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Abstract: For patients with hypertension, serious complications, such as myocardial infarction, a
common cause of heart failure, occurs in the late stage of hypertension. Hypertension outcomes can
lead to complications, including death. Hypertension outcomes threaten patients’ lives and need to
be predicted. In our research, we reviewed the hypertension medical data from a tertiary-grade A
class hospital in Beijing, and established a hypertension outcome prediction model with the machine
learning theory. We first proposed a gain sequence forward tabu search feature selection (GSFTS-FS)
method, which can search the optimal combination of medical variables that affect hypertension
outcomes. Based on this, the XGBoost algorithm established a prediction model because of its
good stability. We verified the proposed method by comparing other commonly used models in
similar works. The proposed GSFTS-FS improved the performance by about 10%. The proposed
prediction method has the best performance and its AUC value, accuracy, F1 value, and recall of
10-fold cross-validation were 0.96. 0.95, 0.88, and 0.82, respectively. It also performed well on test
datasets with 0.92, 0.94, 0.87, and 0.80 for AUC, accuracy, F1, and recall, respectively. Therefore,
the XGBoost with GSFTS-FS can accurately and effectively predict the occurrence of outcomes for
patients with hypertension, and can provide guidance for doctors in clinical diagnoses and medical
decision-making.

Keywords: hypertension outcomes; biomedical engineering; feature selection; gain sequence forward
tabu search; disease prediction; XGBoost

1. Introduction

Hypertension outcomes can include serious complications (e.g., cerebrovascular dis-
ease, myocardial infarction, stroke, etc.), and even death, when the condition progresses to
a terminal stage. Hypertension is one of the most common chronic human diseases, and
serious hypertension complications can greatly endanger the life and health of a patient,
causing irreversible damage to the patient’s heart, brain, kidney, and fundus.

Heart complications of hypertension mainly include left ventricular hypertrophy,
angina pectoris, myocardial infarction, and heart failure. Hypertension can damage the
heart blood vessels, mainly the coronary arteries, which will eventually cause atheroscle-
rosis of the coronary arteries. The myocardial blood supply is reduced, causing coronary
heart disease. The brain complications of hypertension mainly include hemorrhagic stroke,
ischemic stroke, hypertensive encephalopathy, etc. Among them, cerebral hemorrhage is
one of the most serious hypertension complications. The kidney complications of hyper-
tension mainly include malignant arterioles nephrosclerosis and chronic renal failure. The
main manifestations of hypertension on the kidneys are proteinuria and impaired renal
function. Some patients tend to have the impaired distal renal tubular concentration in
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the late stage of hypertension. Fundus complications of hypertension include retinal arte-
riosclerosis. Patients may experience decreased vision, bleeding in the fundus, cataracts,
and blindness.

Due to the severe outcomes, patients and doctors are aiming to prevent the occurrence
and progression of hypertension. To effectively reduce the incidence of outcomes, people
must first effectively predict the outcomes and prevent them before they occur. However,
it is still very difficult to detect the threat of outcomes because there are no obvious early
signs of hypertensive complications. In addition, there are few studies on hypertension
outcome predictions; the current research is mainly from a medical perspective and it is
hard to predict.

Computer science and data analysis technology provide new methods and ideas for
the prediction of hypertension outcomes. On the one hand, machine learning, data mining,
and information sciences have been widely used in various fields of medicine and achieved
good results [1–7], providing technical support for this study. On the other hand, the
application of electronic medical records and databases, automatic and electronic medical
equipment, and increasing emphasis placed on medical data by hospitals and medical
institutions all promote the digitalization of medical information. As a result, massive
amounts of medical data on hypertension patients were obtained and preserved, providing
data for this study.

This paper reviews the medical data of hypertension patients provided by the hy-
pertension center of a tertiary-grade A class hospital in Beijing as the research object, and
accurately predicts the occurrence of outcomes by machine learning technology. The pur-
pose of this study was to map the relationships between medical indicators and outcomes
through analyses of hypertension medical data. Therefore, when the medical data of a new
patient was input, the model determined whether the hypertension outcomes occurred
with a certain probability. This was a supervised machine learning classification problem
with two main tasks: (1) to reduce the dimension of medical data characteristics. The
patients’ medical data indices were numerous, with high dimensions, including blood
pressure index, blood routine, urine, routine, etc. From the perspective of data mining, the
high dimension of the data set had irrelevant, redundant information and noise, which
affected the accuracy of the prediction model. From the perspective of a medical appli-
cation, the less indicators needed to predict the outcomes, the less difficult the indicator
acquisition, and the lower the prediction cost. (2) The second task was to establish a
machine learning model to predict hypertension outcomes and evaluate the predictive
performance of the model.

In the first task, this paper constructed the feature selection method based on the
gain sequence forward tabu search (GSFTS) to automatically select the high-quality fea-
ture combination. This method can greatly reduce the data dimension and improve the
prediction accuracy. More importantly, the feature selection method automatically helps
doctors identify the key factors for hypertension outcomes in a large number of medical
indicators. In the second task, this paper adopted XGBoost to realize the prediction of
hypertension outcomes.

Feature selection is the process of selecting a feature subset in a given set of attributes.
The dimensions of medical data are usually very high. It is important to select the best
feature subset to reduce the processing cost, and improve the practicability of the model
constructed from it.

Search strategy and feature evaluation functions are the key steps of feature selection.
The wrapper method uses the classifier performance as the evaluation function of feature
selection. The embedded method combines the process of feature selection with the process
of learning. The filter feature selection method first carries on the feature selection before
training the learner [8,9]. Sequence search strategy refers to adding or deleting one or more
features in each step, and the feature evaluation function is used to determine whether the
deletion or addition is effective.
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Therefore, feature selection is essentially a search optimization problem, and heuristic
algorithms, such as genetic algorithm (GA), simulated annealing algorithm (SA), ant
colony algorithm (ACA), and tabu search (TS), are a few options to solve the combination
optimization problem and find better solutions. Heuristic algorithms were widely used in
feature selection and have achieved good results in medicine [10,11].

