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Abstract

The complement-like protein thioester-containing protein 1 (TEP1) is a key factor in the

immune response of the malaria vector Anopheles gambiae to pathogens. Multiple allelic

variants of TEP1 have been identified in laboratory strains and in the field, and are corre-

lated with distinct immunophenotypes. TEP1 is tightly regulated by conformational changes

induced by cleavage in a protease-sensitive region. Cleaved TEP1 forms exhibit significant

variation in stability from hours to days at room temperature. In particular, the refractory

allele TEP1*R1 is significantly more stable than the susceptible allele TEP1*S1. This raises

the question of whether the stability of cleaved TEP1 is linked to allelic variation and varying

immunophenotypes. We have analyzed the stability of the cleaved form of additional TEP1

alleles and constructs. We show that stability is correlated with allelic variation within two

specific loops in direct proximity to the thioester bond. The variable loops are part of an inter-

face between the TED and MG8 domains of TEP1 that protect the thioester from hydrolysis.

Engineering specific disulfide bonds to prevent separation of the TED-MG8 interface stabi-

lizes the cleaved form of TEP1 for months at room temperature. Cleaved TEP1 forms a sol-

uble complex with a heterodimer of two leucine-rich repeat proteins, LRIM1 and APL1C,

and precipitates in the absence of this complex. The molecular structure and oligomeric

state of the TEP1/LRIM1/APL1C complex is unclear. The C-terminal coiled-coil domain of

the LRIM1/APL1C complex is sufficient to stabilize the cleaved form of TEP1 in solution but

cleaved forms of disulfide-stabilized TEP1 do not interact with LRIM1/APL1C. This implies

that formation of the TEP1cut/LRIM1/APL1C complex is related to the conformational

change that induces the precipitation of cleaved TEP1.
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Introduction

The mosquito Anopheles gambiae is the principal malaria vector in Sub-Saharan Africa. The

immune response of A. gambiae is a significant factor influencing the vectoral capacity of mos-

quitoes to malaria parasites (genus Plasmodium). Plasmodium ookinetes invade and traverse

the midgut epithelium, whereupon they face a robust complement-like immune response [1].

The complement-like factor thioester-containing protein 1 (TEP1) binds to the surface of Plas-
modium ookinetes. TEP1-labeled ookinetes are targeted for killing by lysis and in some strains

subsequent melanization.

TEP1 is a 160 kDa secreted glycoprotein comprised of eight fibronectin-fold domains called

macroglobulin (MG) domains. In between MG7 and MG8 are two nested insertions of an

eight stranded α-barrel domain (CUB) and the α-helical thioester domain (TED). The thioe-

ster domain contains a four amino acid motif–CGEQ–that forms a β-cysteinyl-γ-glutamyl

thioester bond. The reactive thioester bond, a feature of the TEP protein family including α2-

macroglobulins and complement factors, is protected from hydrolysis in the full-length pro-

tein by an interface formed between the TED and the MG8 domain [2]. A triangular arrange-

ment of the TED, CUB and MG8 domains forms a ‘superdomain’ that is conserved between

TEP1 and mammalian complement factor C3 [3, 4].

Activation of thioester-containing proteins requires cleavage in a protease-sensitive region

located on an extended loop within the MG6 domain [2]. The first six MG domains form a

supermolecular ring spanned by the protease-sensitive region, which connects to the MG7

domain and the TED-CUB-MG8 superdomain. Cleavage within the protease-sensitive region

results in dissociation of the TED-MG8 interface, exposing the thioester bond for covalent

reaction with substrates on pathogen surfaces, thereby labeling the pathogen with TEP1.

