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Abstract: Hydrogels wound dressings have enormous advantages due to their ability to absorb high
wound exudate, capacity to load drugs, and provide quick pain relief. The use of hydrogels as wound
dressings in their original form is a considerable challenge, as these are difficult to apply on wounds
without support. Therefore, the incorporation of polymeric hydrogels with a certain substrate is an
emerging field of interest. The present study fabricated cellulose hydrogel using the sol–gel technique
and reinforced it with nonwoven cotton for sustainable wound dressing application. The nonwoven
cotton was immersed inside the prepared solution of cellulose and heated at 50 ◦C for 2 h to form
cellulose hydrogel–nonwoven cotton composites and characterized for a range of properties. In
addition, the prepared hydrogel composite was also loaded with titania particles to attain antibacterial
properties. The Fourier transform infrared spectroscopy and scanning electron microscopy confirmed
the formation of cellulose hydrogel layers inside the nonwoven cotton structure. The fabricated
composite hydrogels showed good moisture management and air permeability, which are essential
for comfortable wound healing. The wound exudate testing revealed that the fluid absorptive
capacity of cellulose hydrogel nonwoven cotton composite was improved significantly in comparison
to pure nonwoven cotton. The results reveal the successful hydrogel formation, having excellent
absorbing, antimicrobial, and sustainable properties.

Keywords: hydrogels; nonwoven; cellulose; wound dressing

1. Introduction

Traditional wound dressings such as bandages, gauze, and cotton pads [1] are often
used to cover the wound [2]. These dry dressings lack antibacterial activity and are not
efficient in terms of absorbing wound exudate and relieving pain, therefore likely to delay
the wound healing process [3,4]. Moreover, these dressings adhere to the wound through
sticky exudate, which debrides the wound and damages the granulation tissues upon
removal from skin [5]. In the recent era, wound dressings are not used only for wound
covering but also for accelerating the wound healing process. Numerous current research
studies revealed that a moist environment is needed to accelerate the wound healing
process [6,7]. Based on this requirement, wet wound dressings have been developed, which
provide a moist environment, accelerate the wound healing process and skin repair, and
avoid scar formation [2,8]. In the light of these requirements, the hydrogel-based wound
dressing is an emerging field in the area of wound management.
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Hydrogels are 3D crosslinked polymeric gels that have the capacity to trap a large
amount of water [9]. The hydrophilic crosslinked polymer and water are the two com-
ponents of the hydrogel network [10]. Hydrogels have the ability to absorb and hold
large amounts of water while maintaining their three-dimensional structure and physical
shape [11,12]. Owing to the the large water absorption capacity, high swelling charac-
teristics, good biocompatibility, and biodegradability [13,14] hydrogels have numerous
applications in the field of agriculture [15–17], food [18–20], cosmetics [21,22], biomedi-
cal [23,24], tissue regeneration [25,26], and wound dressings [27,28]. The hydrogel-based
wound dressings have direct contact with the wound, so they must exhibit biocompatible,
biodegradable, and nontoxic properties [2,29–31]. Hydrogels are commonly prepared from
organic materials such as alginate, starch, chitosan, and cellulose. Microcrystalline cellulose
(MCC) synthesized from α-cellulose precursors are used in pharmaceutical applications
owing to their functional properties [32]. MCC is a biocompatible and biodegradable
polymer, with high water-absorbing properties [33–36]. Moreover, MCC is the derivative of
cellulose that is an abundantly available natural polymer with a tight molecular chain struc-
ture and is stabilized with hydrogen bonding [37]. Cellulose-based hydrogels have various
applications in the area of wound care due to the increasing demand for environmentally
friendly and sustainable products [38–40].