XGBoost (Extreme Gradient Boosting) is a commonly used and efficient algorithm
for machine learning, and its effect is remarkable [12–16]. For example, CYe (2018) et al.
constructed a risk prediction model for essential hypertension using electronic health
data and XGBoost algorithm [13]. Y Liu compared four machine learning algorithms
through experiments and proved that XGBoost has advantages in predicting hypertension
outcomes [16].

At present, some scholars have applied machine learning methods to the prediction
of hypertension complications and other related diseases [17–22]. The methods include
random forests, support vector machines, logistic regression, decision trees, etc. We noticed
that these studies focus on the use of traditional and standard machine learning algorithms
to build models, without considering the impact of medical features on the prediction
results, and the efficiency of machine learning under the condition of large-scale patient
data. Therefore, on the one hand, we proposed a new feature selection method to better
explore what medical features could affect the hypertension outcomes. On the other hand,
we used a novel integrated learning method XGBoost to efficiently process large-scale
medical data and meet actual needs. Therefore, the method proposed in this study is
innovate, integrating theory and practice.

This article is divided into four parts. The specific organizational structure is as follows:
Section 1 mainly introduces the research background, literature review, research contents,
and ideas. Section 2 introduces the method and model, and proposes a hypertension
outcome prediction model based on GSFTS-FS and XGBoost. Section 3 is an empirical
study, the results of which are analyzed and discussed to verify the effectiveness of the
proposed method. Section 4 is the conclusion.

2. Materials and Methods
2.1. Medical Data and Preprocessing

The medical data used in this study were obtained from a hypertension center of a
tertiary-grade A class hospital in Beijing. The hospital collected data from 1357 patients
with hypertension from September 2012 to December 2016. The patients come from various
regions in China. The data set were divided into two parts. One part was the medical
examination data and related survey data (i.e., characteristic data) during the patient
admission. The other part involved the data on whether the outcomes occurred in the
patients (i.e., the labeled data: yes/no or 1/0) marked by the hospital staff during the follow-
up period after the patient was discharged. Characteristic data included baseline data, limb
blood pressure, ambulatory blood pressure, echocardiography, heart failure, and other
categories—a total of 132 examination indicators. The outcomes involved complications of
the four target organs: heart, brain, kidney, and fundus. Table 1 shows the name, medical
description, data type, mean value, standard deviation, and data distribution range of
some medical indicators of the data set. Table A1 in Appendix A is a list of all the medical
features that are considered in this study.
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Table 1. Description of partial hypertension examination indicators.

No. Name Description Type Value Range Mean
Value Std.

1 Sex baseline data Categorical Male or Female (1 or 0) / /
2 AGE baseline data Numeric 15–76 38.31 11.42
3 BMI body mass index Numeric 16.32–50.93 27.35 4.19
4 HR heart rate Numeric 49–121 76.28 12.71
5 RYDBPL left arm diastolic pressure Numeric 57–160 98.53 16.8
6 EF ejection fraction Numeric 30–77 64.34 5.81
7 NEUT percentage of neutrophils Numeric 36.1–82.6 60.77 7.89
8 FT4 free thyroxine Numeric 0.32–1.91 1.17 0.188
9 MAUCR urinary microalbumin/creatinine Numeric 0–1081.26 59.56 133.67
10 ESR erythrocyte sedimentation rate Numeric 1–44 7.21 6.89
11 ET endothelin Numeric 0.1–8.47 0.32 0.76
12 RARMSBP right upper limb systolic blood pressure Numeric 100–233 149.05 20.91

13 BAPWVR right brachial-ankle pulse wave conduction
velocity Numeric 7.3–28.6 15.65 3.05

14 HIGHSBP the highest systolic blood pressure Numeric 152.25–242 166.17 20.13

There are impurities in the original data. (1) There are a large number of missing
values in the original data set, and some attributes have missing values of more than 90%.
(2) There are some abnormal values, which exceed the regular distribution interval of the
attribute. (3) For different physical examination indicators, the attribute dimensional units
are different.

The deletion and mean interpolation are used to deal with missing values. Features
and samples with missing values exceeding 50% are directly deleted; for deleted data sets,
missing values are interpolated according to the mean value of attributes. Outliers are
directly deleted. In this study, the maximum and minimum standardization methods are
used to unify the dimensions.

2.2. Gain Sequence Forward Tabu Search Feature Selection (GSFTS-FS)

In this study, we proposed a new medical feature selection (FS) strategy called gain
sequence forward tabu search (GSFTS). GSFTS-FS is a wrapper feature selection method.
It takes the performance of the prediction model as a criterion and objective function to
evaluate the quality of the selected feature subset. It is mainly divided into three steps. First,
XGBoost rank and score feature importance based on the average gain. Second, sequence
forward search based on the ranking is performed to obtain initial feature combinations.
Finally, the selected feature combination is further optimized by tabu search algorithm.
The basic steps of the GSFTS-FS algorithm are shown in Figure 1.

Based on the concept of the GSFTS algorithm, the specific process is as follows:
1. Feature importance ranking.
We first build an initial classifier (XGBoost) and fit the data. We calculate the average

information gain across all split points in XGBoost of each feature to rank all feature
importance. The higher the gain, the greater the feature contribution and the higher
the importance.

