
fnins-15-806325 January 18, 2022 Time: 16:10 # 1

ORIGINAL RESEARCH
published: 20 January 2022

doi: 10.3389/fnins.2021.806325

Edited by:
Mostafa Rahimi Azghadi,

James Cook University, Australia

Reviewed by:
Tommaso Zanotti,

University of Modena and Reggio
Emilia, Italy

Xiaochen Peng,
Georgia Institute of Technology,

United States

*Correspondence:
Tuo Shi

shituo@ime.ac.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 31 October 2021
Accepted: 10 December 2021

Published: 20 January 2022

Citation:
Wei J, Wang Z, Li Y, Lu J, Jiang H,

An J, Li Y, Gao L, Zhang X, Shi T and
Liu Q (2022) FangTianSim: High-Level

Cycle-Accurate Resistive
Random-Access Memory-Based

Multi-Core Spiking Neural Network
Processor Simulator.

Front. Neurosci. 15:806325.
doi: 10.3389/fnins.2021.806325

FangTianSim: High-Level
Cycle-Accurate Resistive
Random-Access Memory-Based
Multi-Core Spiking Neural Network
Processor Simulator
Jinsong Wei1,2†, Zhibin Wang1†, Ye Li1, Jikai Lu1,3, Hao Jiang1,3, Junjie An2,3, Yiqi Li1,
Lili Gao1, Xumeng Zhang4, Tuo Shi1,2* and Qi Liu4

1 Zhejiang Laboratory, Institute of Intelligent Computing, Hangzhou, China, 2 Institute of Microelectronics, Chinese Academy
of Sciences, Beijing, China, 3 School of Microelectronics, University of Science and Technology of China, Hefei, China,
4 Frontier Institute of Chip and System, Fudan University, Shanghai, China

Realization of spiking neural network (SNN) hardware with high energy efficiency and
high integration may provide a promising solution to data processing challenges in
future internet of things (IoT) and artificial intelligence (AI). Recently, design of multi-
core reconfigurable SNN chip based on resistive random-access memory (RRAM) is
drawing great attention, owing to the unique properties of RRAM, e.g., high integration
density, low power consumption, and processing-in-memory (PIM). Therefore, RRAM-
based SNN chip may have further improvements in integration and energy efficiency.
The design of such a chip will face the following problems: significant delay in pulse
transmission due to complex logic control and inter-core communication; high risk of
digital, analog, and RRAM hybrid design; and non-ideal characteristics of analog circuit
and RRAM. In order to effectively bridge the gap between device, circuit, algorithm,
and architecture, this paper proposes a simulation model—FangTianSim, which covers
analog neuron circuit, RRAM model and multi-core architecture and its accuracy is at
the clock level. This model can be used to verify the functionalities, delay, and power
consumption of SNN chip. This information cannot only be used to verify the rationality
of the architecture but also guide the chip design. In order to map different network
topologies on the chip, SNN representation format, interpreter, and instruction generator
are designed. Finally, the function of FangTianSim is verified on liquid state machine
(LSM), fully connected neural network (FCNN), and convolutional neural network (CNN).

Keywords: spiking neural network (SNN), RRAM (memristor), simulator, analog circuits, SystemC

INTRODUCTION

The success of artificial intelligence technology represented by deep neural network (DNN) today
depends heavily on the development of big data and chip technology. However, the problem of
DNN lies in its massive parameter volume, leading to high energy consumption. Therefore, people
are exploring energy-efficient artificial intelligence algorithms. Inspired by the characteristics of
biological brain, such as asynchrony, and being event driven, spiking neural networks (SNNs) are
considered to have the potential to realize ultra-low power intelligent computation (Maass, 1997).
At present, SNNs can achieve similar results with DNNs in some small-scale applications, based on

Frontiers in Neuroscience | www.frontiersin.org 1 January 2022 | Volume 15 | Article 806325

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.806325
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.806325
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.806325&domain=pdf&date_stamp=2022-01-20
https://www.frontiersin.org/articles/10.3389/fnins.2021.806325/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-806325 January 18, 2022 Time: 16:10 # 2

Wei et al. RRAM-Based SNN Simulator

various training algorithms, e.g., BP (Esser et al., 2015),
spike-timing-dependent plasticity (STDP) (Neftci et al., 2014),
and network conversion (Diehl et al., 2015). In addition,
compared with DNN, SNN is better at processing spatiotemporal
information. For example, the performance of SNN in tasks, e.g.,
dynamic gesture recognition and language feature extraction,
is equivalent to DNN with the same structure (Blouw et al.,
2019). In order to run SNN efficiently, dedicated chips with
asynchronous operation and being event driven have been widely
studied. In the early stage of SNN chip research, analog circuit
was used to realize a neuron model (Silver et al., 2007) and
cooperate with digital communication systems, such as network-
on-chip (NoC) to realize the chip (Boahen, 2006; Schemmel
et al., 2008; Qiao et al., 2015). Although this chip runs SNN
with low power consumption, its function is very limited,
and it is mostly used to study a small-scale brain model. In
recent years, people use advanced semiconductor technology
and advanced asynchronous circuit design technology to realize
large-scale integrated SNN chips. These chips not only have
high energy efficiency but can also realize complex neuron
models and a variety of synaptic plasticity. Good results have
been obtained in the fields of handwritten character recognition,
dynamic vision sensor (DVS) gesture recognition, and small
sample gas classification (Akopyan et al., 2015; Davies et al., 2018;
Deng et al., 2020).