TEP1 is secreted into the mosquito hemolymph as a full-length protein; both full-length

and cleaved TEP1 is detected in the hemolymph [5]. The cleaved form of TEP1 (TEP1cut)

requires two leucine-rich repeat proteins, LRIM1 and APL1C, for stability in the hemolymph

[6, 7]. In the absence of LRIM1 or APL1C, TEP1cut precipitates over time both in vitro and in
vivo [6, 8]. LRIM1 and APL1C consist of an N-terminal leucine-rich repeat (LRR) domain

capped by a cysteine-rich motif. The two LRR proteins form a heterodimer via a C-terminal

coiled-coil domain that contains a helix-loop-helix motif [9]. The LRIM1/APL1C heterodimer

binds to TEP1cut and stabilizes it in solution. TEP1cut that is in complex with LRIM1/APL1C

retains an intact thioester bond that allows for covalent attachment to a pathogen surface [8].

In the absence of LRIM1, the thioester bond hydrolyzes over time, resulting in non-functional

precipitation of TEP1 [6, 8].

A. gambiae forms a species complex, comprising multiple morphologically identical forms

across Sub-Saharan Africa [10]. TEP1 is among the most polymorphic genes within A. gambiae
genomes, with multiple distinct alleles that are correlated with susceptibility to Plasmodium
infection [11]. TEP1�R1 is an allele associated with A. gambiae L3-5 laboratory strain, predom-

inately found in the West African “M” molecular form of A. gambiae, now named A. coluzzii
[12]. TEP1�R1 homozygous mosquitoes are refractory to the rodent malaria parasite P. berghei
and have decreased susceptibility to the human malaria parasite P. falciparum [5, 13, 14].

TEP1�S1 is an allele associated with A. gambiae G3 strain, found predominantly in the “S”

molecular form of A. gambiae, which are susceptible to both P. berghei and P. falciparum infec-

tion. Other susceptible alleles named TEP1�R2 and TEP1�S2 are found in the laboratory 4arr

strain and field isolates [11].

TEP1 refractory and susceptible alleles are >90% identical with most variation being associ-

ated with variable loops within the TED, including two loops in direct proximity to the thioe-

ster bond. We previously reported that TEP1�S1cut has a half-life of thioester hydrolysis t1/2 =
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8.5 h, while TEP1�R1cut has a half-life of thioester hydrolysis t1/2 = 6.5 days [8]. Replacing the

TED of TEP1�R1 with that of TEP1�S1 reduced the half-life of thioester hydrolysis to almost

the same as full-length TEP1�S cut, t1/2 = 12 h. This suggests that TEP1 allelic variation within

the thioester domain, specifically two hypervariable loops known as the pre-α4 and catalytic

loop, respectively, contribute significantly to the stability of TEP1cut. Both alleles bind LRIM1/

APL1C on a timescale consistent with their half-life for thioester hydrolysis.

Here we compared additional alleles and by mutation analysis identify specific residues

within the loops of the TED that impact TEP1 stability. We further demonstrate that the

coiled-coil domain of LRIM1/APL1C is sufficient to stabilize TEP1cut in solution. Finally, we

show that engineered disulfides within the TED-CUB-MG8 superdomain can stabilize TEP1cut

similar to LRIM1/APL1C. These results suggest that the formation of the TEP1cut/LRIM1/

APL1C complex requires a conformational change involving dissociation of the TED-MG8

interface that is directly related to the conformational change leading to thioester hydrolysis

and precipitation of TEP1cut in the absence of LRIM1/APL1C.

Results

Rate of thioester hydrolysis for TEP1 alleles

Polymorphisms between TEP1�R1 and TEP1�S1 are concentrated within and adjacent to the

TED, and specifically in three hypervariable loops within the TEP. Two of these loops, the cata-

lytic loop and the pre-α4 loop, are in close proximity to the thioester bond and form part of

the TED-MG8 interface. The third loop, the β-hairpin loop, lies on the opposite side of the

TED, surface-accessible and near the TED-MG8 interface. We previously showed that a chi-

meric protein replacing the TED of TEP1�R1 with TEP1�S1 had the same stability as TEP1�S1

[8], but this does not determine which of the three loops are responsible for this variable

stability.