2. Initial Solution by gain-based sequence forward search.
The traditional tabu search algorithm has two shortcomings: (1) Strong dependence

on the initial solution. A good initial solution helps the search to reach the optimal solution
quickly, while a bad initial solution often makes the search difficult or impossible to reach
the optimal solution. (2) The running time of the algorithm is greatly affected by the
initial solution. A better initial solution can push the search move closer to the optimal
solution with fewer iterations, thereby reducing the search time. The search with poor
initial solution needs many iterations to get close to the optimal solution, which prolongs
the search time.
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Figure 1. Basic steps of the gain sequence forward tabu search (GSFTS) algorithm.

Aiming to provide a better initial optimal solution for tabu search, we proposed a
new Sequence Forward Search based on feature importance ranking by information Gain
(gain-based SFS). Suppose the feature importance is ranked as (Fa, Fb, Fc . . . ), specific
steps are as follows:

(1) Add the feature Fa, which ranks first in importance, to the feature subset S. The
current subset is S′ = {Fa}, the dimension of the subset is i = 1, and the classification accuracy
on the training set is selected as the evaluation function f.

(2) Calculate the evaluation function score under the current feature subset f (S′).
(3) According to the order of feature importance, the feature with ranking i + 1 is

added to feature subset S′.
(4) Calculate the evaluation function score f (S′) under the current feature subset, if the

score drops, stop searching; if the score rises, repeat step (3).
3. Encoding.
We propose a coding structure as shown in Figure 2 before tabu search. It consists

of three parts. The first part F1, F2, F3 . . . Fn represents each feature in an n-dimensional
medical feature set by a 0/1-bit string. If the feature is in the feature subset, then Fi
(i ∈ [1, n]) is 1, or else it is 0. The second part is the objective function (accuracy, precision,
recall, F1, and AUC), and the third part is the selected classification algorithm. Figure 3 is
an example of an initial solution after encoding.
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4. Neighborhood feasible solution.
It is important to generate a neighborhood feasible solution based on the current

solution. The specific method is to randomly select the feature code in the initial solution.
If the feature number is 0, add the feature (the code is changed to 1); if the feature number
is 1, then delete the feature (the code is changed to 0). Each neighborhood feasible solution
differs from the initial solution by only one feature code. Then a specified number of
neighborhood feasible solutions are generated. The number of feasible solutions in the
neighborhood is the candidate set length. Figure 4 shows the four neighborhood feasible
solutions generated from the initial solution.
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According to selected classifier DT and evaluation function AUC, the optimal solution
of the four feasible solutions in the neighborhood is selected and regarded as the current
optimal solution in the next iteration.

5. Tabu movement.
If the feature i (added or deleted) makes the neighborhood feasible solution the current

optimal solution, then the feature i cannot be selected (added or deleted) in the next several
rounds of T (tabu list length) iterations. For example, the third feasible solution in Figure 4
becomes the current optimal solution because the feature F2 is added to the initial solution.
Then feature F2 is added to the tabu list. Table 2 is a tabu list with tabu length TL = 3. In the
next 3 iterations, F2 cannot be added or deleted. The tabu list guarantees that the algorithm
prevents searching for solutions that have been accessed, and helps to jump out of local
optimal solutions.

Table 2. Tabu list example.

Tabu List (TL = 3)

NO. Tabu target
1 F2
2
3

6. Contempt principle.
Due to the existence of the tabu list, generally tabu feature will not participate in

the next several rounds of search. However, when the participation of the tabu feature
can make the evaluation function reach the historical optimal, the tabu feature will be
amnesty, which is conducive to finding the global optimal solution. Specifically, if moving
(adding/deleting) feature i can make the feasible solution better than any solution of the
previous iteration, then it is allowed to add/delete the feature, even if feature i is in the
tabu list. For example, if moving feature F2 in Table 2 in the next three rounds of iteration
can make the feasible solution the historically optimal solution, then remove F2 from the
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tabu list. The contempt principle is a method of covering tabu movement, which can avoid
missing a good solution.

7. Stop rule.
We set the stop rule to a fixed number of iterations.
In summary, GSFTS-FS has the following advantages:
In gain-based-SFS, the order of adding features is arranged in order of feature impor-

tance. The more important features are prioritized and added to the feature combination
until the classification algorithm reaches a certain local optimal solution. Therefore, medical
features that have a significant impact on the hypertension outcomes are given priority to
provide a good initial solution for the subsequent tabu search.

The tabu search optimizes the gain-based-SFS solution, which push the algorithm
jump out of the local optimal solution and continue the search. The tabu search uses a
tabu list to record the local optimal points that have been reached. In the next search, the
information in the tabu list is used to no longer or selectively search for these points, so as
to avoids converging into a local optimum.

2.3. XGBoost Model for Hypertension Outcomes Prediction
2.3.1. Model Mathematical Theory

XGBoost is an ensemble learning algorithm, and it is one of the boosting algorithms.
The idea of XGBoost is to continuously add trees, and continuously perform feature
splitting to grow a tree. Each time a tree is added, it is actually learning a new function
to fit the residuals of the last prediction. When k trees are obtained after training, the
score of a sample is predicted. In fact, according to the characteristics of this sample, a
corresponding leaf node will fall in each tree, and each leaf node corresponds to a score.
The scores corresponding to each tree add up to the predicted value of the sample.

XGBoost uses the second-order Taylor expansion of the loss function and adds a
regular term to balance the complexity of the model and the decline in the loss function. It
seeks the best solution globally and well avoids model overfitting. Suppose that the model
generates t decision trees. Its prediction value for sample i is as follows.

∧
y
(t)

i =
t

∑
k=1

fk(xi) =
∧
y
(t−1)

i + ft(xi), fk ∈ F, i ∈ n, (1)

∧
y
(t)

i represents the predicted value of sample i, which is based on the sum of the
predicted values of t decision trees. n represents the total number of all samples, and the
subscript i represents the i-th sample. ft is the t-th classification tree, and F is the set space
of all trees.