However, due to the limitations of complementary metal oxide
semiconductor (CMOS) technology and circuit design methods,
both the analog–digital hybrid SNN chip and SNN chip based on
asynchronous circuit are far from the scale of biological brain.
To further increase the energy efficiency and integration of the
chip, researchers have focused on emerging RRAM (Strukov
et al., 2008). At present, small-scale SNN based on RRAM array
has been verified (Fang et al., 2020; Lu et al., 2020; Shi et al.,
2021). Owing to its multi-level resistance states, RRAM is also
used to realize the SNN chip with in situ learning ability (Jo
et al., 2010). However, current RRAM-based SNN chips are
small-scale and designed for fixed network structures. It is still
challenging to realize large-scale reconfigurable chips based on
RRAM. The origins are the non-ideal characteristics of RRAM,
and the complexity of cross-level design and optimization
(device-circuit-architecture-algorithm) restricts the performance
of networks. Solving the above problems not only depends on the
continuous improvement of the RRAM device and circuit design
but also heavily depends on the development of simulation tools
for cross-level design and optimization. In order to break the
barrier between SNN algorithm, hardware architecture, circuit
and RRAM devices, some simulation tools have been developed,
such as MNSIM for the behavior level modeling of device and
circuit (Xia et al., 2017). The simulator can estimate the area,
power consumption, and delay of the RRAM chip according
to the actual process, but this work lacks the research on the
architecture and algorithm levels. NeuroSim and some works
based on it (Chen et al., 2018; Peng et al., 2019; Wu et al.,
2019) and Neurosim+ (Chen et al., 2017) provide modeling from
device level to circuit and algorithm level. However, the tool
directly jumps from circuit level to algorithm level. Although
it complements the discussion of algorithm, it lacks the ability

to analyze chip architecture. PIMSim (Xu et al., 2018) provides
a tool to understand configurable PIM. It supports a variety of
PIM models, supports instruction execution, and simulates the
PIM system from the system architecture level. However, these
works still have two disadvantages. One is the lack of support
for SNN algorithm, and the other is the inability to carry out
clock cycle level simulation, so it is impossible to explore the
impact of pulse transmission delay on the network. For some
NPU simulators, the software and hardware collaborative design
language SystemC (Panda, 2001) is used to model the circuit
architecture, and system architecture simulation at the clock level
is realized, such as NN-Noxim (Chen and Wang, 2018), Noxim
(Catania et al., 2015), etc. However, SNN and RRAM are not
included in these works.

According to the requirements of designing large-scale
reconfigurable SNN chip based on RRAM, we provide a simulator
FangTianSim that can conduct behavior level modeling for
RRAM-based SNN architecture. The simulator can conduct
behavior level modeling for NoC, spiking neurons, and RRAM
arrays. Operation speed, delay, and function can be simulated in
the digital domain with accuracy to the clock cycle level. This
tool can save a lot of time and simulation resources and guide
chip design effectively. The contributions of this paper mainly
include a clock cycle level simulator for RRAM-based SNN
chip architecture, power consumption analysis method based on
actual process, and network parsers and instruction generation
tools for a variety of SNN architectures.

SPIKING NEURAL NETWORK AND
HARDWARE ARCHITECTURE

Spiking Neural Network
In SNN, spiking neurons with integration and fire characteristics
are used as nodes in the network, and synapses with weight are
used to link neurons. The pulse signal generated by neurons
is the main medium of network information transmission. At
present, the mainstream neuron models include Hodgkin-Huxley
(HH) (Abbott, 1999), leaky integrate-and-fire (LIF) (Hodgkin
and Huxley, 1952), Izhikevich (IZH) (Izhikevich, 2003) model,
etc. Considering the computational complexity and accuracy of
neurons, most neurons in SNN adopt the LIF model. The LIF
model is shown in the following formula:

dV
dt
= γV + u

spike =
{

1 V > Vth
0 V ≤ Vth

where V denotes membrane potential, t denotes time, γ denotes
the leakage rate, u denotes input and Vth denotes fire voltage.
Due to the use of sparse asynchronous pulses for information
processing, SNN has three advantages: (1) the bandwidth and
energy consumption required to transmit binary pulses are
far less than the continuous value of multiple bits; (2) when
calculating a single bit input, neurons only need to add the

Frontiers in Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 806325

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-806325 January 18, 2022 Time: 16:10 # 3

Wei et al. RRAM-Based SNN Simulator

synaptic weight to the membrane potential, while DNNs need to
multiply and accumulate the input and weight; (3) SNN adopts an
event-driven approach. When there is no input pulse, the neurons
are in a resting state, while the neurons in DNN need to be in a
working state all the time.

