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Objectives. The purpose of this analytical study was to examine and critique the engineering foundations of commonly accepted
biomechanical principles of mandible fracture repair. Materials and Methods. Basic principles of static equilibrium were applied
to intact and plated mandibles, but instead of the traditional lever forces, the mandibles were subjected to more realistic occlusal
forces. Results. These loading conditions produced stress distributions within the intact mandible that were very different and more
complex than the customary lever-based gradient. The analyses also demonstrated the entirely different mechanical environments
within intact and plated mandibles. Conclusions. Because the loading and geometry of the lever-idealized mandible is incomplete,
the associated widely accepted bone stress distribution (tension on top and compression on the bottom) should not be assumed.
Furthermore, the stress gradients within the bone of an intact mandible should not be extrapolated to the mechanical environment
within the plated regions of a fractured mandible.

1. Introduction

The mandible has long been regarded as a lever [1–13]. There
have been questions about its class I versus II versus III
classification, or it being a lever in the first place [14–16]
and the loading assumptions [17]. But it is the lever model,
coupled with the bending beam analogy of the mandible that
form the foundation of the generally accepted (longitudinal)
stress distribution pattern depicted in Figure 1(a) [18–21]
and its variant, Figure 1(b) [18, 20, 22, 23].

The lever is an oversimplified structural representation
of the jaw, so biomechanical concepts derived from it should
be suspect. In the present context, the lever’s intrinsic
vertical-only occlusal force is its primary drawback. Thus,
the principal purposes of this paper are to demonstrate, with
basic analytical engineering mechanics, but barebones math-
ematics, the shortcomings of the lever/beam model-based
concepts that relate to the surgery of the mandible. More
specifically, the central issues involve (1) the relationship
between occlusal force direction and the associated stress
distributions within an intact mandible and (2) the extrap-
olation of those stress fields to a plated fractured mandible.

2. Materials and Methods

Figure 2(a) is a partial (because dimensions irrelevant to
this discussion are omitted) free-body diagram (FBD) of
the frame- (versus lever-, Figure 1) idealized mandible.
An FBD, used in equilibrium analysis, shows all external
loads (forces and moments) that act on an isolated object
(i.e., the mandible or a portion of it) of interest. For the
purposes of this project, the crucial difference between the
lever (Figure 1) and the frame model is that in the latter, the
direction of force vector T is not necessarily vertical, Figures
2 and 3. (The governing equations for Figure 2(a) are derived
and solved elsewhere [24].)

The FBD in Figure 2(b) is of an imaginary or real (i.e.,
fractured) segment of the mandible that is anterior to the
arbitrarily defined (at distance h from the occlusal contact)
circle, ©, on the approximated centroidal axis (dashed line)
of the mandible. V and H represent the internal shear
and normal (perpendicular) forces, respectively, and M
represents the internal moment. V, H , and M symbolize the
net internal loads at the interface (real or imaginary) that are
necessary to maintain the static equilibrium of the anterior
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Figure 1: (a) The typical representation of the lever-based tension on top/compression on bottom (tot/cob) stress distribution within the
mandible. (J, M, and T are the joint, muscle, and occlusal forces, respectively.) (b) a variant depiction of tot/cob.
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Figure 2: (a) Nonlever model of the mandible illustrating a generic tooth contact, adapted from Katona [24]. The approximation to the
centroidal (neutral) axis of the mandible (dashed line) is a distance g below the tooth-tooth contact point. The anterior section of interest
is demarcated by horizontal distance h from the tooth contact. (b) FBD (free-body diagram) of the (fractured-off or imaginary) anterior
segment.

segment when occlusal force T acts on it. Applying static
equilibrium conditions to the FBD in Figure 2(b) yields

∑
Forcesvertical = 0 : V − Ty = 0 or V = Ty ,

∑
Forceshorizontal = 0 : H + Tx = 0 or H = −Tx,

∑
Moments abouto = 0 : −M −hTy − gTx = 0

or M = −hTy − gTx.
(1)

The right hand sides of the equations are known because they
are specified or calculated. For the purposes of this project, it
is important only to recognize that V and H are determined

by Ty and Tx, respectively, and that M is a function of both
Ty and Tx, as well as anatomy (g) and the horizontal distance
(h) between the section and the occlusal contact.