Blandin et al. (2009) reported two additional alleles, TEP1�S2 and TEP1�R2, that are virtu-

ally identical to TEP1�S1 and TEP1�R1, respectively, within the TED (Fig 1). The most notable

difference between TEP1�S1 and TEP1�S2 is that the TEP1�S2 β-hairpin motif is identical to

TEP1�R1 and TEP1�R2. Hence we used TEP1�S2 to test whether the R1/R2 β-hairpin motif

has a stabilizing effect on TEP1cut.

We produced TEP1�S2, performed limited proteolysis and measured the half-life of thioe-

ster hydrolysis in three independent experiments (Table 1). We observed that TEP1�S2cut had

a half-life of thioester hydrolysis t1/2 = 4.2 ± 0.2 h, half that of TEP1�S1cut t1/2 = 8.5 ± 0.2 h.

Hence, the β-hairpin motif is not responsible for the stabilization of TEP1�R1 relative to

TEP1�S1, consistent with its location opposite the thioester bond and the TED-MG8 interface

[8, 15].

TEP1�R2 is a chimeric form whose N-terminal fragment is similar to S1/S2, while the C-ter-

minal fragment is almost identical to TEP1�R1 except for a single residue in the TED pre-α4

loop, TEP1�R1 Asn 919, which is glycine in TEP1�R2, TEP1�S1 and TEP1�S2. To test whether

the R1 mutation G919N has a stabilizing effect on TEP1cut, we produced TEP1�R2, performed

limited proteolysis and measured the half-life of thioester hydrolysis. We observed that

TEP1�R2cut had a half-life of thioester hydrolysis t1/2 = 9.6 ± 0.4 h, comparable to that of

TEP1�S1cut, and 16 times less than that of TEP1�R1cut t1/2 = 156 ± 12 h. This suggests that the

differences between TEP1�R1 and TEP1�R2, specifically the point mutation N919G, have a sig-

nificant effect on TEP1cut stability.

To confirm the role of Asn 919, we made the point mutation N919G in TEP1�R1 and mea-

sured the stability of TEP1�R1-N919Gcut. This single mutation reduced the half-life of thioe-

ster hydrolysis three times, TEP1�R1-N919Gcut t1/2 = 55 ± 10 h. The differences between

TEP1 complex with LRIM1/APL1C requires conformational change in the thioester domain
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TEP1�R1-N919Gcut and TEP1�R2 that contribute to further destabilization of TEP1�R2cut lie

outside of the TED and MG8 domains. The closest TEP1�R2 mutations relative to TEP1�R1

(i.e. conserved with TEP1�S1, TEP1�S2) are H811Y and S828N in the CUB domain.

The catalytic loop is the third hypervariable loop in the TEP1 TED, and is in direct proxim-

ity to the thioester bond. That catalytic loop is hypervariable between TEP1�S1/TEP1�S2 and

TEP1�R1/TEP1�R2, hence we expected it to directly impact the stability of TEP1cut. We there-

fore made the mutation TEP1�R1-S1cat, substituting residues 966–971 from KAGAEY in

TEP1�R1 to ETGKVW. The cleaved form of TEP1�R1-S1cat has a half-life of thioester hydroly-

sis t1/2 = 9.1 ± 1.9 h, comparable to that of full-length TEP1�S1. Hence the catalytic loop alone

is sufficient to explain the destabilization of TEP1�S1cut relative to TEP1�R1. Put another way,

the unusual stability of TEP1�R1 compared to TEP1�S1, TEP1�S2 and TEP1�R2 is the result of

specific mutations in both the pre-α4 and the catalytic loop with some contribution of

TEP1�R1-specific mutations outside the TED-MG8 domains.

Stabilization of TEP1cut by engineered disulfide bonds

Following cleavage within the protease-sensitive region, TEP1cut slowly converts from a state

that contains an intact thioester to one in which the thioester is hydrolyzed and which

Fig 1. Sequence variation between TEP1 alleles within the TED. Multiple sequence alignment of TEP1 forms TEP1�S1, TEP1�S2, TEP1�R2

and TEP1�R1 residues 800–1100, including the hypervariable TED pre-α4 loop (917–920), catalytic loop (966–971) and β-hairpin (1054–

1069). Adapted from Blandin et al. (2009) [11].

https://doi.org/10.1371/journal.pone.0218203.g001

Table 1. Rate of thioester hydrolysis of TEP1cut.