Hardware Architecture
The main body of SNN chip is usually composed of spiking
neuron circuit, synaptic memory, and flexible on-chip
communication system. In order to make full use of the
advantages of SNN, the NoC system is often used to realize the
interconnection between neurons. The introduction of RRAM
synapse and analog neuron circuit into the design of the SNN
chip can further improve integration and energy efficiency. The
SNN chip architecture simulated by FangTianSim consists of 63
SNN cores and a microcontroller. Each core is composed of 32
analog neurons, 8 K RRAM dendrites and a set of SRAM axons,
as well as digital control circuits. The simulated neurons adopt
the LIF model to support positive and negative weights; the
output of 32 neurons is converted into an address signal through
an address event representation (AER) circuit. The SNN chip
adopts mesh NoC. Mesh NoC is compatible with clock-gate and
is relatively simple, leading to low area and power consumption.
Therefore, it is very suitable for SNN chips. The chip architecture
is shown in Figure 1. The neuron circuit adopts the analog LIF
neuron circuit. The RRAM array with 2T1R structure is used to
store synaptic weights. The mirror current source circuit is used
to make the neuron support the output current of RRAM cells
representing positive and negative weights. The common mode
feedback circuit of the differential amplifier is used to make the
neuron support the bidirectional leakage circuit to ensure the
leakage mode and make the membrane potential tend to the
resting potential.

In addition to digital circuits, there are analog neuron circuits
and RRAM synapses in the chip. The scale and design complexity
of the chip are very high. Therefore, FangTianSim is developed to
save resources and time in chip design. The simulator simulates
the inference process of the network; in this process, the influence
of read noise is added as non-idealities to better simulate the
real situation in hardware. According to the non-idealities of the
RRAM used, the noise in the simulator is mainly divided into
two parts, the first part is the noise which includes thermal noise
(Gaussian distribution), shot noise (Poisson distribution), and
RTN noise (Poisson distribution) added on the RRAM arrays;
the second part is the noise added on the neuron threshold
(Gaussian distribution).

SIMULATOR DESIGN

Difficulties and Solutions
In the SNN algorithm running in the software, the time when
the pulse generated by the neuron of each layer reaches the
neuron of the next layer is synchronous, i.e., the pulse reaches
the next layer immediately after the pulse is generated (or arrives
at the next unit simulation time). However, in the chip, the
pulse generated by the first layer needs to be transmitted to

the next layer through a router. As a result, the delay of pulse
transmission between different cores is different, which is related
to the Hamming distance between the two cores. In addition,
because the pulse generated by multi-channel neurons needs to
be converted into serial signal through the AER circuit, a pulse
transmission delay will also be generated in this step. When the
router is congested, the pulse transmission delay is more difficult
to estimate; therefore, the SNN algorithm run by hardware will
be different from that run by software. Analog neurons have a
time constant controlled by voltage or current, which will control
the speed of leakage, and this constant cannot be accurately
quantified in the circuit (accurate quantization or control of time
constant requires more complex circuits, which will consume
a lot of area and power consumption, so it is inconvenient to
use in analog neurons). Since the SNN chip based on analog
neurons does not control the synchronization of pulses, whether
the propagation delay of pulses affects the results of the neural
network must be considered when designing the chip and the
analysis of this impact will be particularly important. Due to
the high complexity of the SNN chip, it is necessary to design
a simulator for chip design, and consume less resources and
running time to verify the function and performance of the whole
chip. In particular, the simulation speed must be fast enough to
simulate the actual use case of the SNN algorithm in a limited
time, and the simulation must accurately reflect the pulse delay
caused by the actual chip operation. In order to implement the
simulator described above, this section proposes a chip system
simulator FangTianSim based on C++ and SystemC. In order to
cooperate with the operation of the simulator, a simple tool chain
is designed for the chip.