The loss function is as follows:

L(t) =
n

∑
i=1

l(yi,
∧
y
(t)

i )+
t

∑
k=1

Ω( fk) (2)

l represents the degree of deviation between the predicted value
∧
y
(t)

i and the true
value yi; the second half of formula (2) represents the sum of the complexity of each tree
and Ω( fk) = γ ∗ T + 1/2λ‖ω‖2. T is the number of leaf nodes, γ is the weight of leaf
nodes, and λ and ω are regular coefficients.
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Combining Formulas (1), (2) and Taylor expansion of the loss function, Formula (3) is
obtained as follows:

L(t) =
n
∑

i=1
l[yi,

∧
y
(t−1)

i + fi(xi)]+Ω( ft) +
t−1
∑

k=1
Ω( fk) =

n
∑

i=1

[
l(yi,

∧
y
(t−1)

i ) + gi ft(xi) + 1/2hi f 2
t (xi)

]
+Ω( ft) +

t−1
∑

k=1
Ω( fk) =

n
∑

i=1

[
gi ft(xi) + 1/2hi f 2

t (xi)
]
+γT + 1/2λω2

j + C

(3)

gi is the first derivative, hi is the second derivative, and C is a constant. The formula
is as follows:

gi = ∂∧
y
[t−1]

i

l(yi,
∧
y

t−1

i ), (4)

hi = ∂2
∧
y
[t−1]

i

l(yi,
∧
y

t−1

i ), (5)

C =
n

∑
i

l(yi, y[t−1]
i ) +

t−1

∑
k=1

Ω( fk), (6)

Definition Ij = {i|q(xi) = j} represents a sample set of leaf node j. After removing the
constant term from Formula (3), the derivative term is 0, and the optimal solution ω∗j can
be obtained as follows:

ω∗j = −
Gj

Hj + λ
, (7)

Gj = ∑
i∈Ij

gi, (8)

Hj = ∑
i∈Ij

hi, (9)

After bringing the optimal solution ω∗j into Formula (3), we get Formula (10):

L(t) = −1/2
T

∑
j=1

G2
j

Hj + λ
+ γT + C, (10)

XGBoost uses the greedy algorithm to segment the existing nodes each time. Assuming
that IL and IR are the set of left and right nodes after segmentation, I = IL∪IR, then the
information gain after segmentation is:

L(split) = Gain = 1/2[
G2

L
HL + λ

+
G2

R
HR + λ

+
(GL + GR)

2

HL + HR + λ
]− γ, (11)

GL = ∑
i∈IL

gi, GR = ∑
i∈IR

gi, HL = ∑
i∈IL

hi, HR = ∑
i∈IR

hi (12)

As can be seen from Formula (11), similar to the ID3, C4.5, and CART decision tree
algorithms, XGBoost determines whether a node is being split by subtracting the unsplit
node score from the split left and right node scores. Meanwhile, XGBoost considers the
complexity of the model and adds a regular term λ to limit the growth of the tree. When
the gain is less than λ, no node splitting is performed.

2.3.2. XGBoost Hypertension Outcomes Prediction Process

The XGBoost algorithm is used to establish a model for prediction of hypertension
outcomes. Figure 5 is the process of modeling of XGBoost.
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Figure 5. XGBoost-based Hypertensive Outcomes Prediction Modeling Process. 

Figure 6 is an example of modeling using XGBoost. Two decision trees are generated 

based on the two characteristics of maximum systolic blood pressure and 24-h average 

blood pressure. For determining whether an outcome occurs in a sample, there are corre-

sponding scores on the leaf nodes of the two trees. The scores of the two trees are summed 

up, the score of “outcome occurrence” is 2.5, and the score of “no outcome occurrence” is 

4, so it is judged that the sample would not have an outcome. 

Figure 5. XGBoost-based Hypertensive Outcomes Prediction Modeling Process.

Figure 6 is an example of modeling using XGBoost. Two decision trees are generated
based on the two characteristics of maximum systolic blood pressure and 24-h average
blood pressure. For determining whether an outcome occurs in a sample, there are corre-
sponding scores on the leaf nodes of the two trees. The scores of the two trees are summed
up, the score of “outcome occurrence” is 2.5, and the score of “no outcome occurrence” is 4,
so it is judged that the sample would not have an outcome.
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2.4. Analysis and Optimization of GSFTS-FS and XGBoost Parameters

The number of parameters to be determined in this paper is small and the value range
is relatively easy to determine. Therefore, the grid search with cross validation is selected
as the parameter optimization method with F1 as the evaluation index. The following
parameters need to be adjusted and optimized.

(1) Candidate Set Length (CSL): the larger the length of the candidate set, the more
feasible solutions can be selected in the neighborhood, and the easier it is to find the global
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optimal solution. However, if the length is too long, the amount of calculation will be large,
and if the length is too short, it will easily fall into the local optimal solution.

(2) Tabu list length (TLL): the smaller the TLL, the larger the search range, but it is
easy to repeat the search. If the TLL is too long, the calculation time will become longer.

(3) Number of iterations: the more iterations, the easier it is to find a better solution.
When it reaches a certain number (saturation point), the effect will not fluctuate greatly.

(4) Max depth of the tree in XGBoost: it is used to avoid overfitting. The larger the
value, the more specific samples the model will learn.

(5) Number of estimators in XGBoost (NE): the more classifiers, the better the perfor-
mance of the ensemble learning model. However, too many base classifiers will not only
make it more computationally expensive and slower, but also cause overfitting.