The analysis is based on the range of occlusal force
directions represented in Figure 3(a). Three contact configu-
rations are possible between opposing teeth. Occlusal contact
can occur between a maxillary cusp distal incline and a
mandibular cusp mesial incline (T0, T1, and T2), a maxillary
cusp mesial incline against a mandibular cusp distal incline
(T4) or flat-plane occlusion (T3, also in Figure 1). (According
to classic friction principles, assuming frictionless contact,
the direction of a contact force between surfaces must be
perpendicular to their common tangent. The qualitative
outcomes presented herein would not be affected by friction
[25].)
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Figure 3: (a) The 5 mechanically distinctive orientations of T defined by relative location (g and h, Figure 2(b)) and cusp contact inclination.
T1, T0, and T2 have posteriorly directed horizontal components. T3 is vertical. T4 has an anterior component. T1 produces a ccw moment
about the circle. T0 generates no moment. T2, T3, and T4 generate cw moments. (b) A generic representation of Figures 2(b) and 3(a).
Note that a change in the anterior-posterior relative location of bite contact and © is defined by h. Occlusal plane height is given by
g.

T0−−4 can be characterized by the positions of their
lines-of-action (LOA) relative to the circle, ©. T1 passes
above (or equivalently, behind) it, thus requiring a clockwise
(cw) moment, −M, for equilibrium. T0 passes through it,
therefore M = 0. Equilibrium dictates that M must be
counterclockwise (ccw) with T2, T3, and T4, because they
pass below or in front of ©.

The second relevant characteristic of a T is the direction
of its horizontal component. T0, T1, and T2 are directed
posteriorly; therefore, for equilibrium, H must be to the
right. Because T3 (the lever analogue) is vertical, H = 0. The
forward component of T4 requires that H must be to the
left. Thus, the 5 Ts generically represent the permutations
of the LOA orientations relative to © and the horizontal
force component directions. These combinations are drawn
in Figure 4.

It is emphasized that (1) and Figures 2–4 (essentially,
V, H , and M) apply identically to the imaginary anterior
segment of an intact mandible and to an actual fractured-off
section, but that is where the similarity ends. The physical
manifestations of V, H , and M in the two scenarios are
fundamentally distinct. They are not interchangeable. In the
intact mandible, the system that is equivalent to V, H , and
M is produced by the stresses within the bone. In the plated
mandible, it is produced by the loads in the plates and by
contact between the fractured bone surfaces. The demon-
stration of this critical difference constitutes a result of this
study.

2.1. Intact Mandible. Elementary engineering beam theory is
used to determine the stress systems (Figure 5) that are equiv-
alent to a specific set of +V, ±H , and ±M (Figure 4). (The
identical engineering principles are implicitly behind the
generally accepted as “obvious” Figure 1 stresses.) A uniform
compression is the equivalent to an anteriorly directed H

(cH in Figures 5(a), 5(b), and 5(c)). Similarly, uniform tensile
stress, tH , is the equivalent to the posteriorly directed H in
Figure 5(e). (There is no uniform tension or compression
associated with T3, Figure 5(d), because T3, being vertical,
requires that H = 0 for equilibrium.) The equivalents of a
cw M (Figure 5(b)) and a ccw M (Figures 5(c), 5(d), and
5(e)) are stress gradients with compression-on-top/tension-
on-bottom (cM on top/tM on bottom) and the opposite,
respectively. (A uniform stress, without a gradient, is
sufficient for T0 equilibrium, Figure 5(a).) For completeness,
the shear stress equivalent of V is included in Figure 5,
but as generally done in the literature, it is henceforth
ignored.

2.2. Plated Mandible. As noted above, Figures 2–4 and
(1) also apply exactly to a plated fractured mandible
(Figure 6(a)). However, the system that is equivalent to a
specific set of +V, ±H , and ±M (Figure 4) is provided
by the loads (HU, VU, MU, HL, VL, ML, H ′, and V′)
identified in the FBD of the plated fractured segment in
Figure 6(b) not the distributed bone stresses at the imaginary
section (Figures 1 and 5).