The resistance against microbes is another advantage of modern wound dressings.
Several metal oxides have antibacterial properties that have drawn increasing attention
in the medical field. Among these metal oxides, titanium oxide (TiO2) has considerable
potential in the biomedical field [41,42]. TiO2 has the ability to destroy bacteria, viruses, and
even cancer cells [43,44]. Moreover, it is a nontoxic, biocompatible, and biologically inert
substance for humans. Therefore, TiO2 particles have the potential to be incorporated into
the hydrogel structure for wound dressing applications [45]. Biomedical hydrogel-based
wound dressings with antibacterial properties exhibit many desirable properties, but they
are difficult to grip on the wound area [2,46]. Hydrogels do not have the desired strength
and flexibility, which causes their slippage and breakage from the wound. Therefore, there
is a need for supporting material that provides stability and shape to a hydrogel-based
wound dressing. Textile fabrics (woven and nonwoven) are one of the best substrates to
incorporate with hydrogel without affecting the functional characteristics of the hydrogel-
based wound dressings [47].

Nonwoven fabrics are soft, lightweight, highly porous, and easy to manufacture
with less cost among the available textile substrates. Nonwoven fabrics are manufactured
by direct conversion of fibers into fabrics, eliminating the process of yarn manufactur-
ing [48]. Owing to their excellent absorbing and highly porous properties, nonwoven fab-
rics are among the best options as supporting materials for textile-based hydrogel wound
dressings [49].

Cotton fiber is commonly used in various kinds of wound dressings due to its bio-
compatibility and biodegradability. Cotton is a naturally available, soft, flexible, and
durable fiber that exhibits excellent water-absorbing properties due to the presence of hy-
drogen bonding in the cellulose structure [50,51]. Moreover, cotton fibers are comfortable
and friendly to tissues [52]. Therefore, the combination of cotton fiber nonwoven and
MCC-based hydrogel is one of the potential choices for wound dressings with medium-
to-heavy amounts of exudates. The literature revealed that the TiO2-induced cellulose
hydrogel–nonwoven cotton fiber has not been developed. In this work, TiO2-loaded cel-
lulose hydrogel reinforced with nonwoven cotton was prepared by the sol–gel technique.
The prepared composite has a dual advantage due to the combination of cotton fabric
with cellulose hydrogel. The fabric acts as support and covers the wound, while cellulose
hydrogel can absorb wound exudate and provide a moist environment for rapid healing.
Additionally, the loading of TiO2 makes the composite antibacterial for wounds.
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2. Materials and Methods
2.1. Materials

Microcrystalline cellulose (MCC) (purity = 99.5%), titanium oxide (TiO2)
(purity = 98.6%), sodium hydroxide pellet (NaOH) (purity = 99.9%), calcium chloride
dehydrate (CaCl2 × 2H2O) (purity = 98.9%) and sodium chloride (NaCl) (purity = 99.9%)
were purchased from “Daejung Chemicals and Metals Co. Ltd., Siheung-si, Korea”. Cotton
fibers were purchased from local market. The cotton and cellulose are biodegradable in
nature, whereas titanium oxide is considered as chemically stable and a biocompatible
biomaterial.

2.2. Nonwoven Cotton Fabric Development

The cotton fibers were opened through the “Toyoda Ohara Blow Room” line. The
blow room line consists of sequences of machines containing a bale opener, fine opener, and
condenser. The opened fibers were collected for nonwoven web development. Then, the
opened fibers were subjected to the fiber opening machines, which fed the fibers toward
the carding and cross-lapping machine. A lab-scale, needle-punching machine was used
for the nonwoven fabric formation. The fibers in the web were entangled with the needle-
punching technique operating at 100 strokes/min and delivered the fabric at a delivery
speed of 0.9 m/min. The GSM (g/m2) (weight of one square meter fabric in gram) of the
developed nonwoven fabric was 150.