2.5. Hypertension Outcomes Prediction Model Based on GSFTS-FS and XGBoost

Combining the GSFTS-FS and XGBoost methods mentioned above, the hypertension
outcomes prediction model can be established. The prediction model flowchart is shown in
Figure 7. After comparison and verification, the optimal feature combination is determined
and used as the input of the final XGBoost prediction model for clinical practical application
in patients with hypertension.
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Figure 7. Outcome prediction model for hypertension patients.

3. Results
3.1. Preprocessed Medical Data

The violin plot, box plot, and clustered scatter plot of the preprocessed data are shown
in Figures 8–10, respectively. Moreover, 0 means that hypertension outcomes did not occur,
1 means that hypertension outcomes occurred.
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Figure 8. Violin plot of medical data after preprocessing. (a) The first 40 features. (b) The last 41 features.
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Figure 10. Clustered scatter plot of medical data after preprocessing.

Through missing value processing, the number of samples in the data set is 752; the
feature dimension is 84. The ratio of positive and negative samples is 1:7, which belongs
to the category imbalanced data set. This paper adopts the EasyEnsemble method to deal
with the imbalance of categories.

3.2. Feature Selection Results Based on GSFTS-FS

The gain sequence forward tabu search feature selection (GSFTS-FS) proposed in this
study is performed and has achieved some good results. Feature gain importance ranking
based on XGBoost are shown in Figure 11. The feature combinations after SFS under the
four evaluation criteria are obtained, as shown in Table 3. It shows the feature combinations
obtained by SFS under different evaluation standards are not exactly the same.
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Table 3. Feature combination by SFS.

Criteria Feature Combinations

AUC 61, 64, 70, 63, 65, 75, 71, 69, 72, 77, 68, 76, 22, 78, 21, 15, 4, 44, 47, 48, 5, 11, 51, 6, 56,
46, 41, 27, 42, 60, 82, 18, 37, 39, 35, 30, 8, 23

ACC 61, 64, 70, 63, 65, 75, 71, 69, 72, 77
F1 61, 64, 70, 63, 65, 75, 71, 69, 72, 77, 68

Recall 61, 64, 70, 63, 65, 75, 71, 69

The length of the candidate set, the length of the tabu list, and the number of iterations
in GSFTS-FS need to be further adjusted and optimized before it is used to optimize the
feature combination selected by SFS.

The candidate set length (CSL) is optimized first. The tabu list length is fixed at 2 and
the number of iterations is fixed at 80. The performance of the prediction model under
different CSL is obtained, as shown in Table 4 and Figure 12. Table 4 and Figure 12 show
that the length of the candidate set has an impact on the prediction model. Both the best
F1 value and the average F1 value in 80 iterations change with CSL. The optimal CSL is
20, with which the prediction model performs best. Besides, as CSL increases, the model
computation time increases significantly. This means that the increase in CSL will obviously
bring more computation.

Table 4. Performance of prediction model under different CSL.

CSL Criterion 4 6 8 10 12 16 20 30

F1-average 0.847 0.855 0.862 0.866 0.869 0.866 0.870 0.862
F1-best 0.879 0.877 0.874 0.875 0.876 0.876 0.881 0.869
Time(s) 110.55 169.21 211.71 291.63 344.18 436.79 529.14 604.32
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Figure 12. Effect of CSL on prediction model performance.

For the optimal CSL, the performance of the prediction model under different tabu list
length (TLL) is shown in Table 5 and Figure 13. Table 5 shows that when the TLL reaches
12, the model performs best. Therefore, the optimal value is 12. Figure 13 shows that the
performance and the calculation time does not change significantly with the increase TLL.
This parameter has a small impact on the model.
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Table 5. Performance of prediction model under different TLL.

TLL
Criterion 2 4 6 8 10 12 14 16

F1-average 0.870 0.868 0.866 0.867 0.866 0.871 0.864 0.864
F1-best 0.881 0.878 0.870 0.879 0.875 0.883 0.871 0.879
Time(s) 165.41 151.90 155.32 143.40 147.89 139.47 154.15 170.40
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Figure 13. Effect of TLL on prediction model performance.

For the optimal CSL and TLL, the model performance with increasing iterations
is shown in Figure 14. It shows that with the increase of the number of iterations, the
performance fluctuates up and down, but the fluctuation range of F1 value is about
[0.84, 0.88] around 0.86, with no significant change. When the number of iterations is around
200, the model performs well. Excessive iterations do not improve model significantly.
Besides, the more iterations, the longer the computation time. Therefore, the optimal
number of iterations of the GSFTS-FS model is 200.
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Now, all GSFTS-FS parameters have been determined. The tabu search is now run
with the feature combinations in Table 3 as the initial solution to obtain the final optimized
feature combinations for the prediction model. The results are shown in Table 6. The
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number of features in the feature combination by GSFTS-FS is 9–16, which is relatively
small compared to the original 84 features.

Table 6. Feature combination by GSFTS-FS.

Criteria Feature Combinations

ACC 61, 70, 63, 75, 72, 77, 68, 76, 21, 15, 51, 27, 42, 35, 8, 23
AUC 61, 70, 63, 75, 71, 72, 68, 15, 5

F1 61, 70, 63, 32, 72, 76, 15, 4, 47, 60
Recall 61, 70, 63, 51, 21, 77, 68, 15, 41

3.3. Verification and Evaluation of Hypertension Outcomes Prediction Model
3.3.1. XGBoost Parameter Tuning

The results of parameter grid search tuning of XGBoost are shown in Table 7. Therefore,
the maximum tree depth and the number of trees are determined to be 7 and 70 respectively.
The trends of XGBoost performance with increasing max depth and NE are shown in
Figure 15.

Table 7. XGBoost performance under different parameters.