Simulator Architecture
Rational division of software and hardware functions is an
important work in designing complex chips. When designing
the SNN chip, the first thing is to analyze the SNN architecture:
As shown in Figure 2, the structure of neural network is
hierarchical, and neurons from adjacent layers are interconnected
by synapses. According to the algorithm workflow code, the
SNN algorithm runs according to cycle of simulation time
in software operation. Each cycle represents a unit time of
neural network operation (called unit time window), and the
subsequent cycles are network level, pre neuron and post synaptic
neuron, and the input current and simulation unit of each
neuron are calculated in turn. When the hardware runs the
network, the counter is used to control the time length of the
unit time window. The levels of the network are assigned to
different cores, and the interconnection between cores is used
to represent the interconnection of different levels. Current
calculation and membrane potential calculation are handed over
to memristor array and analog neuron, respectively. According
to the above discussion, the network task is divided into two
parts. Software part: (1) network construction; (2) network
training—the network used in the simulation was trained with
back propagation algorithms (BP) (Esser et al., 2015; Zhang
et al., 2015); (3) trained network structure and weight according
to SNN_ JSON format storage; (4) using the specific tool of
chip to convert the network structure; (5) weight into hardware

Frontiers in Neuroscience | www.frontiersin.org 3 January 2022 | Volume 15 | Article 806325

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-806325 January 18, 2022 Time: 16:10 # 4

Wei et al. RRAM-Based SNN Simulator

FIGURE 1 | SNN chip architecture. The SNN cores in the simulator consists of analog neurons, RRAM dendrites, SRAM axons and digital control circuit. The output
of the neuron is converted into an address signal by an address event representation (AER) circuit. The entire SNN chip structure consists of 63 such SNN cores and
a RISC-V instruction set microcontroller.

recognizable instructions; and (6) the socket of the on-chip
network, and the input pulse is also converted into pulse
socket through the tool chain. Hardware part: (1) network
hardware connection (NoC-based interconnection), (2) input
current calculation (in memory calculation based on RRAM), and
(3) neuron dynamic change (neuron membrane potential, action
potential, refractory period processing).

According to the above division, the complete tool chain
and simulation platform are shown in Figure 3. The tool chain
is controlled by SNN_JSON, JSON interpreter, and instruction
generator; SNN_JSON and SNN structures that meet the
hardware constraints of this chapter can be represented by JSON
in the tool chain. The interpreter constructs a graph model that
can be recognized by the tool chain, which is described by C++
classes, and the instruction generator generates the machine
code that can be recognized by the hardware. The machine
code is transmitted to the simulator through the instruction
distribution module. Developed according to SystemC, the
simulator accurately simulates the timing, logic, and delay of
hardware through a clock-based time trigger mechanism (CLK
EDI). In addition, the model of analog circuit and RRAM circuit
is designed with self-defined physical time trigger mechanism

(physical EDI). The physical EDI used in this section is a
higher-speed CLK EDI. The RRAM model adopts the statistical
model actually tested in our laboratory (Lu et al., 2020) and the
basic resistance plus random noise. The model of analog circuit
is the behavior model of analog circuit, and the circuit voltage
change rate of the critical path is obtained with simulation. The
PDK of the module is SMIC180, and the Ron/Roff of RRAM is
10 K�/100 K�; read voltage and read pulse-width of RRAM
are configurable and the defaults are 0.1 V and 200 cycles
(50 MHz). The parameters of SRAM are obtained by querying in
SMIC IP according to PDK; the default of PDK is SMIC180. By
default, the power consumption of SRAM read/write operations
is 7.38 and 9.54 µJ, respectively, and the power consumption of
pulse generation is 0.0078 µJ. The above model can accurately
simulate the hardware running speed, delay, and function in
the digital domain, in which the delay and speed can be
accurate to each cycle; However, the model in the simulation
domain can only simulate the function and part of the noise.
As shown in Figures 3A,B, the tool chain for the simulator
(software system) can be directly used for subsequent chip testing
(hardware system). In addition to the simulation of function
and timing, power analysis is also added to the simulator, which

Frontiers in Neuroscience | www.frontiersin.org 4 January 2022 | Volume 15 | Article 806325

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-806325 January 18, 2022 Time: 16:10 # 5

Wei et al. RRAM-Based SNN Simulator

FIGURE 2 | Software and hardware for SNN. The software part mainly includes the description and algorithm of neural network, and the hardware part mainly
includes NoC-based interconnection and neuron dynamic change, which interact with each other through specific tool chain.

FIGURE 3 | (A) Software system. (B) Hardware system. The software system and hardware system share a set of tool chain, which is composed of SNN_JSON,
JSON interpreter and instruction generator. After the tool chain generates a machine code, it is transmitted to the system through the instruction delivery module.

can analyze the read–write power consumption of SRAM, read–
write power consumption of RRAM, digital domain and analog
power consumption when the neural network is running. The
simulator evaluates the power consumption of each part by
counting the number of different operations in the network
inference process. These include SRAM write/read operations,
operations in which neurons accumulate charges and generate
a pulse, and operations in which current flows through cells in
RRAM. The power consumption of SRAM write/read operation
is obtained by querying the SMIC IP, the power consumption of
pulse generation is obtained by neuron circuit simulation, and
the power consumption of RRAM is obtained by the calculation
of current and conductance in specific cells within the time
slice. The power consumption analysis of digital domain and
analog domain is calculated by the average power consumption
provided by traditional EDA tools. The power consumption of

SRAM and RRAM can be accurately simulated according to the
operation times of SRAM and RRAM by the simulator. The main
input parameters of the simulator include network structure,
mapping structure, weight value, number and size of RRAM
arrays, specifications of RRAM and SRAM and on-chip buffer
size. The outputs of the simulator include timing, data flow,
and energy of each module and the entire system accurate to
each cycle.