TEP1 form t1/2 (h) Ref.

�S2 4.2 ± 0.2 this work

�S1 8.5 ± 0.2 [8]

�R2 9.6 ± 0.4 this work

�R1 156 ± 12 [8]

�R1 S1cat 9 ± 2 this work

�R1 N919G 55 ± 10 this work

Half-life for thioester hydrolysis determined by rate of precipitation for cleaved forms of TEP1. Each half-life is

determined from three independent experiments.

https://doi.org/10.1371/journal.pone.0218203.t001

TEP1 complex with LRIM1/APL1C requires conformational change in the thioester domain
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precipitates from solution. Cleavage of the protease-sensitive region occurs in a separate loca-

tion from the TED-MG8 interface, the MG6 domain. Yet the TED-MG8 interface must sepa-

rate for the thioester bond to bind to a substrate. Association of LRIM1/APL1C with TEP1

forestalls hydrolysis of the thioester, but how LRR complex binding stabilizes TEP1cut is

unknown. We tested whether LRIM1/APL1C binding is separable from thioester hydrolysis

and concomitant precipitation of TEP1cut by stabilizing the TED-MG8 interface with engi-

neered disulfide bonds.

Guided by the crystal structure of TEP1�S1, we identified residues at the TED-MG8 and

TED-CUB interfaces where mutation to cysteine would generate a disulfide bond with mini-

mal perturbation of the structure [8]. We generated three disulfide mutants of TEP1�S1, vary-

ing the location of the disulfide between the TED and CUB/MG8 domains (Fig 2A). First, we

joined TED residue K973 within the catalytic loop to residue Q1228 in the MG8 domain

(K973C/Q1228C). Second, we joined TED residue V1102 to residue M801 in the CUB domain

(M801C/V1102C). Third, we joined TED residue K969 within the catalytic loop to a residue in

the MG8 domain Y1275 (K969C/Y1275C).

We confirmed formation of the engineered disulfide for TEP1�S1-M801C/V1102C using

Ellman’s reagent to titrate the number of cysteines forming disulfide bonds. TEP1 has three

native disulfide bonds–one in the MG8 domain and two in the C-terminal anchor motif–so

the disulfide mutant should have four. Hence we expect TEP1�S1 has six cysteines and

TEP1�S1-M801C/V1102C has eight cysteines forming disulfide bonds. The measured number

of cysteines for TEP1�S1 and TEP1�S1-M801C/V1102C were 5.71±0.42 and 8.65±0.30,

respectively.

We next performed limited proteolysis and measured the half-life of thioester hydrolysis in

three independent experiments (Fig 2B). The engineered disulfide K973C/Q1228C had the

effect of increasing the half-life for thioester hydrolysis to t1/2 = 4.0 days (Fig 2B). The engi-

neered disulfide M801C/V1102C increased the half-life for thioester hydrolysis to t1/2 = 44

days. The engineered disulfide K969C/Y1275C resulted in a half-life for thioester hydrolysis of

t1/2 > 100 days. This confirms that precipitation of TEP1cut occurs after separation of the

TED-MG8 domain, and preventing this conformational change can effectively stabilize TEP1-

cut indefinitely.

Stabilization of TEP1cut by LRIM1/APL1C coiled-coil domain

The LRIM1/APL1C heterodimer has three discrete, pseudosymmetric structural elements (Fig

3A). Each protein has an LRR domain capped by an LRRCT helix, followed by a short coiled-

coil domain, an intermolecular disulfide, then a helix for LRIM1 and a flexible region for

APL1C. Both proteins end with a C-terminal coiled-coil domain that contains a helix-loop-

helix (HLH) motif. Multiple groups have shown that full-length LRIM1/APL1C stabilizes

TEP1cut in vitro and in vivo [6–9, 16]. However, the LRIM1 and APL1C LRR domains were

previously shown to be insufficent to stabilize TEP1�R1cut after treatment with methylamine

(MeNH2) to chemically inactivate the thioester bond, or to stabilize endogenous TEP1cut in
vivo [9]. Povelones et al. (2011) expressed LRIM1/APL1C with internal deletions of the coiled-

coil domain [16]. These constructs were unable to bind cleaved TEP1. In this study however,

TEP1cut was produced by co-expression of separate N- and C-terminal fragments. As the

structure of the TEP1 MG6 domain is formed by the intertwining of both N- and C-terminal

fragments; co-expressing both fragments separately may result in misfolding of TEP1.