Max_Depth f1 NE f1

2 0.882 5 0.844
3 0.886 10 0.880
4 0.889 20 0.893
5 0.890 30 0.894
6 0.890 40 0.896
7 0.891 50 0.894
8 0.888 60 0.895
9 0.887 70 0.897
10 0.885 80 0.894
11 0.888 100 0.888
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3.3.2. Prediction Model Validation Results

The hypertension outcomes prediction model proposed in this paper is verified below.
The verification methods included 10-fold cross-validation and test set evaluation. We
divided the medical data into training set, validation set, and test set. The training set
and the validation set account for 75% of the data volume and are used for 10-fold cross
training and validation. The test set accounts for 25% of the data volume and is completely
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independent from the model optimization procedure. The evaluation results of the test set
can show the generalization performance of the model.

In order to verify the superiority of the proposed method, we compared the existing
different feature selection methods and classification methods. For feature selection, the
input data are the complete feature set and three feature combinations obtained by SFS,
recursive feature elimination (RFE) and GSFTS. For outcome prediction, the support vector
machine (SVM), decision tree (DT) and random forest (RF) are used for comparison. The
model performance evaluation criteria are accuracy, AUC, F1, and recall. The results are
shown in Tables 8 and 9.

Table 8. Prediction results of different methods and criterion using 10-fold cross validation.

Criterion AUC Accuracy

Model
Feature

Combination
SVM DT RF XGB SVM DT RF XGB

ALL 0.71 ± 0.03 0.75 ± 0.05 0.78 ± 0.04 0.89 ± 0.05 0.76 ± 0.03 0.78 ± 0.02 0.79 ± 0.04 0.88 ± 0.03
SFS 0.87 ± 0.02 0.88 ± 0.01 0.90 ± 0.02 0.93 ± 0.02 0.86 ± 0.02 0.89 ± 0.03 0.90 ± 0.01 0.91 ± 0.02

(Increase rate) 22.5% 17.3% 17.9% 4.5% 13.1% 14.1% 13.9% 3.4%
RFE 0.85 ± 0.02 0.86 ± 0.02 0.88 ± 0.02 0.95 ± 0.01 0.87 ± 0.01 0.86 ± 0.02 0.89 ± 0.01 0.92 ± 0.02

(Increase rate) 19.7% 14.7% 11.5% 6.7% 14.5% 10.3% 12.7% 4.5%
GSFTS-FS 0.88 ± 0.03 0.90 ± 0.02 0.94 ± 0.02 0.96 ± 0.02 0.89 ± 0.01 0.92 ± 0.03 0.93 ± 0.01 0.95 ± 0.01

(Increase rate) 23.9% 20.0% 20.5% 7.9% 17.1% 17.9% 17.7% 7.9%

Criterion F1 Recall

Model
Feature

Combination
SVM DT RF XGB SVM DT RF XGB

ALL 0.71 ± 0.03 0.72 ± 0.04 0.62 ± 0.02 0.81 ± 0.03 0.65 ± 0.02 0.67 ± 0.03 0.66 ± 0.02 0.71 ± 0.02
SFS 0.78 ± 0.02 0.83 ± 0.01 0.84 ± 0.01 0.86 ± 0.03 0.75 ± 0.02 0.77 ± 0.02 0.78 ± 0.02 0.79 ± 0.02

(Increase rate) 9.9% 15.3% 35.5% 6.2% 15.3% 14.9% 12.8% 11.3%
RFE 0.76 ± 0.02 0.81 ± 0.02 0.83 ± 0.03 0.87 ± 0.02 0.74 ± 0.01 0.76 ± 0.02 0.77 ± 0.02 0.80 ± 0.01

(Increase rate) 7.0% 12.5% 33.8% 7.4% 13.9% 13.4% 16.7% 12.7%
GSFTS-FS 0.81 ± 0.02 0.84 ± 0.01 0.87 ± 0.03 0.88 ± 0.02 0.77 ± 0.03 0.79 ± 0.02 0.80 ± 0.01 0.82 ± 0.02

(Increase rate) 14.1% 16.6% 40.3% 8.6% 18.5% 17.9% 21.2% 15.5%

Table 9. Prediction results of different methods and criterion on test set.

Criterion AUC Accuracy

Model
Feature Combination SVM DT RF XGB SVM DT RF XGB

ALL 0.70 0.75 0.76 0.87 0.68 0.70 0.72 0.80
SFS 0.83 0.86 0.87 0.89 0.75 0.77 0.80 0.85

(Increase rate) 18.5% 14.7% 14.5% 2.3% 10.3% 10.0% 11.1% 6.3%
RFE 0.82 0.85 0.88 0.90 0.74 0.80 0.83 0.84

(Increase rate) 17.1% 13.3% 15.8% 3.4% 8.8% 14.2% 15.2% 5.0%
GSFTS-FS 0.87 0.87 0.90 0.92 0.76 0.82 0.88 0.94

(Increase rate) 24.2% 16.0% 18.4% 5.7% 11.8% 17.1% 22.2% 17.5%

Criterion F1 Recall

Model
Feature Combination SVM DT RF XGB SVM DT RF XGB

ALL 0.68 0.69 0.61 0.79 0.61 0.62 0.65 0.68
SFS 0.74 0.79 0.82 0.83 0.70 0.71 0.72 0.76

(Increase rate) 8.8% 14.5% 34.4% 5.1% 14.8% 14.5% 10.8% 11.8%
RFE 0.73 0.74 0.84 0.85 0.68 0.69 0.74 0.79

(Increase rate) 7.4% 7.2% 37.7% 7.6% 11.5% 11.3% 13.8% 16.2%
GSFTS-FS 0.78 0.79 0.85 0.87 0.72 0.73 0.78 0.80

(Increase rate) 14.7% 14.5% 39.3% 10.1% 18.0% 17.7% 20% 17.6%
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The McNemar statistical test is to verify the results in Table 9. At the significance
level α = 0.05, we used McNemar statistic τχ2 and the corresponding P-value to provide
the quantitative information for the significance of the difference between methods. The
significance analysis results are shown in Table 10, Table 11 for the feature selection methods
and are shown in Table 12, and Table 13 for the prediction algorithms.

