-42 and S0-82, one
minimum was located along this coordinate, corresponding to
a σ-dimer with an elongated single bond (d ≈ 1.60 Å). The

large d distance predicted for S0-82 indicates that the
elongation may be relatively independent of the steric
congestion around the C(sp3)−C(sp3) bond. For both 42
and 82, the S0 σ-dimer was stabilized by over 55 kcal/mol
relative to the corresponding pair of radicals. On the triplet
surface, 42 showed two minima at ca. 1.6 and 3.0 Å,
corresponding respectively to the σ- and π-dimers, T1-σ-42
and T1-π-42, each with an energy of ca. − 30 kcal/mol. Two,
less stabilized minima were similarly observed for T1-82; that is,
for both 42 and 82, the S0-σ-dimer is significantly more
stabilized than the corresponding triplets (T1-σ and T1-π).
Scanning at larger d distances resulted in a sliding displacement
of the subunits and rather uneven energy profiles (Figure S22).
This behavior is likely caused by strong dispersive interactions
and multiple clashes between the subunits. However, the
ΔESCC energy remained negative at all distances, suggesting
that the dissociation into radicals may be essentially
barrierless19 for both 42 and 82.
The curvature of the ΔESCC energy profile around the S0-σ-

42 minimum provides an estimated force constant for the
C(sp3)−C(sp3) bond of ca. 2.3−2.7 mdyn/Å (see the
Supporting Information for a full analysis). This value is
lower that reported for the corresponding bond in the DBMP2
dimer (3.6 mdyn/Å)46 and ethane (4.5 mdyn/Å),58 but it is
significantly larger than the values determined for the longest
C(sp3)−C(sp3) bond reported to date (1.806 Å, 1.08 mdyn/
Å)56 and for a multicenter bond in a dianionic tetracyano-
ethylene dimer (0.45 mdyn/Å).59 The force constant
calculated for 42 would thus correspond to a bond of medium
strength, which is however weaker than conventional C(sp3)−
C(sp3) bonds. These theoretical predictions are in line with the
tentative assignment of the C−C bond stretching mode at 887
cm−1 observed in the solid-state 532 nm Raman spectrum of 42
(Figures S15 and S16). This value is indeed smaller than
typically observed for C−C stretching modes (ca. 1000 cm−1)
but markedly exceeds the uniquely low value of 587 cm−1

recorded for the longest C−C bond.56

For 42, ΔESCC energies are dominated by a large stabilizing
dispersion contribution ΔEdisp (ca. −105 kcal/mol), which is
approximately constant for all three dimers. The solvation
contribution ΔEsolv is in each case destabilizing (ca. +40 kcal/
mol). While dispersion and solvation effects may be difficult to
separate computationally,60 the large positive ΔEsolv is

Table 1. Energetics of Dimerization for 42

energya S0-σ-42 T1-σ-42 T1-π-42

(kcal/mol) total ΔEX
defb ΔEX

intb total total

ΔESCC −55.6 57.2 −112.9 −29.8 −29.1
ΔEdisp −104.8 −0.5 −104.3 −105.5 −105.5
ΔEsolv 40.5 4.1 36.3 39.9 44.0
ΔEel 8.7 53.5 −44.9 35.7 32.4
ΔG298 −20.8 0.6 −0.2
C−C (Å) 1.602 1.601 3.029

aGFN2-xTB energies (CH2Cl2 solvation) relative to 4
•. ΔEel = ΔESCC

− ΔEsolv − ΔEdisp, where ΔESCC, ΔEsolv, and ΔEdisp are respectively
the self-consistent charge, solvation, and dispersion energy.
bDeformation and interaction energy components; X corresponds
respectively to SCC, disp, solv, and el.

Scheme 3. Reference Dissociation Process

Figure 6. GFN2-xTB relaxed potential energy scans for 42 and 82
performed along the C(sp3)−C(sp3) bond length coordinate on
singlet and triplet hypersurfaces. Energies are given relative to 4• and
8•, respectively.
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consistent with partial desolvation required to form a close
contact between the π surfaces of the reacting 4• radicals. The
remaining contribution, ΔEel = ΔESCC − ΔEsolv − ΔEdisp,
combines other energetic effects, in particular those of covalent
bonding, geometrical distortion, and Pauli repulsion between
the monomers. Importantly, ΔEel values are positive for S0-σ-42
and its triplet counterparts, implying that the observed
stabilization of the dimer is provided by dispersion forces
(cf. refs 61−65). For 82, dispersion remains the dominant
stabilizing effect, but the ΔEel contribution takes significantly
lower values and becomes negative for S-σ. These large
dispersion contributions help explain why 42 is resistant to
thermal dissociation, even though it apparently contains a
weaker C−C bond than the thermally cleavable DBMP2
dimer.46