2.3. Development of Cellulose Hydrogel

An aqueous solution of 6 wt.% microcrystalline cellulose (MCC) containing 6 g MCC
and 94 g water was prepared by stirring it at 5 ◦C for 2 h. Another aqueous solution
of 7.6 wt.% NaOH was prepared by stirring at −6 ◦C for 2 h. NaOH is an effective and
low pollution solvent to dissolve cellulose by using its low concentration in water at low
temperatures. Both solutions (MCC and NaOH) were mixed at −6 ◦C and continuously
stirred in a mixed solution for 2 h. After 2 h of stirring at −6 ◦C, the cellulose hydrogel was
developed. The process flow of cellulose hydrogel reinforced with nonwoven cotton is
shown in Figure 1.
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A homogeneous aqueous solution of TiO2 (10 wt.%) was prepared by stirring it at
room temperature for 1 h. The developed nonwoven cotton fabric was cut in 5 × 5 cm
dimensions. The fabric was dipped in the cellulose hydrogel at room temperature for 1 h.
After that, hydrogel, reinforced with nonwoven cotton, was dried in an oven at 50 ◦C for
two hours. The hydrogel was crosslinked with the nonwoven when heated at 50 ◦C. Then,
the washing of composite with the copious amount of distilled water was carried out,
which helped to check the regeneration and removal of sodium base. The pH value of the
prepared composite in water was obtained in a range of 7.1, which confirmed the release
of NaOH in water. A sample of hydrogel reinforced with nonwoven cotton fabric before
drying was dipped in TiO2 solution for 24 h at room temperature. Thereafter, samples were
dried in an oven at 50 ◦C for 2 h.

2.4. Characterization

Three types of samples—the simple nonwoven fabric (CN), hydrogel reinforced
with cotton nonwoven fabric (CNHG), and TiO2-loaded cellulose hydrogel reinforced
with nonwoven cotton (TiO2CNHG)—were characterized for a range of properties, as
described below.

2.4.1. Scanning Electron Microscopy Analysis

Morphological analysis of hydrogel reinforced with nonwoven cotton was charac-
terized by using a scanning electron microscope (SEM) (Quanta FEG 250, FEI Asia). The
samples were coated (3 to 4 nm) with gold before testing. The morphology of pure nonwo-
ven cotton and cellulose hydrogel-incorporated nonwoven cotton were analyzed visually
from the SEM images.

2.4.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

The presence of hydroxyl group, TiO2 groups in the samples were characterized by
using FTIR spectroscopy from wave number 4000 to 400 cm−1 at transmittance mode.

2.4.3. Mechanical/Comfort Properties Analysis

A tensile strength tester was used to determine the tensile strength and elongation
of the prepared samples. This tensile testing was performed according to ASTM D5035-
19. To analyze the comfort behavior of prepared composite for wound dressing, the
air permeability test was performed on an air permeability tester “SDL-ATLAS, China”
according to ASTM D737. A testing area of 20 cm2 and the operating pressure of 100
Pascal were selected for the air permeability test. Moreover, the moisture management
was analyzed with an SDL-ATLAS moisture management tester (MMT) according to the
standard test method of AATCC 195. In this method, MMT drops a 0.9% saline solution
drop on the 3 × 3 cm fabric surface and measures its moisture management characteristics.

2.4.4. Exudate-Absorbing Characteristics

The wound exudate absorption analysis was carried out according to EN 13,726-1:2002.
A 2.298 g sodium chloride (NaCl) and 0.368 g calcium chloride dehydrate (CaCl2 × 2H2O)
were dissolved in one-liter water and heated to 37 ◦C.

The developed three composite samples, with the dimensions of 5 × 5 cm, were
weighed and put into their Petri dishes, as shown in Figure 2. The solution was spread
uniformly on the composite samples, and their Petri dishes were placed in an oven at 37 ◦C.
After two hours, the samples were hung for 30 sec for the removal of the extra amount of
fluid. Then, wet samples were weighted, and fluid absorptive was calculated according to
the following expression:
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fluid removal.

Fluid absorptive (%) = (wet weight of composite − dry weight of composite)/(dry
weight of composite) × 100

The same procedure was repeated for 24 h.

2.4.5. Antibacterial Assay

An agar disk diffusion method was employed for the assessment of the antibacterial
activity of the developed composite. An American type Staphylococcus aureus was used,
which is a Gram-positive and most abundant microbe of the skin flora. It is well known
for its association with skin and soft tissue infections [53]. Staphylococcus aureus of cul-
ture number 6538 bacteria was grown overnight in a nutrient broth solution at 35–37 ◦C
temperature and continuously stirred at 150 r.p.m. All developed samples were sterilized
at 121 ◦C in steam for 15 min. Then, the samples were placed in an agar disk and put
inside an incubator for 18 hours. Afterward, the antibacterial properties of all samples
were visually analyzed from agar disk images. The antibacterial activity experiment was
performed in darkness.