We therefore sought to test two hypotheses, (i) that LRIM1/APL1C binding is associated

with conformational change of the TED-MG8-CUB superdomain by exploiting our disulfide-

stabilized mutants, and (ii) that the coiled-coil domain of LRIM1/APL1C is sufficient to

TEP1 complex with LRIM1/APL1C requires conformational change in the thioester domain
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stabilize TEP1cut. First, we examined the ability of engineered disulfide mutants of TEP1�S1 to

bind the LRIM1-FLAG/APL1C-Δ26-130-6×His construct previously found to stabilize

TEP1�S1 [8, 9]. Then, to show that the C-terminal coiled-coil domain is the site of TEP1 bind-

ing we produced two C-terminal coiled-coil constructs of LRIM1/APL1C. LRIM1/

APL1C-CC1 comprises all C-terminal residues from the intermolecular cysteines LRIM1

C352 and APL1C C551. LRIM1/APL1C-CC2 comprises the C-terminal coiled-coil domain

including the helix-loop-helix motif.

Despite the dramatically increased stability of the disulfide-engineered TEP1�S1 mutants,

none were stabilized by or co-immunoprecipitated with LRIM1-FLAG/APL1C-Δ26-130-

6×His (Fig 3B). Wild-type TEP1�S1cut does not IP with αFLAG immediately following cleav-

age. Neither full-length or cleaved TEP1�S1-K969C/Y1275C co-immunoprecipitated with

LRIM1-FLAG/APL1C-Δ26-130-6×His seven days post-cleavage.

We then tested whether the coiled-coil domain of LRIM1/APL1C was sufficient to prevent

the precipitation of TEP1cut. When incubated with a mixture of TEP1�S1 and TEP1�S1cut,

both LRIM1/APL1C-CC1 and LRIM1/APL1C-CC2 were able to stabilize TEP1�S1cut in solu-

tion (Fig 3C). These results are consistent with those of Povelones et al. (2011), who showed

that the interchain disulfide was dispensable for capture of TEP1cut by LRIM1/APL1C [16].

Fig 2. Engineered disulfides slow the rate of thioester hydrolysis. (A) Model of TED (green), CUB (blue) and MG8

(yellow) domains for TEP1�S1, with engineered disulfide bonds (red) K973C/Q1228C, M801C/V1102C and K969C/

Y1275C. (B) Rate of thioester hydroylsis for cleaved forms of TEP1�S1, TEP1�R1, and three engineered disulfide

mutants of TEP1�S1.

https://doi.org/10.1371/journal.pone.0218203.g002

TEP1 complex with LRIM1/APL1C requires conformational change in the thioester domain
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This demonstrates that the C-terminal coiled-coil domain of LRIM1/APL1C is necessary and

sufficient to stabilize TEP1cut.

Discussion

TEP1 is a key antiparasitic factor in A. gambiae, and allelic variation in TEP1 significantly

influences susceptibility of A. gambiae to Plasmodium. Most of the variation between alleles is

within the thioester domain, specifically three loops of which two–the pre-α4 loop and the cat-

alytic loop–are proximal to the thioester bond and form part of the TED-MG8 domain inter-

face. Variation in the pre-α4 and the catalytic loop can potentially affect the reactivity and

substrate specificity of the thioester as well as the overall stability of the protein in solution.

However, these inter-related properties complicate understanding the molecular mechanism

of TEP1.

