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Abstract: Caesium lead halide perovskites were recently demonstrated to be a relevant class of
semiconductors for photonics and optoelectronics. Unlike CsPbBr3 and CsPbI3, the realization of
high-quality thin films of CsPbCl3, particularly interesting for highly efficient white LEDs when
coupled to converting phosphors, is still a very demanding task. In this work we report the first suc-
cessful deposition of nanocrystalline CsPbCl3 thin films (70–150 nm) by radio frequency magnetron
sputtering on large-area substrates. We present a detailed investigation of the optical properties
by high resolution photoluminescence (PL) spectroscopy, resolved in time and space in the range
10–300 K, providing quantitative information concerning carriers and excitons recombination dynam-
ics. The PL is characterized by a limited inhomogeneous broadening (~15 meV at 10 K) and its origin
is discussed from detailed analysis with investigations at the micro-scale. The samples, obtained
without any post-growth treatment, show a homogeneous PL emission in spectrum and intensity on
large sample areas (several cm2). Temperature dependent and time-resolved PL spectra elucidate
the role of carrier trapping in determining the PL quenching up to room temperature. Our results
open the route for the realization of large-area inorganic halide perovskite films for photonic and
optoelectronic devices.

Keywords: inorganic halide perovskites; CsPbCl3; thin films; sputtering; high resolution photolumi-
nescence

1. Introduction

Research on new materials has recently focused on halide perovskites as highly
promising semiconductors for advanced photonic and optoelectronic applications [1,2].
Indeed, caesium lead halide perovskites, described by the formula CsPbX3 (X = Cl, Br,
I), are excellent active materials for coherent and incoherent light sources, sensors and
innovative solar cells [3–5]. Their relevant electronic and optical properties (direct band
gap, fine gap tunability by changing the halogen and alloying, high carrier mobility, defect
tolerance, etc.) and, in particular, their higher thermal and chemical stability with respect
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to hybrid organic-inorganic perovskites [6–8], make them attractive for the development
of highly performing light sources and for the integration in photonic structures. Among
these fully inorganic perovskites, CsPbCl3 (band gap about 3.1 eV at room temperature [9])
is optimal for the development of light emitters in the blue spectral range, as a substitute
of nitride-based materials, and it is the most suitable for the realization of white LEDs,
coupled to a converting phosphor.

So far, solution-based techniques represent the most common route for the deposition
of both organic-inorganic and fully inorganic perovskite films [7,10,11]. However, the main
problems of these techniques are the limited scalability and/or the inhomogeneity of the
deposited material, negatively affecting the large-scale production and external quantum
efficiencies for light emission. Usually, to overcome the reduced material quality, the
addition of chemicals is required in combination with post-deposition annealing. Moreover,
to the best of our knowledge the deposition of CsPbCl3 films through dissolution of its
precursor salts is not achievable. Different strategies for the synthesis of CsPbCl3 have
been reported in literature: bulk crystals by the Bridgman method [12]; nanocrystals by
high temperature solvent [9] and similar methods; thin films by evaporation [13–17]. It is
worth mentioning that the possibility of realizing large-area compact films of nanometric
thickness is relevant for the scalability of innovative devices. Moreover, the use of a
technique like the sputtering discussed in this work, that allows for multilayers deposition
(i.e., active material, electron/hole transport layers, metallic coatings, etc.) in a controlled
atmosphere, over different substrates, opens the route for a wide set of applications in the
field of photonics and optoelectronics, including the realization of metasurfaces.

In this work, following our recent paper on CsPbBr3 [18], we have obtained the first
and successful deposition of nanocrystalline CsPbCl3 thin films by radio frequency (RF)
magnetron sputtering. We present a detailed study of a set of samples with film thickness in
the range 70–150 nm deposited on two different kinds of substrates. Beside morphological,
structural and compositional analysis, we investigated the material optical properties by
high resolution photoluminescence (PL) spectroscopy, resolved in time and space in a
wide temperature range (10–300 K), providing quantitative information concerning the
recombination dynamics of carriers and excitons. Our results demonstrate the macroscopic
homogeneity of the CsPbCl3 thin films on large sample areas, which is hardly achievable,
especially with a single step deposition, without the addition of specific chemicals and
without post-growth treatments.