2.4.6. TiO2 Particle Size Analysis

The particle size of TiO2 particles on the developed composite was by Image.J soft-
ware. The average particle size on the composite was 222.02 nm as presented in Figure 3.
Moreover, TiO2 mass in the composite was 0.118 g (10%), which was determined by
gravimetric analysis.
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3. Results and Discussion
3.1. Morphology by Scanning Electron Microscopy (SEM)

Morphological characteristics of the developed samples were analyzed by SEM. The
SEM images of pure nonwoven cotton fabric, cellulose hydrogel reinforced with nonwoven
cotton fabric, and TiO2-loaded cellulose hydrogel reinforced with nonwoven cotton are
shown in Figure 4a–c, respectively.
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Figure 4. Morphological characteristics of the developed wound dressings: (a) pure nonwoven
cotton fabric; (b) cellulose hydrogel reinforced with nonwoven cotton fabric; (c) TiO2-loaded cellulose
hydrogel reinforced with nonwoven cotton...Figure 4a shows the entanglement of pure cotton, which
was achieved by the needle-punching technique. Figure 4b provides evidence for the presence of
cellulose hydrogel on the surface of cotton fibers. Figure 4c shows the presence of TiO2 particles
on the nonwoven cotton cellulose hydrogel composite. This prepared composite has large spaces
between the fibers to absorb a high amount of water and wound excaudate. The hydrogel layer is
mostly formed on the surface of fibers which has a great capacity to absorb fluids.

Microscopic images were also taken to analyze the surface appearance of cellulose
hydrogel– nonwoven cotton composite. Figure 5a shows a microscopic image of the pure
nonwoven cotton fabric, and Figure 5b presents the cellulose hydrogel reinforced with
nonwoven cotton fabric.

The images show that pure nonwoven cotton and cellulose hydrogel–nonwoven
cotton composite have smooth dirt-free surfaces, and no torn or broken hydrogel or cotton
fibers pieces were seen.
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3.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

The FTIR spectra of CN, CNHG, TiO2CNHG samples are shown in Figure 6.
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The absorption peaks occurring at 3301 cm−1 and 3295 cm−1 confirmed the presence
of the –O–H group of cotton and MCC [54]. The absorption peaks of –O–H stretching were
observed from 3295 cm−1 to 3334 cm−1 when the CNHG sample was coated with TiO2.
The absorption peaks occurred at 1052 cm−1 and 1051 cm−1, confirming the presence of a
strong –C–O group of cellulose [55]. The peaks occurring at 529 cm−1 in the CNHGTiO2
sample are because of the presence of the TiO2 functional group [56].

3.3. Air Permeability (AP)

Nonwoven fabrics possess excellent porous structures containing a high volume of
air. Nonwoven fabrics have excellent air permeability properties, owing to their porous
structure. Air permeability of needle-punched nonwoven fabrics depends on GSM, punch
density, and porosity of the structure [57]. The air permeability (Face/Back) values of the
CN, CNHG, and CNHGTiO2 samples are shown in Figure 7.
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The pure cotton nonwoven fabric has an air permeability value of 770 mm/sec, as
compared with the MCC-reinforced fabric, with an air permeability value of 580 mm/sec.
These results determined that the macropores of nonwoven fabrics were filled with cellulose
hydrogel, which reduced air permeability [58]. The reduction in air permeability was
caused by the formation of hydrogel into the structure of nonwoven cotton. The results
also showed that in CNHG coated with TiO2 solution, air permeability decreased to a
value of 552 mm/sec. The analysis revealed that TiO2 penetrated the open pores of the
CNHG samples.

3.4. Moisture Management (MMT)

Moisture management property (MMT) is the measurement of dynamic liquid trans-
portation, in multidimensional textile substrates. Moisture management properties of the
developed samples are given in Table 1.