Table 10. McNemar statistic matrix for different feature selection methods.

SFS RFE GSFTS

SFS / 0.045 4.050
RFE 0.045 / 4.762

GSFTS 4.050 4.762 /

Table 11. P-value matrix for different feature selection methods.

SFS RFE GSFTS

SFS / 0.831 0.044
RFE 0.831 / 0.029

GSFTS 0.044 0.029 /

Table 12. McNemar statistic matrix for different prediction algorithms.

SVM DT RF XGBoost

SVM / 4.167 8.643 15.429
DT 4.167 / 4.161 8.471
RF 8.643 4.161 / 4.000

XGBoost 15.429 8.471 4.000 /

Table 13. P-value matrix for different prediction algorithms.

SVM DT RF XGBoost

SVM / 0.041 0.003 0.001
DT 0.041 / 0.047 0.004
RF 0.003 0.047 / 0.046

XGBoost 0.001 0.004 0.046 /

Figure 16 is the performance comparison of the four prediction models under the
three sets of feature combination. We compare the average and optimal values in the 80
iterations of the GSFTS-FS algorithm with the values of SFS and RFE.

4. Discussion

Figures 8–10 show the distribution of all medical data on different indicators. It can be
seen from the figures that the data distribution on some indicators is the same for patients
with outcomes and those without outcomes, while the data distribution on other indicators
is different for different patients. This shows that some medical characteristics can affect
hypertension outcomes, resulting in differences in data distribution.

Feature combinations by GSFTS-FS in Table 6 show that the number of medical
indicators used to predict hypertension outcomes has been greatly reduced compared
with the original medical indicators set. For doctors, this helps them narrow the scope
of analysis and analyze pathologically the factors that affect hypertension outcomes. For
example, the No. 61 index (right brachial-ankle pulse wave conduction velocity) is required
by the prediction model under all evaluation indices in Table 6. For patients, fewer medical
indicators mean fewer examination items. For machine learning algorithms, the optimal
combination of features can reduce learning burden and calculation time, to better judge
the hypertension outcomes with high efficiency.
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Now, we can analyze the impact of different feature combinations on the prediction
model from Table 8. No matter what kind of evaluation index, the prediction result of
the feature combination obtained by GSFTS-FS is significantly better than that without
feature selection. The GSFTS-FS method significantly improves the performance of the
prediction model. The feature combinations obtained by SFS and RFE also help to improve
performance, but it is not as good as the feature combination optimized by GSFTS-FS,
which has a higher promotion rate.

Next, we analyze the performance of the four prediction models. It can be seen from
Table 8 that the performance of the XGBoost is better than SVM, C4.5 decision tree, or
random forest under any evaluation criteria, and the advantage is obvious. The XGBoost
classification algorithm combined with the GSFTS-FS algorithm performs the best, with
an accuracy of 0.95, an AUC value of 0.96, an F1 value of 0.88, and a recall value of 0.82.
Compared with the dataset without feature selection, the accuracy, AUC value, F1 value,
and recall value of this method have been increased by 7.9%, 7.9%, 8.6%, and 15.5%,
respectively.

Table 9 shows that the prediction has good generalization ability and can be used
for the prediction of new samples. The GSFTS-XGB achieved the best performance on
the test set and its AUC, accuracy, F1 value, recall are 0.92, 0.94, 0.87, 0.80, respectively.
The results of McNemar’s significance analysis confirmed that, the proposed methods is
superior to alternative approaches. The results in Tables 10 and 11 show that new medical
feature selection method GSFTS has significant advantages over other existing methods
(τχ2 > 3.8415 or p-value < 0.05) while there is no significant difference between RFE and
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SFS. As shown in Tables 12 and 13, the difference between XGBoost and other classification
algorithms are significant within 95% confidence interval.

By observing Figure 16, the same conclusions as in Table 8 can be obtained. The
GSFTS-FS method is more effective than SFS method, and the performance is significantly
improved. The XGBoost performed better than the other two classification algorithms.

Compared with similar work [17–22], we not only proved that XGBoost is better than
random forest and decision tree that are commonly used in the literature in predicting
hypertension diseases, but also further optimized the selection process of medical features
to better quantitatively analyze which medical indicators affect hypertension outcomes.
For example, Liu Y used a combination of recursive feature elimination (RFE) and XGBoost
to build a hypertension prediction model [16]. RFE is a greedy optimization algorithm,
which is easy to fall into a local optimal solution, while GSFTS-FS can solve this problem
and obtain a better global optimal solution.

The study in this paper has the following points for further research. First, due to the
difficulty in collecting medical data, the amount of data used in this research is still small.
With more samples accumulated and collected in the future, the model can be further
optimized and adjusted. Second, the Recall value of the prediction model established in
this paper is about 80%. For clinical applications, it is hoped that patients who are about
to have an outcome will be predicted as many as possible. Due to the characteristics of
hypertension, the incidence of outcomes is small, and further research is needed to improve
the Recall value of the prediction model.

5. Conclusions

One difficult question in medicine is, “Will serious outcomes occur in patients with hyper-
tension?”

