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High-quality, ecologically sound 
remediation of acidic soil using 
bicarbonate-rich swine wastewater
Cheng Qilu1, Wu Xueling1, Xu ligen2, Lin Hui3, Zhao Yuhua1 & Zhou Qifa1

The swine industry in China is experiencing a wastewater crisis. In this work, we found that swine 
wastewaters were particularly high in bicarbonate (1.52–9.25 g/L, mean = 5.68 g/L, n = 42). The 
high level of bicarbonate may add to the pollution load during discharge. We therefore suggest a 
new method for bicarbonate-rich wastewater remediation in acidic soil. In our laboratory irrigation 
experiments, wastewater irrigation efficiently increased the pH and decreased the exchangeable 
aluminum in the acidic soil. Furthermore, the wastewater method efficiently remediated the entire 
soil body, while lime application remediated only a portion of the topsoil. Wastewater irrigation also 
improved soil fertility (e.g., by increasing the phosphorus availability in acid soil).

China is the largest swine producer in the world1. However, the Chinese swine industry is experiencing a waste-
water disposal crisis owing to the launching of the “Environmental Protection Storm” by the Chinese government. 
In Zhejiang Province alone, about 45 thousand farms have been forced to close since 20132.

The large volume3 and high concentrations of chemical oxygen demand4 and ammonia4,5 in swine wastewater 
pose an economic and technical challenge regarding treatment. For example, 6.0 billion tons of swine wastewater 
are discharged annually in China without appropriate disposal4. Wastewater reuse is an emerging strategy that 
can confer a variety of environmental benefits6. Generally, water and nutrients are regarded as the only useful 
wastewater components. Pollutants and nutrients have been the focus of previous investigations on swine waste-
water composition3–5,7,8. In recent years, bicarbonate in wastewater has been recognized to facilitate algal blooms9 
and cause toxicity in some aquatic organisms10,11. However, if swine wastewater with high ammonia concentra-
tions also possesses sufficiently high levels of bicarbonate, it can be suitable for acidic soil remediation for the 
following two reasons. (1)The bicarbonate in wastewater neutralizes the protons in the soil (Equation 1), and (2) 
reacts with Al3+ in the soil through a bi-hydrolization reaction (Equation 2) after the proton and Al3+ in the acidic 
soil are released by wastewater extraction and wastewater cation (e.g., NH4

+, Ca2+) exchange:

+ → + = ++ −Acidic soil Wastewater H HCO H O CO (1)3 2 2

+ → + = ++ −Acidic soil Wastewater Al 3HCO Al(OH) 3CO (2)3
3 3 2

Herein, we investigated the characteristics of swine wastewater from 30 swine farms in Zhejiang Province and 
explored the feasibility of applying swine wastewater for acidic soil remediation.

Results
Wastewater bicarbonate levels.  Bicarbonate concentrations were particularly high (1.52–9.25 g/L, 
mean = 5.68 g/L, n = 42; see Table S1), and the wastewater pH was higher than 7.4 (7.47–9.12, mean = 8.42, 
n = 42; see Table S1).

Effects of bicarbonate-rich wastewater application on pH and exchangeable Al in acidic 
soils.  In laboratory irrigation experiments, the soil pH increased and soil exchangeable Al decreased with 
increasing application rates of both lime and wastewater. The pH increased from 3.85 to approximately 5.5 after 
applying 2.40 g lime or 2.40 L of wastewater sample from farm #19 per kilogram of soil (Fig. 1a,b). Bicarbonate 
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concentrations in the wastewater sample from farm #17 were 381% of those contained in wastewater from farm 
#19. Consequently, the soil irrigated with wastewater from farm #17 had a significantly higher (P < 0.05) pH than 
that irrigated with wastewater from farm #19 at all irrigation rates. Moreover, the pH in soil irrigated with 0.4 L/
kg of wastewater from farm #17 was close to that measured in soil irrigated with 1.6 L/kg of wastewater from farm 
#19 (Fig. 1a) because of the similar doses of bicarbonate. These results indicate that bicarbonate was the dominant 
neutralizing agent in the acidic soil–wastewater mixture. The soil exchangeable Al decreased from 201.6 mg/kg to 
zero with the application of 4.80 g/kg lime or 1.60 L/kg of wastewater from farm #19. Furthermore, at a given pH, 
the exchangeable Al in wastewater-irrigated soil was significantly (P < 0.05) lower than that in the limed soil, and 
the pH of wastewater-irrigated soil with zero Al was 1.46 units lower than that in the limed soil (Fig. 2).