Table 1. Moisture management properties of the developed three samples.

Sample ID
Wetting

Time Top
(sec)

Wetting Time
Bottom (sec)

Top
Absorption
Rate (%/sec)

Bottom
Absorption
Rate (%/sec)

Top Max
Wetted Radius

(mm)

Bottom Max
Wetted Radius

(mm)

Top Spreading
Speed

(mm/sec)

Bottom
Spreading

Speed (mm/sec)

CN 9.156 119.95 49.39 0.0 10 0.0 0.684 0.0
SD 3.2 2.8 2.99 3.8 2.56 2.1 2.21 2.5

CNHG 2.766 23.166 81.21 3.75 15 0.0 4.653 0.0
SD 3.5 3.33 2.98 2.89 2.51 3.4 3.33 3.4

CNHGTiO2 2.203 4.43 55.016 18.51 15 30 6.40 5.44
SD 2.11 2.22 3.1 3.3 2.5 2.1 2.6 3.3

The top wetting time of CN, CNHG, and CNHGTiO2 was 9.15 s, 2.766 s, 2.203 s,
respectively. The results showed that when the MCC hydrogel was applied on the cotton
nonwoven fabric, the water absorption time was decreased. This clearly pointed to the high
absorption properties of the hydrogel. The top wetted radii of CN, CNHG, and CNHGTiO2
were 10 mm, 15 mm, and 15 mm, respectively. This means that the liquid can quickly
spread onto the whole surface of the wound dressing and provide a moist environment for
rapid wound healing [59].
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Fingerprints of moisture management properties of CN, CNHG, and CNHGTiO2 are
shown in Figure 8. Figure 8a shows that the top wetting time and absorption rate of the
CN sample fell in a good grade, while Figure 8b,c for CNHG and CNHGTiO2 samples
indicates that they fell in excellent to a very good grade. The top spreading speed (mm) of
the CN sample fell in poor grade, while CNHG and CNHGTiO2 fell in excellent grade. The
bottom absorption rate of CN, CNHG, and CNHGTiO2 fell poor to fair grade. This result
indicated that when the developed wound dressing absorbed exudate from the wound
area, it retained it, not transferring it to the outer surface. This provides a leakage-proof
wound dressing for medium-to-high exudate-releasing wounds.
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3.5. Tensile Strength

The mechanical strength and elongation of CN, CNHG, and CNHGTiO2 samples are
shown in Figure 9. CN, CNHG, and CNHGTiO2 have a dry tensile strength of 3.16 N, 7.8 N,
and 8.45 N, respectively, and a dry form elongation of 53.2%, 63%, and 57.14%, respectively.
Moreover, CN, CNHG, and CNHGTiO2 have a wet tensile strength of 3.3.04 N, 46.14 N, and
54.93 N, respectively, and wet form elongation of 80.9%, 137.54%, and 54.85%, respectively.
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Figure 9. Tensile strength/elongation properties of (a) CN, CNHG, and CNHG TiO2 dry samples, and (b) CN, CNHG, and
CNHG TiO2 wet samples.

The tensile strength of the CNHG was higher than CN samples owing to the strong
hydrogen bonding between cotton fiber and cellulose hydrogel. Moreover, when CNHG
was coated with TiO2, the tensile strength was further increased, from 7.8 N to 8.45 N. TiO2
particles act as a coating on the composite surface. This coating may alter the mechanical
properties of the surface; for example, it slightly increased surface rigidity. The TiO2
particles were entrapped between cotton fibers, which hindered the moment of fibers.
These particles helped to share the external load, which resulted in higher strength [60].
Moreover, when CN was coated with cellulose hydrogel, elongation increased, but when
CNHG was coated with TiO2, elongation decreased due to minor rigidity of the TiO2 layer.

3.6. Wound Exudate-Absorbing Characteristic Analysis

Wound exudate absorption is the primary factor considered while designing wound
dressings for the provision of an adequately moist environment. The fluid absorbency
% age calculations are given in Table 2, and wound exudate-absorbing characteristics
vs. time for CN, CNHG, and CNHGTiO2 samples are shown in Figure 10. CN, CNHG,
and CNHGTiO2 samples have the maximum fluid absorbency % age of 410%, 540%, and
547%, respectively.