Research derived from clinical medicine has not solved this question. In regards to
data mining and machine learning, we proposed a hypertensive outcome prediction model
combining GSFTS-FS and XGBoost. We analyzed the medical data of 1357 patients with
hypertension from a Beijing hospital, and verified the prediction model. By comparing and
analyzing the experimental results, we can draw the following conclusions: (1) GSFTS-FS
can screen valuable parts from many medical indicators and provide high-quality input
variables for the prediction model. (2) GSFTS-FS captures the changes in the information
gain of medical variables and digs out key factors affecting the hypertension outcomes
through global optimal search. (3) Through GSFTS-FS, we discovered that medical vari-
ables, such as right brachial-ankle pulse wave conduction velocity, the highest systolic
blood pressure, limb blood pressure, and ambulatory blood pressure may have a higher
impact on hypertension outcomes. (4) The prediction model combining the GSFTS-FS
method and XGBoost algorithm performs well and has an accuracy of 0.946, an AUC of
0.956, an F1 of 0.879, and a recall of 0.805, which can accurately and effectively predict
outcomes in patients with hypertension.

The model proposed in this paper can provide guidance and aid decision-making for
doctors in clinical diagnosis and treatment, and has the significance of theoretical research
and practical application. First, the model greatly reduces the number of medical indicators
needed to determine the occurrence of outcome. Instead of a full set of inspections, patients
only need to do targeted inspection items. Second, the model can accurately determine
whether a patient will have a hypertension outcome. If the patient is predicted to have an
outcome, the doctor can prepare in advance and take protective measures. This can help
reduce the incidence of outcomes or enable patients to be treated promptly and properly
when outcomes occur. Third, the model can indicate which medical indicators have an
impact on the outcome. It provides guidance for medical research. Experts and scholars in
the medical field can analyze the correlation between various indicators and hypertension
outcomes from a pathological perspective.
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Appendix A

Table A1 is a list of all the medical features that are considered in this study.

Table A1. Medical Features.

No. Name Explanation

Baseline Data
1 SEX sex
2 AGE age
3 HEIGHT height
4 WEIGHT weight
5 BMI body mass index
6 HR heart rate
7 PULSE pulse
8 RYSBPL left arm systolic pressure
9 RYDBPL left arm diastolic pressure
10 HTBEGIN initial hypertension age
11 ZGSBP highest systolic blood pressure
12 ZGDBP highest diastolic blood pressure
13 PSSBP1 normal systolic blood pressure
14 PSDBP1 normal diastolic blood pressure

UCG cardiac vascular ultrasound
15 AO ascending aorta diameter
16 LA left atrium
17 IVSD ventricular septal thickness
18 LV left ventricular end diastolic diameter
19 EF ejection fraction
20 LVPWd thickness of the back wall
21 RVd right ventricle

blood routine
22 WBC white blood cell
23 NEUT percentage of neutrophils
24 RBC red blood cells
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Table A1. Cont.

No. Name Explanation

25 HB hemoglobin
26 PLT platelet

Urine routine
27 UKET ketone body
28 USG specific gravity of urine
29 USG1 USG tube type

Blood biochemical
30 ALT alanine aminotransferase
31 AST aspartate aminotransferase
32 K serum potassium
33 Na serum sodium
34 Cl serum chlorine
35 GLU blood sugar
36 CREA creatinine
37 BUN urea nitrogen
38 URIC uric acid
39 HSCRP high-sensitivity C-reactive protein
40 TG triglyceride
41 TC triacylglycerol
42 HDLC high density lipoprotein cholesterol
43 LDLC low density lipoprotein cholesterol

Thyroid function
44 FT3 serum free triiodothyronine
45 FT4 free thyroxine
46 T3 triiodothyronine
47 T4 tetraiodothyronine
48 TSH thyroid stimulating hormone

Urine protein
49 MAUCR urinary microalbumin/creatinine
50 HUPRO 4-h urine protein quantitation

Blood sugar
51 HBLAC glycated hemoglobin

Inflammatory factor
52 ESR erythrocyte sedimentation rate
53 CRP C-reactive protein

54 NTPRO amino terminal precursor protein of brain natural
peptide

55 ET endothelin
Limb blood pressure

56 RARMSBP right upper limb systolic blood pressure
57 RARMDBP right upper limb diastolic blood pressure
58 LARMSBP left upper limb systolic blood pressure
59 LARMDBP left upper limb diastolic blood pressure
60 LLEGSBP left lower extremity systolic blood pressure
61 BAPWVR right brachial-ankle pulse wave conduction velocity
62 RLEGSBP right lower limb systolic blood pressure
63 LLEGDBP left lower extremity diastolic blood pressure
64 RLEGDBP right lower limb diastolic blood pressure
65 BAPWVL left brachial-ankle pulse wave conduction velocity
66 ABIR right ankle-brachium index
67 ABIL left ankle-brachium index

Dynamic blood pressure
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Table A1. Cont.

No. Name Explanation

68 MEANSBP 24 h mean systolic blood pressure
69 MEANDBP 24 h mean diastolic blood pressure
70 HIGHSBP the highest systolic blood pressure
71 DAYMDBP daytime mean diastolic blood pressure
72 LOWSBP the lowest systolic blood pressure
73 LOWDBP the lowest diastolic blood pressure
74 DAYMSBP daytime average systolic blood pressure
75 HIGHDBP the highest diastolic blood pressure
76 NIHTMSBP nighttime average systolic blood pressure
77 NIHTMDBP nighttime average diastolic blood pressure

Breathing sleep
78 AHI hourly breathing number
79 APNEA the longest apnea number
80 HYPOPNEA the longest hypoventilation time
81 SAO2 the lowest SaO2%
82 MEANSAO2 the average SaO2%

Other
83 HCY homocysteine
84 W_DISC_NOHPT number of antihypertensive drugs at discharge
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