H( ), V( ), and M( ) are the unknown forces and moments
acting within the upper and lower plates directly overlying
the bone fracture, Figure 6(b). H ′ and V′ are representative
of the normal (perpendicular) and shear contact forces,
respectively, on the fractured bone surface if the two
segments touch. (According to basic friction theory, the
maximum V′, V′

max = µH ′, where µ is the coefficient of
friction between bones. This is likely to influence the results
of experimental studies in which the mandible analogue
plastic has a different µ than bone.)

Similar to the derivation of (1), three independent
simultaneous equations of static equilibrium, based on the
FBD in Figure 6(b), can be obtained by summing forces
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Figure 4: The internal forces (V and H) and moment (M) that are necessary for equilibrium with: (a) T0; (b) T1; (c) T2; (d) T3; (e) T4.
(This figure applies to the intact and fractured anterior segment.)

in the vertical (2) and horizontal (3) directions and by
summing moments (4) about the tooth contact point

−Ty + V′ + VU + VL = 0, (2)

−Tx + H ′ −HU −HL = 0, (3)

gH ′−hV′−dUHU −hVU + MU − dLHL −hVL + ML=0.
(4)

Because there are fewer independent equations than un-
known forces and moments (only Tx and Ty are known),
this (statically indeterminate) problem cannot be solved
using only the principles of static equilibrium. Fortunately,

solving the problem is not a goal. Equations (2)–(4)
serve as explicit evidence of the complexity of plating
biomechanics.

3. Results

As consequence of LOA position (Figure 3), T1 produces a
counterclockwise (ccw) moment (rotation) about the circle;
T0 does not cause a rotation; T2, T3, and T4 produce
clockwise (cw) rotations. For the equilibrium of the intact or
fractured mandible, these moments, and T’s horizontal and
vertical components, must be opposed by the internal loads
M, H , and V, respectively, Figures 2(b) and 4 and (1).
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Figure 5: The tension, t, and compression, c, bone-stress distributions (not to scale) equivalent to V, H , and M (presented in Figure 4) for
(a) T0; (b) T1; (c) T2; (d) T3; (e) T4. The shaded area in (c) indicates that the LOA of T2 falls between the LOAs of T0 and T3. (These figures
are only relevant to the intact mandible.)

3.1. Intact Mandible. In the intact mandible, V, H , and
M are expressed as equivalent stress distributions, Figure 5.
The sums, according to the superposition principle, of those
individual stress distributions (excluding the V-associated
shear stress) yield the net longitudinal tension/compression
stress gradients shown in Figure 7. (The result in Figure 7(d)
is identical to that depicted in Figure 1(a).)

3.2. Plated Mandible. In a plated mandible, the load system
that is equivalent to V, H and M is supplied by the
loads on the plates and by the contacts between bone
fragments. But even a simplified plated assembly (Figure 6)

is far too intricate to solve with the methods of basic static
equilibrium. Equations (1)–(4) clearly indicate the complex
relationships between what is known/given and what is
unknown.

4. Discussion

Three-dimensional (3D) numerical [26, 27] and experi-
mental [28] models often lead to questions about the
prevailing lever-based (tot/cob) stress distribution dogma.
However, those previous criticisms involve the location of
occlusal forces; the focus of this paper is on the direction
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Figure 6: (a) Simplified FBD of a double plated mandible. (b) FBD of the anterior segment.
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Figure 7: The (not to scale) sum of the longitudinal stress distributions (according to the superposition principle) of the H and M associated
stresses presented in Figure 5 required for the equilibrium of the anterior segment when subjected to (a) T0; (b) T1; (c) T2; (d) T3; (e) T4. For
illustrative purposes, the left side of Figure 7(b) is the actual sum of the longitudinal stress arrows in Figure 5(b), obtained by placing the stress
arrows head-to-tail. Besides the lever (d), tot/cob is present only in (c)-left and (e)-right. (This figure applies only to the intact mandible.)

of those forces. Specifically, the lever-based two-dimensional
(2D) model, Figure 1, consists of one force component
direction (vertical) and one moment component direction
(perpendicular to the page by the right-hand rule). The
model in Figure 2, the basis for the presented analysis, adds
the horizontal force component. This is the most general 2D
model that is possible, and it is used to demonstrate serious
deficiencies in the lever method without having to resort to
the complexities of a 3D approach.