We previously reported a significant difference in stability for the cleaved alleles of

TEP1�S1 and TEP1�R1 [8]. Here we report that genetic polymorphism in the TED domain of

TEP1 shapes its function by regulating protein stability. Interestingly, TEP1�R1, the only allele

that confers mosquito resistance to Plasmodium infection, has an exceptionally long lifetime.

Other forms display more subtle variation, ranging from 9.2 h for �R2 to 4.2 h for �S2.

Fig 3. Disulfide-stabilized TEP1cut does not bind LRIM1/APL1C. (A) Model of the domain structure of LRIM1/APL1C

(LRIM1 only, magenta) indicating the location of C-terminal truncations CC1 and CC2. A schematic diagram of

LRIM1-FLAG/APL1C-Δ26-130-6×His construct and coiled-coil domain constructs CC1 and CC2, coiled-coil shown in

green, cysteines as red bars, N-linked glycosylation site as yellow ball, 6×His tag in blue. (B) α6×His Western blot of

supernatant (supe) and αFLAG immunoprecipitate (IP) of TEP1�S1-K969C/Y1275C seven days post-cleavage. The first

sample is wt TEP1�S1 immediately following cleavage. Both uncleaved and cleaved TEP1 remain in the supernatatant and do

not co-immunoprecipitate with LRIM1/APL1C. (C) αTEP1 Western blot of precipitate (p) and soluble (s) fractions for

TEP1�S1 full-length (TEP1-F) and cleaved form (TEP1-C) after 24 h incubation with LRIM1/APL1C-CC1 and LRIM1/

APL1C-CC2.

https://doi.org/10.1371/journal.pone.0218203.g003

TEP1 complex with LRIM1/APL1C requires conformational change in the thioester domain
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Whether the increased stability of �R1 directly causes its antiparasitic activity remains to be

demonstrated.

The increased stability of TEP1�R1 requires both changes in the catalytic loop sequence

966–971 from ETGKVW (S) to KAGAEY (R) and in the pre-α4 loop sequence 917–920 from

KSGS (S) to TTNG (R), especially the mutation G919N. This is drawn from the fact that rever-

sion of either 966–971 of 919 from R to S significantly decreases stability of cleaved TEP1.

These changes are synergistic, because TEP1�R2 which is identical with TEP1�R1 in both these

loops but for G919N is only marginally more stable than TEP1�S1. Yet interactions outside the

TED-MG8 domain contribute to stability, because the mutant TEP1�R1-N919G is identical to

TEP1�R2 in both the TED and MG8 domains yet is still more stable (t1/2 = 2.3+0.4 days vs. 9.6

+0.4 h).

An open question is whether the conformational change in TEP1cut that permits LRIM1/

APL1C binding is separable from that which induces thioester hydrolysis and precipitation.

We sought to address this by engineering specific disulfide bonds between domains. We were

able to stabilize TEP1�S1cut for months with engineered disulfides from the TED to either the

MG8 or CUB, but in neither case did the cleaved protein interact with LRIM1/APL1C. Hence,

either a single conformation or related conformations involving separation of the TED from

CUB and MG8 are responsible for both LRIM1/APL1C binding and TEP1 aggregation and

precipitation.

We illustrate the location of the three engineered disulfides to the TED-MG8 interface and

the thioester bond in Fig 4. The first disulfide replaces K793 directly adjacent to the catalytic

histidine of the TED catalytic loop and Q1228 at the top of the MG8 loop in the center of the

interface near M1231, which directly abuts the thioester. Interestingly, this was the least stabi-

lizing disulfide, less stable than TEP1�R1, suggesting that securing the catalytic loop to the top

of the TED-MG8 interface does not prevent the interface from separating beneath it, possibly

due to perturbation of the domains MG2 and MG6 that lie below. In comparison, the disulfide

replacing K969 in the catalytic loop andY1275, one of the aromatic residues that ring the thioe-

ster bond, is indefinitely stabilizing.

Surprisingly, the third disulfide engineered between TED V1102 and CUB M801 is a highly

stabilizing mutant even though it does not involve the TED-MG8 interface. In the conversion

of complement C3 to C3b and C5 to C5b, the CUB domain undergoes a large motion along

with the TED, hence locking the relative position of these domains may equally serve to pre-

vent separation of the TED-MG8 interface.