MAPPING NEURAL NETWORK TO CHIP

Mapping Method
There are usually three kinds of connection relations of SNN:
FCNN, CNN, and recurrent neural network (RNN). The
connection mode of SNN is similar to that of DNN, so the

Frontiers in Neuroscience | www.frontiersin.org 5 January 2022 | Volume 15 | Article 806325

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-806325 January 18, 2022 Time: 16:10 # 6

Wei et al. RRAM-Based SNN Simulator

FIGURE 4 | (A) Convolution kernels. (B) Convolution process. (C) The mapping of convolution in memristor array. One 2 × 2 convolution kernel strides successively
on the 3 × 3 input feature image, and outputs a 2 × 2 feature image; the convolution layer can be mapped to RRAM but wastes a lot of area.

representation format for SNN can be designed with reference
to the above format. Therefore, FangTianSim can be used to
analyze the operation of typical SNN structures in the hardware
architecture. In this chapter CNN is taken as an example
(Figure 4). The mapping of other SNN structures can be found
in Supplementary Materials, where Supplementary Figure 1
corresponds to two-layer FCNN structure and Supplementary
Figure 2 corresponds to RNN structure.

In FangTianSim, all these mapping structures are described
by the SNN_JSON file: it includes two major classes: Reglist
and Layer. Reglist stores the parameters of each core, including
SW, PW, ref, reft, window, step, debug, and other members;
Layer is used to define the hierarchy of neural network. This
class can be defined based on the neural network structure on
algorithm or hardware. The layer includes type, core, neuron and
bottom_core and bottom_synapse, and other information. Type
refers to the type of nerve and can be “LIF” or “IF”; core refers
to an independent layer in the corresponding hardware core or
algorithm. Neuron defines the number of neurons, which can be
a single number to represent the number of neurons. A list is
specific to the label of each neuron, and bottom_core refers to
the label of the next layer neural network or the next hardware
core pointed to by this layer; bottom_ synapses refers to the label
of dendrites in the next hardware core, which can be a number or
a list. An SNN_JSON example is shown in Table 1.

TABLE 1 | Configuration list of SNN_JSON.

Class Parameter Value Comment

RegList Sw 4 Low level time of input pulse

Pw 14 High level time of input pulse

REF 1 Types of refractory periods

REFT 0 The length of the refractory
period

timer_window 200 Time window size

timer_step 2 Time steps

output_core 0 The label of output core

Layer1 Type LIF Type of neuron

Core 0 An independent layer in the
corresponding hardware core

Neuron 0–31 Number of neurons

bottom_core 1 The label of the next layer

bottom_synapse 0–31 The label of dendrites in the
next hardware core

Layer0 Type LIF Type of neuron

Core 1 An independent layer in the
corresponding hardware core

Neuron 0–31 Number of neurons

bottom_core 4 The label of the next layer

bottom_synapse 32–63 The label of dendrites in the
next hardware core

Frontiers in Neuroscience | www.frontiersin.org 6 January 2022 | Volume 15 | Article 806325

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-806325 January 18, 2022 Time: 16:10 # 7

Wei et al. RRAM-Based SNN Simulator

Convolutional Neural Network
Figure 4 shows the mapping of CNN on the SNN chip. A 2 × 2
convolution kernel (Figure 4A) is translated successively in the
3 × 3 input feature image. Each translation multiplies and adds
the convolution and covered feature image with the weight of
the convolution kernel and finally outputs a 2 × 2 feature
image (Figure 4B). The mapping of CNN in the memristor
array is shown in Figure 4C; it consists of flattening the input
image into a one-dimensional input array and flattening the
neurons with output characteristics into a one-dimensional
output neuron array. Then, a column of synapses connected to
each neuron is corresponding to the calculation of convolution
operation, such as the N00 neuron; the synapse corresponding
to I00 is configured as W00, the synapse corresponding to
I01 is configured as W01, the synapse corresponding to I10
is configured as W10, the synapse corresponding to I11 is
configured as W11, and other synapses are configured as 0. Other
neurons, by analogy, have similar configuration methods. As
can be seen, the above configuration method will waste a lot of
RRAM, but due to the synaptic array of the crossbar structure
and the adoption of analog neurons (the analog neuron circuit
needs to connect the analog neurons directly with the synaptic
array, and the configurable analog interconnection method needs
to occupy a very high area and power consumption), this

configuration method is difficult to improve, However, due
to the high density of memristors, 3D memristor arrays can
even be integrated in the future. These defects can be made
up by using the synaptic array of memristors. In addition,
through the optimization algorithm, we can try to design a
CNN suitable for crossbar structure and also optimize the
defects caused by these mapping methods. A CNN suitable for
crossbar will be introduced in the later chapter to recognize
handwritten characters.