For convenience, and/or perhaps because of the lever
model legacy, studies have generally been limited to occlusal

forces in one (usually vertical, T3) direction. (In some
experimental setups, the occlusal plane is slightly canted,
so with a vertical force, the effect is similar to T4.) But
there is no reason to believe that a bolus of food would
necessarily elicit a vertical, or any particular, occlusal force
direction. If, instead, crown-crown contact is assumed,
then the vertical force assumption restricts analyses solely
to frictionless flat-plane or edge-to-edge occlusions. This
study is framed in the context of crown-crown contacts, so
the specified contact angle (i.e., cusp incline angulation or
incisal guidance) generally defines a nonvertical orientation
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of the occlusal force. Some readers may prefer to attribute
nonvertical occlusal forces to the interactions of muscle
activity with the presence of a bolus of food. In either
case, there is no compelling justification for the vertical
occlusal force simplification, and as demonstrated, occlusal
force direction is a critical determinant of the mechanical
environment, V, H , and M, within a mandible.

The FBD in Figure 3(b) can serve the same purpose as
the FBD in Figure 2(b). However, the former is presented to
emphasize that without the (entirely superfluous) mandible
outline, this is actually a mundane static equilibrium prob-
lem in which a force, T, is being applied at a point located in a
specified (by g and h) position relative to another point,©,
where the reactions V, H and M are of interest. Therefore,
for this aspect of the analysis, the only things that matter
are the direction of T’s LOA and its position relative to (i.e.,
distance from) ©. For specific quantitative values of V, H ,
and M, the magnitude of T would also be needed. But for
the qualitative analysis, the relative magnitudes of V, H ,
and M are sufficient, and because this is a linear model,
these relative magnitudes do not change with changes in T
magnitude. Another purpose for presenting Figure 3(b) as an
alternative is to illustrate that the human mandible drawing
in Figure 2(b) could easily be replaced with a nonhuman
mandible, a machine part, and so forth. without any effects
on V, H , and M.

The 5 occlusal forces, T0−−4, can cover the range
of physiologically possible directions. But instead of a
continuum of directions, it is more practical to consider
categories of force directions defined by the positions of
their LOA’s relative to ©, combined with the directions of
their horizontal components. For example, whenever the
LOA of a force passes through ©, generically represented by
T0, the results presented herein for T0 apply. Naturally, the
angulation of T0 (defined by g and h) would be different
for incisal versus molar contact, nonetheless, qualitatively,
the stress distributions would be identical. This concept is
already being taken for granted with T3, because the stress
distribution in Figure 1 is not specified for any particular
contact location. T2’s LOA is bounded by T3 and T0, shaded
region in Figure 5(c), so the associated stress distribution
can be seen to morph, left to right in Figure 7(c), from the
tot/cob of T3 (Figure 7(d)) to the complete compression
of T0, (Figure 7(a)). Similar trends, but with less defined
endpoints, occur with T1 and T4 because their LOA’s are
bound only on one side by T0 and T3, respectively.

4.1. Intact Mandible. The stress distribution within the body
of the mandible is usually presented as in Figure 1. In
the top part, there is a decreasing tension gradient from
the gingival height, and near the mid-level, there is a
reversal to an increasing gradient of compression toward
the inferior border. This tension on top compression on
bottom (tot/cob) stress distribution is consistent with the
inherent vertical occlusal force of the lever. But in reality,
in general, there must also be a nonzero horizontal bite
force component, Figure 3, whenever inclined planes (cusps)
contact each other. And as demonstrated, its presence has the
potential to profoundly alter the stress distribution within

the mandible from the generally accepted tot/cob (Figures
1, 5(d), and 7(d)) to, as an example, exactly the opposite
(Figure 7(b), left).

The depictions of the relative magnitudes of the stress
distributions in Figures 5 and 7 are not drawn to scale
because the mathematical complexities of the governing
equations, necessary for quantitative results, are being cir-
cumvented and because such detail would be unnecessarily
obfuscating. Serendipitously, the simplifications are perfectly
suited to the mathematics-minimized approach of this paper,
because the critical nuances of Figure 7 can be examined
without resorting to rigorous mathematics.