Table 2. The fluid absorbency % age calculation of the developed three samples.

Time (hrs.) CN Wt. (mg) CNHG Wt.
(mg)

CNHGTiO2
Wt. (mg)

Fluid
Absorbency %

Age (CN)

Fluid
Absorbency %
Age (CNHG)

Fluid Absorbency
% Age

(CNHGTiO2)

0 100 211 215 180 296 314
2 279.7 835 890 180 296 314
4 300 867 1006 200 311 368
6 329.2 932 1038 229 342 383
8 340 938 1082 240 345 403
10 342.5 944 1104 243 347 413
12 355.1 957 1127 255 354 424
14 388.9 958 1208 289 354 462
16 391.5 990 1230 292 369 472
18 427 1033 1235 327 390 474
20 455 1101 1261 355 422 487
22 480 1162 1266 380 451 489
24 510 1350 1390 410 540 547

Average 361.45 944.46 1080.92 275.38 370.54 426.92
SD 104.70 258.63 291.65 74.88 67.97 70.14

CV% 28.97 27.38 26.98 27.19 18.34 16.43
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The results indicated that when cellulose hydrogel was applied to the nonwoven
cotton fabric, the fluid absorbency was increased by 31.7%. This increase was due to the
strong hydrophobic characteristics of the cellulose hydrogel.

The results showed that the developed hydrogel had a strong capability for absorbing
and retaining water, and it also had an adequate capacity for wound exudate absorption.
This moist environment can help the rapid wound healing process [61].

3.7. Antibacterial Properties

Antibacterial properties were determined by the agar disk diffusion technique. The
antibacterial characteristics of CN, CNHG, and CNHGTiO2 are shown in Figure 11. TiO2
mass in the composite was 0.118 g (10%), which was determined by the gravimetric method.
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It was observed that CN and CNHG samples did not inhibit the growth of bacteria, but
the CNHGTiO2 sample inhibited bacterial growth. Although the TiO2-loaded composite
was not highly antibacterial, it demonstrated a moderate-to-low level of antibacterial activ-
ity, which was due to growth inhibition and the bactericidal effects of direct contact [62–65].
It was observed that no colony of bacteria was formed around and on the surface of the
TiO2-loaded composite.

4. Conclusions

The sol–gel technique can be used to develop composites of cellulose hydrogels
reinforced with nonwoven cotton fabrics for wound dressing applications. The TiO2
coating on the surface of fabricated composite materials yielded good antibacterial activity.
The air permeability of the hydrogel composite was decreased as the hydrogel occupied
the pores present in the nonwoven cotton. Due to the strong hydrophilic characteristics
of hydrogel, the mechanical strength, absorptive capability, and moisture management
of the fabricated composite increased, compared with simple nonwoven cotton fabric.
In addition, the strong hydrated structure of the cellulose hydrogel–nonwoven cotton
composite may provide a moist environment for an enhanced wound healing process.
Moreover, cellulose-based composite materials are completely biodegradable, sustainable,
and environmentally friendly for several biomedical applications. Therefore, the developed
cellulose hydrogel nonwoven composite has an absorptive fibrous hydrogel layer and
promising potential for applications for medium-to-high exudate wounds.

Author Contributions: Conceptualization, F.A. and S.A.; methodology, F.A. and B.M.; software,
B.M.; validation, F.A., Y.N. and F.A.B.; formal analysis, Y.N. and M.S.Z.; investigation, F.A. and S.A.;
resources, S.A.; data curation, F.A., B.M. and A.A.; writing—original draft preparation, F.A. and B.M.;
writing—review and editing, Z.U. and M.S.Z.; visualization, Z.U. and A.A.; supervision, S.A. and
A.R.; project administration, S.A. and F.A.; funding acquisition, S.A. and Y.N. All authors have read
and agreed to the published version of the manuscript.
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