RESULTS

In this summary, LSM, FCNN, and CNN are verified in the
simulator and the simulation results are shown in Table 2.

Liquid State Machine
The structure of LSM (Zhang et al., 2015) network is composed of
512 neurons and arranged into a 16× 4× 8 (z= 16, x= 4, y= 8)
cube. The neurons of each layer in the z-axis direction of the cube
correspond to a core. Since the LSM network is used to recognize
digital speech, the data set adopts free spoke digital dataset
(FSDD). As we know from the above, the recognition of sound
signals requires operations such as filtering and coding, so it is

TABLE 2 | Simulation results of FangTianSim.

Network Data set Latency Total power
consumption

Power consumption
(pulse)

Power consumption
(RRAM)

Power consumption
(SRAM)

Recognition
accuracy

LSM FSDD 5.6 ms 5.74 mJ 34.4 µJ 1.4 µJ 5.7 mJ 83%

FCNN MNIST 48.5 µs 9.02 µJ 0.249 µJ 0.001 µJ 8.77 µJ 82%

CNN MNIST 76 µs 12.45 µJ 0.95 µJ 1.4 µJ 10.01 µJ 95%

FIGURE 5 | CNN for MNIST. This is the operation process of a three-layer network on the chip. (A) In the first layer, the convolution results generated by each slide
are put into a separate core. (B) The second layer convolved the data of four adjacent cores simultaneously. Finally, all the generated data is routed to one core for
full connection process.

Frontiers in Neuroscience | www.frontiersin.org 7 January 2022 | Volume 15 | Article 806325

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-806325 January 18, 2022 Time: 16:10 # 8

Wei et al. RRAM-Based SNN Simulator

written in MATLAB with a variety of built-in wave recorders, and
generates an SNN_ JSON file. The experimental results show that
the code written by MATLAB needs 104 ms to recognize a sound
signal (filtering and coding are not included). The simulation
results of the simulator show that if it runs under our simulator,
it takes 5.6 ms and consumes 5.74 mJ energy, including 34.4 µJ
for pulse, 1.4 µJ for RRAM, and 5.7 mJ for SRAM.

Two-Layer Fully Connected Neural
Network
The two-layer FCNN structure: the input layer of the first layer
is divided into four blocks, which are input into four different
cores and form an intermediate layer. The neurons in the middle
layer are input into 10 neurons in the output layer. The input
to the intermediate layer and the output layer are also offset
pulses (and bias); the schematic is in Supplementary Figure 3.
The final simulation results show that the SNN written by
Pytorch runs a use case for 400 µs, and the recognition rate
is 95.25%. The program runs using Tesla V100 GPU launched
by NVIDIA. The simulation results of FangTianSim show that
the time for the hardware to run a use case is 48.5 µs, and the
generated energy consumption is 9.02 µJ, of which the pulse
energy consumption is 0.249 µJ, the RRAM energy consumption
is 0.001 µJ, and the SRAM energy consumption is 8.77 µJ. Due
to the excessive number of MNIST data sets, the recognition
rate of the whole data set is not verified in FangTianSim, but
for the 20 randomly sampled use cases, The recognition rate of
FangTianSim running the network model is similar to that of
Pytorch running the network model.

Convolutional Neural Network
As shown in Figure 5, the neural network based on convolution
has a three-layer neural network (Esser et al., 2015), and the
first layer adopts kernel = 16 step = 12; the second layer adopts
kernel = 2, step = 1; the third layer is 10 output neurons. The
algorithm is implemented by Pytorch and run by Tesla V100
GPU. The operation results show that the recognition rate at the
retest level can reach more than 96%, and the average time to
run a case is 126 µs. The simulation results of FangTianSim show
that the time for the hardware to run a use case is 76 µs, and the
generated energy consumption is 12.45 µJ, including 0.95 µJ for
pulse, 1.4 µJ for RRAM, and 10.01 µJ for SRAM.

Performance
According to the measured results, it takes about 2 min and
50 s for FangTianSim to run the two-layer FCNN designed
in this section, while it takes about 15 min and 47 s for the
verilog compiled simulator (VCS) software provided by Synopsys
to simulate the chip (also running the two-layer FCNN). As
shown in Table 2, it can be concluded that the running time of
FangTianSim is shorter than that of accurate simulation through
VCS. Therefore, using FangTianSim proposed in this work for
chip architecture verification can effectively save simulation
time, but accurate logic circuit simulation and analog circuit
simulation still need to rely on professional simulation tools, such
as VCS and SPICE.