If T acts through the circle, T0, then the longitudinal
stress in the body of the mandible is entirely a uniform com-
pression, Figures 5(a) and 7(a). (As illustrated in Figure 4(a),
T0 requires that M = 0 for equilibrium, hence the uniform
stress.) That, of course, is contrary to the tot/cob lever-based
stress distribution, Figures 1 and 7(d).

The sums of the H1 associated uniform compression
(cH ) and the cw M1 associated cM → tM gradients of T1,
Figures 4(b) and 5(b), can combine to produce 3 different
net stress distribution patterns, Figure 7(b). Because both
H1 and M1 are associated with compression in the top part
of the mandible (cH and cM, respectively), there is no doubt
that the top part will be in compression. In the bottom part
of the mandible, H1 is associated with compression (cH ),
but M1 is associated with tension (tM). Thus, depending on
the relative magnitudes of cH and tM, the net longitudinal
stress in the bottom part of the mandible can be tensile,
zero or compressive (left, middle, and right, respectively, in
Figure 7(b)). To determine which of the three stress patterns
reflects the actual stress, the governing beam equations
would have to be solved. But for the present purposes, it
suffices simply to note that all 3 potential T1 results are at
variance with the lever’s tot/cob stress distribution.

T2 (Figures 4(c) and 5(c)), like T1, produces a uni-
form compression consistent with H2, but because M2

is ccw, its associated gradient is tM → cM. So, when
these 2 longitudinal stress distributions are superimposed,
Figure 7(c), it is certain that the bottom part of the mandible
is in compression, but depending on the position of T2’s
LOA within the shaded region in Figure 5(c), the top part
can be in tension, stress-free, or in compression. More
specifically, as T2 approaches vertical, its longitudinal stress
distribution (Figure 7(c), left) looks more-and-more like the
(vertical) T3-associated stress (Figure 7(d)). As T2’s direction
approaches T0, its stress distribution, Figure 7(c) right, starts
to resemble the T0 produced stress, Figure 7(a).

T3 (the lever replica, Figures 4(d) and 5(d)) is vertical,
so there is no H3 equivalent stress. Its tot/cob stress
distribution, Figures 1 and 7(d), is entirely the equivalent
of the ccw M3. And finally, T4 (Figures 4(e) and 5(e)) is
different from the others, because the H4 equivalent stress
is a uniform tension. Combined with the ccw M4’s tM → cM
gradient, the top portion of the mandible will be in tension,
but the bottom portion can be in tension, stress-free, or
in compression, Figure 7(e). Thus, of the 11 possibilities
depicted in Figure 7, only 3 (left in Figure 7(c), Figure 7(d),
and right in Figure 7(e)) are in concert with the lever’s
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Figure 8: (a) Schematic representation of a fracture repair that forms a trapezoidal 4-bar linkage, ABDC. (b) The plate-constrained
displacement, BD → B′D′, of the anterior segment.

tot/cob longitudinal stress distribution. The other 8 scenarios
are contrary.

(Oral surgeons are intimately familiar with the biome-
chanical principles at work here. During extraction, the tooth
can be considered as a vertical analogy to the mandible
that is loaded as in Figures 5(b) and 5(c). When the
tooth is luxated back and forth, ±M are generated, and
to reduce the associated tensile longitudinal stress in the
root, a compressive (intrusive) force is applied concurrently,
thereby reducing or eliminating the tension, analogous to
the right sides of Figures 7(b) and 7(c) turned 90 degrees. A
lever model of extraction would not account for the critical
intrusive force component (−H) that prevents tension-
induced root fracture.)

4.2. Plated Mandible. For the plated mandible, Figure 6(b),
there are an insufficient number of equations to solve for
all unknowns. This statically indeterminate problem can
be numerically modeled, typically with FEA [29–36], but
whatever the solution may be, it must satisfy (2)–(4). Thus,
as evidenced by the equations, everything is intertwined in
a complex manner. Furthermore, if the fracture were at an
angle, or if the plates were not horizontal or parallel, then
(2)–(4) would be further complicated by trigonometric func-
tions, different h values for the upper and lower plates, and
so on. This is clearly not a problem that is amenable to com-
monsensical analysis, especially with intuition that is based
on the nonapplicable lever paradigm of the intact mandible.