Figure 1.  The effects of (a) wastewater and (b) lime application on the acidic soil pH. Error bars over the 
symbols represent the standard error of the means (n = 3), while * represents statistically significant difference 
at P ≤ 0.05.

Figure 2.  The soil exchangeable Al content versus the soil pH in lime- and wastewater- treated acidic soil. 
The soil exchangeable Al and pH data were measured for the wastewater treatment; for the lime treatment, the 
exchangeable Al corresponding to a pH consistent with the wastewater treatment was calculated according to 
best-fit equations between the measured pH and the measured exchangeable Al. The best-fit equation was: Soil 
exchangeable Al = 509735 × EXP(−1.996 × pH), R2 = 0.9827, n = 12. Error bars over the symbols represent the 
standard error of the means (n = 3), while * represents statistically significant difference at P ≤ 0.05.
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Degree of lime contact in the soil.  The Ca conversion efficiency was only 56.3% at the highest liming rate. 
Further, both the soil exchangeable Ca and the Ca conversion efficiency increased with the liming rate (Fig. 3), 
indicating that the degree of lime contact in the soil was low and increased with the liming rate. These results 
reveal that the lime–soil mixing was not sufficient even under the vigorous stirring and saturated water conditions 
experienced during the experiments.

Effects of wastewater and lime on pH in different soil layers.  Lime application was effective in soil 
mitigation only in SL1 (0–3 cm) and SL2 (3–6 cm), but wastewater application was effective in all layers (0–30 cm; 
Fig. S1). The differences in pH between the top and bottom layers were 3.24 units and 0.58 units for the lime 
treatment and wastewater treatment, respectively (Fig. S1).

NH4-N and P adsorption in acidic soil.  Both the NH4-N adsorption isotherm and the P adsorption iso-
therm (Fig. S2) for the wastewater were well simulated with the Langmuir equation, achieving R2 = 0.9968 and 
R2 = 0.9999, respectively. The maximum adsorption capacity (Qm) values were 327.4 mg/kg and 782.6 mg/kg for 
NH4-N and P, respectively. These results indicate that the acidic soil efficiently retained the N and P present in 
the wastewater.

Discussion
Swine wastewater consists primarily of residual drinking water, rinse water, urine, solid manure, and residual 
feed. A fattening pig can generate 8.0 kg of wastewater daily, as well as 2.0 kg of solid manure and 3.3 kg of urine12. 
Therefore, swine wastewater is often high in both biosolids and dissolved organic matter, which are rich in carbon 
(Table S2). Organic carbon can be digested into CO2 by a number of bacterial species in solid manure and waste-
water, and this CO2 can then be converted into HCO3

− under alkaline conditions. Furthermore, the urine, drink-
ing water, and rinse water had considerable bicarbonate concentrations (Table S2). Additionally, swine feed may 
contain CaCO3. Therefore, it is reasonable that swine wastewater contains high levels of bicarbonate. Bicarbonate 
is also widely present in natural water; the mean bicarbonate concentration in the three main freshwater rivers 
in China (the Yangtze, Yellow, and Pearl Rivers) was reported to be 142 mg/L13, while the mean concentration in 
77 rivers in North America, South America, Asia, Africa, Europe, and Oceania was 146 mg/L11. Therefore, the 
bicarbonate concentration in the swine wastewater is ten times higher than that in typical freshwater systems. 
This high level of bicarbonate could add to the pollution load of the discharged wastewater.

Acidic soils are widely distributed in China and other counties14, occupying approximately half of the total 
arable land area15,16. Cropland soil acidification has intensified in recent decades15,17. Al toxicity is the dominant 
factor limiting crop growth in acid soil16. Currently, liming is the most common and practical strategy to combat 
soil acidification and acidity. In contrast to the easily released H+ in acidic soil, Al3+ in the exchange complex18 
can only be released by Ca2+ replacement when lime is in contact with soil. Therefore, the remediation efficiency 
for Al toxicity is dependent on the degree of lime contact in the soil, which is determined by the liming rate 
and degree of lime mixing in the soil. As a) soil has substantial spatial heterogeneity because of its complicated 
composition and large variability in particle size, and b) lime has a very low mobility in soil, the degree of lime 
mixing in soil can be low. In particular, the degree of lime mixing in soil can be far lower in field situations than 
under experimental conditions. The results of this study highlighted the low degree of lime contact in soil, and 
indicated that liming could limit the quality of remediation. In the field, lime may only remediate a portion of 
the topsoil, while wastewater can efficiently remediate the entire soil body. Swine wastewater irrigation is sim-
ple and convenient, can contribute to solving the wastewater discharge problem in swine production, and help 
remediate acid soil, resulting in soil of high quality. Moreover, Swine wastewater irrigation can be practiced at 
a cost as low as that of wastewater distribution. A 10,000-head swine farm can generate approximately 20,000 
tons of wastewater annually, which can be applied at a rate of 0.8 L/kg to approximately 6 ha of acidic soil for 