A deformation−interaction (ΔEdef/ΔEint) analysis66 per-
formed for the S-σ dimers (Tables 1 and S1) showed that
while the total dimerization energy ΔESCC for 42 and 82 is
similar (−56 vs −57 kcal/mol, respectively), the deformation
component ΔESCC

def in the former system is larger (+57 vs +41
kcal/mol). This increase is balanced by a more negative
interaction component ΔESCC

int (−113 vs −98 kcal/mol). As
expected, ΔESCC

def of each system is dominated by the
electronic contribution, whereas ΔESCC

int results from
balancing electronic, dispersion, and solvation effects. In 42,
dispersion dominates the interaction energy component
(ΔEdisp

int = −104.3 kcal/mol), whereas in 82, the interaction
energy originates primarily from electronic effects.
Gibbs energies ΔG298 calculated for the stationary points

located in the above relaxed scans indicated high thermody-
namic stability of the 42 σ-dimer on the S0 surface (−20.8 kcal/
mol) and lack of stabilization for the triplet dimers (+0.6 and
−0.2 kcal/mol for T1-σ-42 and T1-π-42, respectively). A
qualitatively similar picture was predicted for the reference
system 82, both using GFN2 and a full DFT treatment
(PCM(CH2Cl2)/ωB97XD/6-31G(d,p), Table S1). The en-
ergies calculated for 42 and the apparent lack of bond-breaking
barrier may be responsible for the observed stability of the
dimer toward thermal cleavage. A potential mechanism of
photodissociation67 may therefore involve initial excitation of
S0-σ-42 to the S1 state, followed by intersystem crossing (ISC)
to the T1 surface (Scheme 2). On the triplet surface, the
weakly bound dimers T1-σ-42 and T1-π-42 may either
dissociate into free 4• radicals or recombine into 42 via
another ISC process. The resulting photostationary state
appears to strongly favor dissociation, according to our
experimental data. Recombination of the 4• radicals is thought
to involve a reverse mechanistic sequence, with intermediate
formation of triplet dimers followed by a rate-limiting ISC to
the S0 surface.

■ CONCLUSIONS
This work describes the synthesis and properties of a
heteroaromatic radical obtained by peripheral expansion of a
naphthalimide-fused hexapyrrolohexaazacoronene. It exhibits
extensive spin delocalization in its 139-electron π system and
spontaneously dimerizes into a stable σ-dimer, which is
susceptible to photochemical rather than thermal cleavage.
Such a selectivity is untypical: dissociation of σ-dimers in
solution is usually induced thermally2−10,27,28 or, occasionally,
by each of these stimuli.68 Herein, the switching between the
radical and its σ-dimer relies on homolytic rupture of a weak
C(sp3)−C(sp3) bond but is controlled by a balance between π-

conjugative stabilization, internal strain,69 and nonbonding
interactions. The latter contribution has a decisive influence on
the overall energetics of dimer formation and cleavage, which
can be viewed as a unique case of a dispersion-controlled
photoprocess.70,71 Reversible dimerization of giant π-con-
jugated radicals such as the one described herein provides an
opportunity to manipulate a single electron spin in a nanoscale
molecular object and may be used to design magnetically
active nanocarbon systems.
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Technologii, 54-066 Wrocław, Poland
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Juan Casado − Departamento Quıḿica Fıśica, Universidad de
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Grimme (Universitaẗ Bonn) for providing the xTB code and
helpful discussions. J.C. (Maĺaga) acknowledges financial
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(19) Lü, J.-M.; Rosokha, S. V.; Kochi, J. K. Stable (Long-Bonded)
Dimers via the Quantitative Self-Association of Different Cationic,
Anionic, and Uncharged π-Radicals: Structures, Energetics, and
Optical Transitions. J. Am. Chem. Soc. 2003, 125 (40), 12161−12171.
(20) Small, D.; Zaitsev, V.; Jung, Y.; Rosokha, S. V.; Head-Gordon,
M.; Kochi, J. K. Intermolecular π-to-π Bonding between Stacked
Aromatic Dyads. Experimental and Theoretical Binding Energies and
Near-IR Optical Transitions for Phenalenyl Radical/Radical versus
Radical/Cation Dimerizations. J. Am. Chem. Soc. 2004, 126 (42),
13850−13858.
(21) Itkis, M. E.; Chi, X.; Cordes, A. W.; Haddon, R. C. Magneto-
Opto-Electronic Bistability in a Phenalenyl-Based Neutral Radical.
Science 2002, 296 (5572), 1443−1445.
(22) Pal, S. K.; Itkis, M. E.; Tham, F. S.; Reed, R. W.; Oakley, R. T.;
Haddon, R. C. Resonating Valence-Bond Ground State in a
Phenalenyl-Based Neutral Radical Conductor. Science 2005, 309
(5732), 281−284.
(23) Morita, Y.; Suzuki, S.; Fukui, K.; Nakazawa, S.; Kitagawa, H.;
Kishida, H.; Okamoto, H.; Naito, A.; Sekine, A.; Ohashi, Y.; Shiro,
M.; Sasaki, K.; Shiomi, D.; Sato, K.; Takui, T.; Nakasuji, K.
Thermochromism in an Organic Crystal Based on the Coexistence
of σ- and π-Dimers. Nat. Mater. 2008, 7 (1), 48−51.
(24) Kato, K.; Osuka, A. Platforms for Stable Carbon-Centered
Radicals. Angew. Chem., Int. Ed. 2019, 58 (27), 8978−8986.
(25) Balch, A. L.; Noll, B. C.; Reid, S. M.; Zovinka, E. P. Carbon-
Carbon Bond Formation in the Dimerization of (Octaethyloxophlorin
Radical)Nickel(II). J. Am. Chem. Soc. 1993, 115 (6), 2531−2532.
(26) Hummelen, J. C.; Knight, B.; Pavlovich, J.; Gonzaĺez, R.; Wudl,
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