In vertebrate complement factors the anaphylatoxin domain serves as a molecular wedge

between the MG3 and MG8 domain, and we had speculated that LRIM1/APL1C might form

an analogous complex following cleavage of TEP1. The fact that TED-MG8 engineered disul-

fides prevent LRIM1/APL1C binding run counter to this hypothesis. It suggests that the

LRIM1/APL1C coiled-coil domain has a cryptic binding site somewhere on the TED, CUB

and/or MG8 that is only exposed by dissociation of this superdomain. Povelones et al. (2011)

found that both N- and C-terminal fragments were required for TEP1 to interact with LRIM1/

APL1C [16]. Considering the C-terminal coiled coil domain is 17 nm end-to-end, longer than

TEP1 itself, it is entirely possible that additional interactions could involve the N-terminal

fragment of TEP1.

The LRIM1/APL1C heterodimer has long been known to stabilize TEP1cut, and it has been

shown that the LRR domains alone or as heterodimers with deletions in the coiled-coil domain

are insufficient to stabilize TEP1cut [9, 16]. Here, we specifically purified heterodimers of only

the coiled-coil domains of LRIM1/APL1C and show they are sufficient to stabilize TEP1�S1cut,

confirming that the coiled-coil domain is both necessary and sufficient to stabilize TEP1cut.
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This is significant because the coiled-coil domain is shared among the related genes APL1A1

and APL1B, which also form a complex with LRIM1 [17].

As presently stands, the inability to isolate a stable complex of TEP1cut and LRIM1/APL1C

in solution prevents structural studies that require a homogeneous and monodisperse sample.

Additional engineering to solubilize TEP1cut or prevent its aggregation, the identification of

orthologs or paralogs for the TEP1cut/LRIM1/APL1C complex, or approaches for the analysis

of heterogeneous specimens are necessary to define the molecular basis of LRIM1/APL1C reg-

ulation of TEP1 activation.

Materials and methods

Molecular cloning

DNA for TEP1�R1 and TEP1�S1 was obtained from cDNA clones or by total gene synthesis as

previously described [8, 15]. DNA for TEP1�R2 and TEP1�S2 were generated by total gene syn-

thesis from sequences in the 4arr laboratory strain [11]. All TEP1 sequences were subcloned

into pFastbac1 with a C-terminal 6×His tag. Additional mutations within the thioester domain

were introduced by QuickChange site-directed mutagenesis (Stratagene). LRIM1 and APL1C
were subcloned into the pFastbac-Dual vector with C-terminal 6×His tag on APL1C. Con-

struction of LRIM1-FLAG/APL1C-D26-130-6×His has been previously described [8, 9]. Trun-

cations of the LRR and coiled-coil domains were introduced by site-directed mutagenesis.

Fig 4. Illustration of engineered disulfides stabilizing the TED-MG8 interface. Front (upper) and top (lower) views of the TED-MG8

domain interface of TEP1�S1 with modeled engineered disulfides K973C/Q1228C, M801C/V1102C and K969C/Y1275C.

https://doi.org/10.1371/journal.pone.0218203.g004
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Protein expression and purification

All TEP1 and LRIM1/APL1C constructs were expressed using the baculovirus expression sys-

tem using T.ni cells in ESF-921 media (Expression Systems LLC). TEP1 was expressed for ~60

h at 27˚C, LRIM1/APL1C for ~48 h at 27˚C. Conditioned medium was concentrated and dia-

filtrated with 250 mM NaCl, 20 mM Tris-HCl pH 7.8 using Centramate tangential flow filtra-

tion system (Pall Biosciences). The diafiltrated medium was loaded onto 5 ml Talon resin

(Clontech), washed with 10 CV of 250 mM NaCl, 20 mM Tris-HCl pH 7.8 and eluted by a 20

ml gradient to 250 mM imidazole.