SUMMARY

FangTianSim is a specific simulator based on specific architecture
written by SystemC. It can realize clock-level simulation
through event trigger mechanism. Through FangTianSim, one
can quickly and accurately obtain the operation of different
neural networks in the hardware architecture and use it to
analyze and optimize the hardware architecture. FangTianSim
can count the number of pulses, routing load, SRAM read–write
frequency and RRAM read–write frequency. Moreover, because
FangTianSim has clock-level simulation accuracy, the impact
of pulse transmission delay on SNN can be estimated through
FangTianSim. In addition, combined with the actual process, the
power consumption of the architecture can be analyzed. In the
future, a more accurate RRAM model and analog neuron model
can be introduced into FangTianSim to analyze the impact of
more uncertainty of RRAM and analog circuit on SNN.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

JW, ZW, and TS conceived the idea for the study and wrote the
manuscript. JW, ZW, YL, HJ, JL, and JA developed the software.
YQL and LG implemented the algorithms. JW, ZW, XZ, TS,
and QL discussed about the results and analysis. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Key R&D Program
of China under Grant No. 2018AAA0103300, the National
Natural Science Foundation of China (NSFC) under Grant
Nos. 61821091, U20A20220, 61825404, 61732020, and 61804171,
the Major Scientific Research Project of Zhejiang Lab under
Grant No. 2019KC0AD02, and the Strategic Priority Research
Program of the Chinese Academy of Sciences under Grant
No. XDB44000000.

ACKNOWLEDGMENTS

We thank Chunmeng Dou and Chixiao Chen for many useful
discussions and technical supports.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2021.
806325/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 8 January 2022 | Volume 15 | Article 806325

https://www.frontiersin.org/articles/10.3389/fnins.2021.806325/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.806325/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-806325 January 18, 2022 Time: 16:10 # 9

Wei et al. RRAM-Based SNN Simulator

REFERENCES
Abbott, L. F. (1999). Lapicque’s introduction of the integrate-and-fire model

neuron (1907). Brain Res. Bull. 50, 303–304.
Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aided design Integr.
Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. (2019). “Benchmarking
keyword spotting efficiency on neuromorphic hardware,” in Proceedings of the
7th Annual Neuro-Inspired Computational Elements Workshop, Albany NY,
1–8. doi: 10.3389/frai.2021.568384

Boahen, K. (2006). “Neurogrid: emulating a million neurons in the cortex,” in
Proceedings of the International Conference of the IEEE Engineering in Medicine
and Biology Society, New York, NY. doi: 10.1109/IEMBS.2006.260925

Catania, V., Mineo, A., Monteleone, S., Palesi, M., and Patti, D. (2015). “Noxim: an
open, extensible and cycle-accurate network on chip simulator,” in Proceedings
of the 2015 IEEE 26th International Conference on Application-Specific Systems,
Architectures and Processors (ASAP), (Toronto, ON: IEEE), 162–163.

Chen, K.-C., and Wang, T.-Y. (2018). “NN-noxim: high-level cycle-accurate NoC-
based neural networks simulator,” in Proceedings of the 2018 11th International
Workshop on Network on Chip Architectures (NoCArc), (Fukuoka: IEEE), 1–5.

Chen, P.-Y., Peng, X., and Yu, S. (2017). “NeuroSim+: an integrated device-
to-algorithm framework for benchmarking synaptic devices and array
architectures,” in Proceedings of the 2017 IEEE International Electron Devices
Meeting (IEDM), (San Francisco, CA: IEEE), 6.1.1–6.1.4.

Chen, P.-Y., Peng, X., and Yu, S. (2018). NeuroSim: a circuit-level macro model
for benchmarking neuro-inspired architectures in online learning. IEEE Trans.
Comput. Aided Design Integr. Circuits 37, 3067–3080.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., et al. (2020). Tianjic: a unified
and scalable chip bridging spike-based and continuous neural computation.
IEEE J. Solid State Circuits 55, 2228–2246. doi: 10.1109/JSSC.2020.2970709

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-
classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in Proceedings of the 2015 International Joint Conference on Neural
Networks (IJCNN), (Killarney: IEEE), 1–8.

Esser, S. K., Appuswamy, R., Merolla, P. A., Arthur, J. V., and Modha, D. S.
(2015). “Backpropagation for energy-efficient neuromorphic computing,” in
Proceedings of the 28th International Conference on Neural Information
Processing Systems, Vol. 1, (Montreal, QC: MIT Press).

Fang, Y., Shi, T., Zhang, X., Wu, Z., An, J., Wei, J., et al. (2020). Impact of Ta/Ti
electrodes on linearities of TaO x-based resistive random-access memories for
neuromorphic computing. Sci. China Phys. Mech. 63, 1–6.