Consider plates, AB and CD, secured with single screws
at their ends, Figure 8(a). ABDC, Figure 8(b), forms a 4-bar
linkage in which B and D are constrained to move along
arcs of circles that are centered at A and C, respectively.
Therefore, if for any reason B moves to B′, D must move
to D′, because the bone dimension, BD (= B′D′), remains
unchanged. Thus, with virtually any occlusal force, these
plate constraints dictate a downward displacement with
a ccw rotation of the anterior segment from BD to B′D′,
hence the inferior border distraction. When the concepts
and terminology from the intact mandible are applied to this
outcome, it is ascribed to compression on top and tension
on the bottom [26, 37]. But, in fact, the top plate, AB′, is

in tension and CD′, the bottom plate, is in compression,
and except for the compression at the bone-bone contact on
top, there is no tension (which would be impossible anyway
at a fracture) or compression in bone anywhere along the
fracture. Thus, contrary to popular notion, the enlarged
gap at the inferior border is not caused by tension; on the
contrary, it is caused by compression in CD′.

There are, of course, many other 4-bar linkage con-
figurations that would produce different interfragmentary
displacements. Because plate AB, as the example, is secured
by single screws at its ends, it can only transmit pure com-
pression or tension—it is a 2-force member. (If, in Figure 6,
the top plate was affixed with single screws at both ends,
then HU /= 0, but VU = MU = 0.) Accounting for friction
(between bone/plate or screw/plate), or even just one addi-
tional screw, would immensely complicate the problem by
necessitating the inclusion of the shear forces (i.e., VU /= 0 in
Figure 6(b)) and the bending moments (i.e., MU /= 0 in Fig-
ure 6(b)) in the plates. The relative bone movements would
then depend mostly on plate deformations caused by those
forces and moments. These complex statically indeterminate
problems are typically solved with FEA. Clinically, however,
it would be advantageous to conceptualize plate-imposed
constraints in terms of linkages rather than the intact
mandible paradigm. (Neither is realistic, but in this context,
the intact idealization is entirely irrelevant and misleading.)

Although the focus is on plates, similar discussions would
pertain to other modes of fixation. For example, in a sagittal
split osteotomy, the transverse shear stresses within the
bicortical screws and bone-bone friction produce the V,
H , and M equivalent system. As with plating, the intact
mandible mechanical environment is not applicable.

A mandible in function, intact or plated, is a complicated
3D statically indeterminate structure that is subjected to
the complex interactions of variable anatomy and highly
changeable muscle and occlusal forces. And, for many
reasons, obvious and subtle, a plated fractured mandible
is an entirely different and more complex load bearing
structure than an intact mandible. If for no reason other
than the impossibility of tensile stresses acting across a break,
the tot/cob stress distributions illustrated in Figures 1, 5,
and 7 are not possible at, or near, a fracture. According
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to Saint Venant’s principle, these stress distributions can
be present only at some distance away from plated areas.
Nevertheless, the Figure 1 tot/cob representations are often
invoked explicitly [18, 20, 22, 23, 31] or implicitly in matters
of fracture repairs.

Although the demonstrated analytical method is inad-
equate for the solution of these problems, it is the best
instructional approach, and it is conceptually far more
realistic than the ubiquitous lever model. This analysis is
appropriate for conceptualizing mandibular biomechanics
and for casting doubt on the status quo.

In conclusion, (1) the lever-based tension-on-top/
compression-on-bottom (tot/cob) stress gradient should not
be assumed in the intact mandible. It is only one of several
possible stress distributions that depend on the direction of
the occlusal force and the relative location of the section
in question. (2) Internal forces (H and V) and moment
(M) are necessary for the equilibrium of all mandibles,
intact or fixed. Beyond sharing H , V, and M, there are
no valid comparisons between intact, plated, screwed, and
so forth mandibles. (3) The stress distribution within an
intact mandible should not be extrapolated to a plated, or
otherwise stabilized, mandible.
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[22] M. Champy, J. P. Loddé, R. Schmitt, J. H. Jaeger, and D. Muster,
“Mandibular osteosynthesis by miniature screwed plates via a
buccal approach,” Journal of Maxillofacial Surgery, vol. 6, pp.
14–21, 1978.