2. Materials and Methods

Several thin films of CsPbCl3 were deposited by RF magnetron sputtering onto two
properly cleaned different substrates: soda lime glass (SLG) and amorphous quartz slides.
The magnetron sputter used for sample preparation is a HEX system (Korvus Technology
Ltd., Newington, UK) equipped with an RF source, a rotating sample holder to ensure the
uniformity of the deposited film and a gravimetric microbalance to set the film thickness.
The deposition was obtained in a non-reactive Argon atmosphere with a gas flow of 20 sccm
(deposition rate 0.05 nm s−1). The sputtering of CsPbCl3 was obtained by a homemade
target fabricated by mixing CsCl and PbCl2 precursor salts (Merck KGaA, Darmstadt,
Germany) in equal molar ratio. The salts were dried in oven at 120 ◦C overnight and
ground, by using a mixer mill (model MM400, Retsch, Haan, Germany), to obtain a
uniform mixing. The mixture was then pressed at 11.5 MPa while the system was heated
at 160 ◦C for the sintering of the powder. Further details on the sputtering procedure are
reported in ref. [18].

Samples were characterized by scanning electron microscopy (SEM), atomic force
microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) to
assess morphology, crystalline structure and stoichiometry. Details concerning the used
setups for these investigations are provided in the Supplementary Material.

XRD spectra were collected on a X’Pert diffractometer (Panalytical, Malvern, UK)
equipped with CoKα X-ray source (40 kV, 40 mA), with a polycapillary optics in the
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primary beam (with 1 mm in equatorial direction and 10 mm height) and flat graphite
crystal analyzer in the secondary beam, before the proportional counter. The grazing
incidence measurements were made at a grazing incidence angle of 0.9◦ (actual incidence
depends on the sample, as glass substrates are never perfectly flat). Beam divergence, as
provided by the polycapillary lens, is 0.3◦. Phase identification was based on the ICDD
PDF-4+ database. All data, conventional θ/2θ and grazing incidence, were collected with
a sampling step of 0.04◦ and counting time of 20 s. The XRD card matching the peak
positions is #18-0366 of the ICDD PDF-4+ database (Tetragonal CsPbCl3, Space Group
P4mm (99), unit cell parameters a = b = 5.584 Å, c = 5.623 Å), corresponding to a tetragonal
crystal phase.

A Cary 300 spectrophotometer (Agilent, Santa Clara, CA, USA) equipped with a
PELA-1050 integrating sphere (Labsphere, North Sutton, NH, USA) was used for the
transmittance spectra of the samples at room temperature.

The PL of the deposited CsPbCl3 films was characterized by two different spectroscopy
setups for detection at the macro and micro-scale. Most part of PL experiments was realized
in a macro-PL configuration (laser spot diameter ≈ 100 µm) in a quasi-backscattering
geometry, keeping the samples in a closed cycle cryostat and varying the temperature in
the range 10–300 K. The excitation intensity was at maximum 10 W/cm2. A frequency-
doubled mode-locked ps Ti:Sapphire laser, operating at 81.3 MHz repetition rate with 1.2 ps
pulses, was used for time-integrated (TI) and time-resolved (TR) experiments: the excitation
photon energy was varied in the range 3.3 to 3.45 eV. The fourth harmonic (266 nm) of
a Q-switched Nd:YAG laser was used for excitation at 4.67 eV (repetition rate 20 KHz,
300 ps pulse duration). The PL signal was spectrally dispersed by a monochromator
providing a spectral resolution of 1 meV and detected by a charge coupled device (CCD)
detector (DU420-BU, Andor, Belfast, UK) for TI PL spectra or a synchroscan streak camera
(C5680, Hamamatsu, Shizuoka, Japan) for TR measurements (time resolution ≈ 5 ps).
Transmittance spectra in the temperature range 10–300 K were acquired simultaneously to
PL by means of a white lamp.

For micro-PL experiments, the sample was kept at 10 K in a low-vibration ST-500 con-
tinuous He-flow cryostat (Janis, Lake Shore Cryotronics, Inc., Westerville, OH, USA) which
in turn was mounted on an x-y translation stage (Physik Instrumente, Karlsruhe, Germany)
for scanning the sample surface. The luminescence was collected by a home-made confocal
microscope setup equipped with an infinity corrected 50×NUV objective (Mitutoyo, Neuss,
Germany, 378-818-6, NA = 0.42). The luminescence was spectrally dispersed and detected
using a SP2300i spectrograph (Acton, Teledyne Princeton Instruments, Krailing, Germany)
equipped with two 1200 gr/mm gratings blazed at 350 nm and 750 nm, and an Acton Pixis
100F Si CCD (Teledyne Princeton Instruments, Krailing, Germany). The spatial resolution
of the system is about 700 nm, while the spectral resolution is about 250 µeV. The excita-
tion source was provided by a frequency-doubled mode-locked Ti:Sapphire tunable laser
(Tsunami, Spectra Physics, Santa Clara, CA, USA, 700–900 nm spectral range, 200 fs pulse
duration, 12.2 ns pulse period). The experiments were performed exciting the samples
with photons of 3.40–3.45 eV and an excitation intensity at maximum of 100 W/cm2.