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500–544. doi: 10.1113/jphysiol.1952.sp004764

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).
Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett.
10, 1297–1301. doi: 10.1021/nl904092h

Lu, J., Wu, Z., Zhang, X., Wei, J., Fang, Y., Shi, T., et al. (2020). Quantitatively
evaluating the effect of read noise in memristive Hopfield network on solving
traveling salesman problem. IEEE Electron Device Lett. 41, 1688–1691. doi:
10.1109/LED.2020.3021593

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)
00011-7

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2014).
Event-driven contrastive divergence for spiking neuromorphic systems. Front.
Neurosci. 7:272. doi: 10.3389/fnins.2013.00272

Panda, P. R. (2001). “SystemC: a modeling platform supporting multiple design
abstractions,” in Proceedings of the 14th International Symposium on Systems
Synthesis, Montreal, QC, 75–80.

Peng, X., Huang, S., Luo, Y., Sun, X., and Yu, S. (2019). “DNN+NeuroSim: an end-
to-end benchmarking framework for compute-in-memory accelerators with
versatile device technologies,” in Proceedings of the 2019 IEEE International
Electron Devices Meeting (IEDM), San Francisco, CA, 32.35.31–32.35.34. doi:
10.1109/IEDM19573.2019.8993491

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D.,
et al. (2015). A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141. doi: 10.
3389/fnins.2015.00141

Schemmel, J., Fieres, J., and Meier, K. (2008). “Wafer-scale integration of analog
neural networks,” in Proceedings of the 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational Intelligence,
(Hong Kong: IEEE), 431–438. doi: 10.3389/fnins.2013.00160

Shi, T., Wang, R., Wu, Z., Sun, Y., An, J., and Liu, Q. (2021). A review of
resistive switching devices: performance improvement, characterization, and
applications. Small Struct. 2:2000109. doi: 10.1002/sstr.202000109

Silver, R., Boahen, K., Grillner, S., Kopell, N., and Olsen, K. L. (2007). Neurotech
for neuroscience: unifying concepts, organizing principles, and emerging tools.
J. Neurosci. 27, 11807–11819. doi: 10.1523/JNEUROSCI.3575-07.2007

Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. (2008). The missing
memristor found. Nature 453, 80–83. doi: 10.1038/nature06932

Wu, Y. N., Emer, J. S., and Sze, V. (2019). “Accelergy: an architecture-level
energy estimation methodology for accelerator designs,” in Proceedings of
the 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), (Westminster, CO: IEEE), 1–8. doi: 10.1109/ICCAD45719.2019.89
42149

Xia, L., Li, B., Tang, T., Gu, P., Chen, P.-Y., Yu, S., et al. (2017). MNSIM: simulation
platform for memristor-based neuromorphic computing system. IEEE Trans.
Comput. Aided Design Integr. Circuits 37, 1009–1022. doi: 10.1109/TCAD.2017.
2729466

Xu, S., Chen, X., Wang, Y., Han, Y., Qian, X., and Li, X. (2018). PIMSim: a flexible
and detailed processing-in-memory simulator. IEEE Comput. Arch. Lett. 18,
6–9. doi: 10.1109/LCA.2018.2885752

Zhang, Y., Li, P., Jin, Y., and Choe, Y. (2015). A digital liquid state machine with
biologically inspired learning and its application to speech recognition. IEEE
Trans. Neural Netw. Learn. Syst. 26, 2635–2649. doi: 10.1109/TNNLS.2015.
2388544

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Wei, Wang, Li, Lu, Jiang, An, Li, Gao, Zhang, Shi and Liu.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2022 | Volume 15 | Article 806325

https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.3389/frai.2021.568384
https://doi.org/10.1109/IEMBS.2006.260925
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1021/nl904092h
https://doi.org/10.1109/LED.2020.3021593
https://doi.org/10.1109/LED.2020.3021593
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3389/fnins.2013.00272
https://doi.org/10.1109/IEDM19573.2019.8993491
https://doi.org/10.1109/IEDM19573.2019.8993491
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.3389/fnins.2013.00160
https://doi.org/10.1002/sstr.202000109
https://doi.org/10.1523/JNEUROSCI.3575-07.2007
https://doi.org/10.1038/nature06932
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/TCAD.2017.2729466
https://doi.org/10.1109/TCAD.2017.2729466
https://doi.org/10.1109/LCA.2018.2885752
https://doi.org/10.1109/TNNLS.2015.2388544
https://doi.org/10.1109/TNNLS.2015.2388544
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	FangTianSim: High-Level Cycle-Accurate Resistive Random-Access Memory-Based Multi-Core Spiking Neural Network Processor Simulator
	Introduction
	Spiking Neural Network and Hardware Architecture
	Spiking Neural Network
	Hardware Architecture

	Simulator Design
	Difficulties and Solutions
	Simulator Architecture

	Mapping Neural Network to Chip
	Mapping Method
	Convolutional Neural Network

	Results
	Liquid State Machine
	Two-Layer Fully Connected Neural Network
	Convolutional Neural Network
	Performance

	Summary
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