[23] B. W. Davies, J. P. Cedema, and B. Guyuron, “Noncompression
unicortical miniplate osteosynthesis of mandibular fractures,”
Annals of Plastic Surgery, vol. 28, no. 5, pp. 414–419, 1992.

[24] T. R. Katona, “The effects of cusp and jaw morphology on the
forces on teeth and the temporomandibular joint,” Journal of
Oral Rehabilitation, vol. 16, no. 2, pp. 211–219, 1989.

[25] T. R. Katona, “A mathematical analysis of the role of friction
in occlusal trauma,” Journal of Prosthetic Dentistry, vol. 86, no.
6, pp. 636–643, 2001.

[26] F. H. M. Kroon, M. Mathisson, J. R. Cordey, and B. A. Rahn,
“The use of miniplates in mandibular fractures. An in vitro
study,” Journal of Cranio-Maxillo-Facial Surgery, vol. 19, no. 5,
pp. 199–204, 1991.



10 Journal of Dental Biomechanics

[27] R. H. Rudderman and R. L. Mullen, “Biomechanics of the
facial skeleton,” Clinics in Plastic Surgery, vol. 19, no. 1, pp.
11–29, 1992.

[28] V. Shetty, D. McBrearty, M. Fourney, and A. A. Caputo,
“Fracture line stability as a function of the internal fixation
system: an in vitro comparison using a mandibular angle
fracture model,” Journal of Oral and Maxillofacial Surgery, vol.
53, no. 7, pp. 791–802, 1995.

[29] T. Cox, M. W. Kohn, and T. Impelluso, “Computerized
analysis of resorbable polymer plates and screws for the rigid
fixation of mandibular angle fractures,” Journal of Oral and
Maxillofacial Surgery, vol. 61, no. 4, pp. 481–487, 2003.

[30] W. D. Knoll, A. Gaida, and P. Maurer, “Analysis of mechanical
stress in reconstruction plates for bridging mandibular angle
defects,” Journal of Cranio-Maxillofacial Surgery, vol. 34, no. 4,
pp. 201–209, 2006.

[31] H. H. Korkmaz, “Evaluation of different miniplates in fixation
of fractured human mandible with the finite element method,”
Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology
and Endodontology, vol. 103, no. 6, pp. e1–e13, 2007.

[32] E. Puricelli, J. S. O. Fonseca, M. F. de Paris, and H. Sant’Anna,
“Applied mechanics of the Puricelli osteotomy: a linear elastic
analysis with the finite element method,” Head and Face
Medicine, vol. 3, no. 1, article 38, 2007.

[33] H. Arbag, H. H. Korkmaz, K. Ozturk, and Y. Uyar, “Compara-
tive evaluation of different miniplates for internal fixation of
mandible fractures using finite element analysis,” Journal of
Oral and Maxillofacial Surgery, vol. 66, no. 6, pp. 1225–1232,
2008.

[34] S. T. Lovald, T. Khraishi, J. Wagner, and B. Baack, “Mechanical
design optimization of bioabsorbable fixation devices for bone
fractures,” Journal of Craniofacial Surgery, vol. 20, no. 2, pp.
389–398, 2009.

[35] S. Parascandolo, A. Spinzia, P. Piombino, and L. Califano,
“Two load sharing plates fixation in mandibular condylar frac-
tures: biomechanical basis,” Journal of Cranio-Maxillofacial
Surgery, vol. 38, no. 5, pp. 385–390, 2009.

[36] T. Sugiura, K. Yamamoto, K. Murakami et al., “Biomechanical
analysis of miniplate osteosynthesis for fractures of the
atrophic mandible,” Journal of Oral and Maxillofacial Surgery,
vol. 67, no. 11, pp. 2397–2403, 2009.

[37] J. Tams, J. P. Van Loon, B. Otten, and R. R. M. Bos, “A
computer study of biodegradable plates for internal fixation of
mandibular angle fractures,” Journal of Oral and Maxillofacial
Surgery, vol. 59, no. 4, pp. 404–407, 2001.


	Introduction
	Materials and Methods
	Intact Mandible
	Plated Mandible

	Results
	Intact Mandible
	Plated Mandible

	Discussion
	Intact Mandible
	Plated Mandible

	References