Figure 3.  The soil exchangeable Ca content and Ca conversion efficiency in acidic soil with different rates of 
lime application. Error bars over the symbols represent the standard error of the means (n = 3).
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remediation of the top 30-cm soil layer. Furthermore, the high concentrations of organic carbon and nutrients 
(e.g., N and P) in wastewater could be beneficial for soil fertility. In particular, P addition and pH adjustment 
because of wastewater irrigation could substantially increase the P availability, as acidic soil is generally deficient 
in P. Generally, there are very low concentrations of persistent contaminants (e.g., heavy metals, see Table S2) 
in swine wastewater19. However, further work is needed to assess the risks associated with wastewater irrigation 
(e.g., pathogen load and potential groundwater pollution). Soil remediation with suitable wastewater is a novel 
strategy than can drive a range of benefits.We suggest that the environmental protection authorities should adopt 
a policy encouraging swine wastewater utilization instead of closing swine farms to eliminate swine wastewater 
generation.

Methods
Wastewater sampling.  A total of 1 L of swine wastewater (fresh swine effluent from the outlets of pigsties 
and/or anaerobically digested effluent) was collected at each farm in an acid-rinsed polyethylene bottle between 
November 2016 and July 2017. For the wastewater samples from farms #17 and #19, the sample volume was 25 L 
each. Fresh swine urine, drinking water, and rinse water were also sampled at farm #17 with an acid-rinsed pol-
yethylene bottle. All samples were transported within 12 h in an icebox to the laboratory, separated into 250 mL 
subsample aliquots in acid-rinsed polyethylene bottles, and stored at −4 °C.

Measurement of wastewater properties.  Wastewater pH was measured with a PHB-4 model pH meter 
(INESA CO., Shanghai). Wastewater samples were also analyzed for bicarbonate, dissolved organic carbon 
(DOC), NH4-N, NO3-N, PO4-P, and heavy metal concentrations according to the Chinese State Environmental 
Protection Agency Standard Methods13. The wastewater samples were first centrifuged at 7,000 rpm for 2 min, 
after which the collected supernatant was filtered through a 0.45 μm cellulose membrane. The filtrates were 
analyzed for HCO3

−, Cl−, and SO4
2− (using the methods described by Kozaki et al.20 via ion chromatography 

using a Dionex ICS-1500 ion chromatography system with a IonPac AS11-HC 4 × 50 mm column, SpectraLab 
Scientific Inc., Canada), DOC (using a multi N/C 3100 Analyzer, Analytik Jena AG, Germany), NH4-N (using the 
Nash-reagent spectrophotometric method), NO3-N (using the phenoldisulfonic acid method), and PO4-P (using 
the molybdenum–antimony anti-spectrophotometric method). In addition, K, Ca, Mg, Fe, Cu, Zn, Al, Mn, Cd, 
Pb, Ni, As, Cr, Co, Sr, and Sn concentrations were determined via inductively coupled plasma mass spectrome-
try (ICP-MS; Agilent7500a, Agilent Technologies, USA). The solid suspension (SS) was determined by filtering 
100 mL of wastewater through a pre-weighed Whatman filtration paper, and then weighing the filtration paper 
and the solid particles after drying to a constant weight at 7 °C. The C and N contents of the SS were determined 
by a CHNOS elemental analyzer (Elementar, Germany) after the dried SS was ground and passed through a 0.149 
mm sieve.