TEP1 eluate from Talon resin was immediately desalted on a HiTrap 26/10 column (GE

Healthcare) equilibrated with 100 mM NaCl, 20 mM Tris-HCl pH 8.0, loaded onto a MonoQ

column (GE Healthcare) and eluted with a linear gradient from 100–600 mM NaCl. Further

purification was achieved by gel filtration (Superdex 200) equilibrated with 100 mM NaCl 20

mM Na-Hepes pH 7.5 and cation exchange on a MonoS column. LRIM1/APL1C eluate from

Talon resin was desalted into 50 mM NaCl, 20 mM Tris-HCl pH 8.5 prior to MonoQ chroma-

tography followed by final purification on gel filtration (Superdex 200) equilibrated with 100

mM NaCl 20 mM Na-Hepes pH 7.5.

Limited proteolysis of TEP1

Purified TEP1 was cleaved using bovine pancreatic trypsin (Sigma) at a 1:20 molar ratio to

TEP1 in 0.2 M NaCl and 20 mM HEPES pH 7.5. Samples were incubated for 5 min at 37˚C,

then placed on ice and diluted 2-fold with 20 mM HEPES pH 7.5, 0.2 mM Leupeptin hemisul-

fate (Sigma), and 0.2 mM soybean trypsin-chymotrypsin inhibitor. Samples were immediately

repurified on a Mono S 5/50 cation exchange column (GE Healthcare).

Thioester hydrolysis precipitation assay

TEP1 stability studies were performed as previously described [8]. Following limited proteoly-

sis and re-purification, TEP1 samples were concentrated to an OD280 of 0.5–1.0 and stored at

20˚C. Samples and matching blank (filtrate from concentration) were centrifuged at 17,000×g,
20˚C for 10 min and A280-A330 recorded. Separate time points are all derived from the same

protein batch. Half-lives were calculated from samples with a decay to<25% initial value and

results derived from three independent experiments.

Disulfide thiol assay

The method for titration of cysteines forming disulfide bonds was adapted from a standard

procedure [18]. All reagents were prepared fresh to minimize oxidation. TEP1 (3–4 nmol,

400 μl at 1–1.6 mg/ml) was denatured with 2 ml denaturing buffer (6 M guanidinium chloride,

0.1 M Na2HPO4, pH 8.0), further exchanged into denaturing buffer on a PD-10 desalting col-

umn (GE Healtchare) and concentrated to ~2 ml. Free thiols were carboxymethylated with 25

mM iodoacetic acid (30 min incubation in dark, room temperature). Unreacted iodoacetic

acid was removed by buffer exchange followed by reduction with 50 mM DTT (1–2 h, room

temperature). Unreacted DTT was removed by buffer exchange, concentrated to 50–70 μM

(<100 μl). The protein concentration was determined by A280 measurement on NanoDrop

(Thermo Fisher) and sample used immediately. DTNB (Ellman’s reagent), 10 μl at 4 mg/ml,

was added to 200 μl of 2.5–3.5 μM TEP1 with a standard curve of 6.25–100 μM cysteine to ver-

ify linear response. However, the calculation of thiol concentration was made directly using

the molar extinction coefficient of DTNB at 412 nm, E412TNB2- = 1.37×104 cm-1M-1, divided
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by the protein concentration to yield the number of cysteines present in disulfide bonds from

three separate measurements.

Co-immunoprecipitation and western blotting

Rabbit polyclonal antibodies for TEP1�R1 have been previously described [9]. 10 μg of protein

mixtures was diluted to 1 ml in IP buffer (50 mM Tris-HCl pH 7.8, 100 mM NaCl, 2 mM

EDTA, 0.1 μg/ml BSA, 0.1% Tween-20). IP was performed with αFLAG-M2 agarose (Sigma).

Beads were washed twice each with 50 mM Tris-HCl pH 7.8 ± 0.5 M NaCl and eluted by incu-

bation with 2X Laemmli buffer. SDS/PAGE was run with 4–20% minigels, transferred to nitro-

cellulose and Western blotting performed with monoclonal α6×His/HRP (Clontech) or

αTEP1.
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