Laboratory irrigation experiments.  Irrigation experiment 1.  Irrigation experiment 1 was conducted 
at our lab between February and April 2017. The room was kept a constant temperature of 25 °C. The acidic soil 
consisted of inceptisol obtained from a tea farm in Hangzhou, China. The soil was air-dried, ground, and passed 
through a 2 mm sieve. A 1.2 kg soil sample was placed in a polyethylene pot (height: 12.5 cm, diameter: 10.0 cm). 
Three treatments were applied. (1) Liming: applying lime (CaCO3, AR grade) at rates of 0, 0.6, 1.2, 2.4, and 4.8 g/
kg, and irrigating with deionized water at rates of 0, 0.4, 0.8, 1.2, and 1.6 L/kg, respectively; (2) wastewater irriga-
tion using the sample from farm #17: irrigating using the wastewater at rates of 0, 0.4, 0.8, 1.2, and 1.6 L/kg; and 
(3) wastewater irrigation using the sample from farm #19: irrigating using wastewater at rates of 0, 0.4, 0.8, 1.2, 
and 1.6 L/kg. Irrigations consisted of intervals in which 0.4 L/kg of irrigant was added at a time after air-drying 
of the soil. The soil was stirred vigorously during irrigation. The experimental design was randomized, and three 
replicates were performed for each sample.

Irrigation experiment 2.  Irrigation experiment 2 was conducted at our lab between March and April 2017. This 
irrigation experiment employed polyethylene columns with diameters of 9.0 cm and heights of 30.0 cm. The same 
soil used in irrigation experiment 1 was used in experiment 2. Two treatments were applied. (1) Liming: apply-
ing lime (CaCO3, AR grade) at a rate of 4.8 g/kg, and irrigating with deionized water at a rate of 2.4 L/kg; and 
(2) wastewater application using the sample from farm #19: irrigating with the wastewater at a rate of 2.4 L/kg. 
Irrigations consisted of intervals in which 0.4 L/kg of irrigant was added at a time after air-drying of the soil. The 
experimental design was randomized, and three replicates were performed for each sample. After air-drying of 
the irrigated soil, the soil pH was measured in each 3 cm layer from the top downward.

Measurement of soil properties.  Soil pH.  Soil pH was determined from a 1:1 soil/water extract shaken 
for 24 h, centrifuged at 14,500 rpm for 30 min, and then passed through a 0.1 μm filter to remove colloidal Al 
fractions. The pH was determined with a PHB-4 model pH meter (INESA CO., Shanghai, China).

Soil exchangeable Al and Ca.  Soil exchangeable Al and Ca were determined using a KCl extraction method. The 
KCl concentration was 1 mol/L, and the soil-to-liquid ratio was 1:10. After mixing the soil and the KCl solution, 
the mixture was agitated on a reciprocating shaker at 120 rpm for 30 minutes. After a 30-minute centrifuga-
tion period, the supernatant was filtered through a 0.22 μm pore-size Millipore filter for Al and Ca measure-
ment. Al and Ca concentrations were determined via inductively coupled plasma mass spectrometry (ICP-MS, 
Agilent7500a, Agilent Technologies, USA).

Soil adsorption experiment.  The soil adsorption experiment was conducted at our lab in July 2017. A 
1.50 g sample of the same acidic soil used in the irrigation experiments was placed in a 50 mL centrifuge tube with 
either 10.0 mL of the original wastewater sampled at farm #17 in July 2017 or wastewater diluted at ratios of 1:2, 
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1:4, 1:6, 1:8, and 1:10. The tubes were shaken at 25 ± l °C for 24 h and then centrifuged at 7,000 rpm for 2 min, after 
which the collected supernatant was filtered through a 0.45 μm cellulose membrane. The filtrates were analyzed 
for NH4-N and PO4-P. The soil adsorption capacity for NH4-N and PO4-P was calculated based on the concentra-
tions before and after the adsorption equilibrium. The adsorption isotherms were simulated with the Langmuir 
equation in Origin 9.0 (OriginLab Corporation).

Definitions of Ca conversion efficiency and zero-Al pH.  The calcium conversion efficiency (CaCE, %) 
is defined as the percent of applied Ca converted to soil exchangeable Ca:

= − − ×CaCE(%) (Caa (CaE1 CaE0)) 100 (3)

where Caa, CaE1, and CaE0 represent the Ca applied to the soil (mg/kg), the soil exchangeable Ca (mg/kg) after 
Ca application, and the soil exchangeable Ca (mg/kg) before Ca application, respectively.

Zero-Al pH is defined as the soil pH when exchangeable Al decreases to zero with the application of a reme-
diation agent.

Statistics.  The means and standard deviations of the data were calculated using Microsoft Excel. A t-test was 
used to compare the paired means. Differences were considered significant at P ≤ 0.05. Statistical analyses were 
performed in SPSS, version 16.0 (SPSS, Inc., Chicago, USA).
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