3. Results
3.1. Samples Characterization at Room Temperature

The samples investigated in this work are listed in Table 1: CsPbCl3 films of different
thickness (70 and 150 nm) were realized on SLG and amorphous quartz substrates.

Table 1. Name, thickness and substrate type of investigated samples.

Sample Average Thickness (nm) Substrate

A 70 SLG
B 70 Quartz
C 150 SLG
D 150 Quartz
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Highly uniformity and homogeneity over the substrate is always found at the macro-
scale, as shown in the photograph of Figure 1a. The morphological characterization at
the micro-scale is reported in Figure 1b–d, where a SEM micrograph and AFM analysis
are respectively shown. They point out the presence of a fairly compact network of
nanocrystals with average lateral size of 50 nm and average thickness of 40 nm just on
the top of the substrate. Larger crystals (quite well isolated one from the other), up to
several hundred nanometers size and with a height around 100 nm, are also found. Such
values have been extracted by analyzing AFM profiles in different regions of the sample
with an estimated uncertainty of ±10%. Hereafter, we identify with NC the network of
nanocrystals and with MCs the sub-micrometer size larger crystals. Similar morphology is
found from SEM investigation for samples differing in thickness or substrate.
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Figure 1. (a) Typical photograph of a 70 nm thick CsPbCl3 sample; (b) SEM micrograph of sample
A. (c,d) AFM amplitude and topography maps of a 5 × 5 µm2 area of sample A. The circles with
NC and MC indicate, as an example, regions with nanocrystals and sub-micrometer size larger
crystal, respectively.

Phase identification was obtained via grazing angle incidence and θ/2θ XRD investi-
gation. The XRD analysis (for details concerning the experimental apparatus see ref. [19])
clearly indicates the presence of the CsPbCl3 crystalline tetragonal phase (Figure 2a), as
expected at room temperature [20,21], with a significant h00 fiber orientation which is
commonly observed in our samples. The XRD results are compatible with the picture of a
thin film made of two distinct perovskite fractions. In θ/2θ only (100) and (200) reflections
are detected, while in grazing angle incidence other peaks are reported (Figure 2a). The
broad peak at 26 degrees comes from the amorphous substrate. The θ/2θ diffraction
pattern shows the signal from crystalline grains with (hkl) atomic planes parallel to the
surface: besides the broad signal from the large fraction of the X-ray beam going through
the thin film and being diffracted by the amorphous substrate underneath, the two strong
h00 lines in the θ/2θ pattern are given by large and presumably (fibre) textured grains. In
the grazing incidence condition, instead, the large crystals contribute much less, except for
the 100 line. AFM and SEM images (Figure 1) show that the large grains, better crystallized
to the point that in some sample regions they even assume a geometrical shape typical of
single crystals, have a large spread of orientations, thus explaining the presence of a still
intense 100 peak even in grazing condition. The remaining part of reflections observed
in grazing incidence, however, are sensibly broader and belong to planes with different
orientations, likely originating from the (nano)polycrystalline fraction, which appears ran-
domly oriented or just weakly textured. Even though, given the instrumental conditions, it
is not possible to precisely determine the size of the domains, the observed broadening
is compatible with perovskite domain sizes of the order of several tens of nanometers in
agreement with the AFM and SEM images.
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Figure 2. (a) XRD spectra of sample B in θ/2θ (red line) and grazing angle incidence (black line)
configuration. The bars mark positions of the identified tetragonal phase. (b) Transmittance spectra
of samples B (in black) and D (in red) at room temperature. (c) Normalized macro-PL spectra at room
temperature comparing samples differing in thickness and substrate.

XPS spectra (Figure S1) were used to estimate the stoichiometry of the film surface. The
binding energy values of caesium, lead and chlorine are in accordance with the literature
data [22]. Literature sensitivity factors were applied and the atomic ratio of the elements
are reported in Table 2 for different substrate and same thickness. They show a lead
excess and a chlorine lack respect to the expected values [23]. It is worth mentioning
that the discrepancy between the measured stoichiometry and the expected one can be
ascribed to the peculiar nature of the XPS investigation that provides information only on
a few nanometers below the surface. Presence of oxygen and carbon can be evidenced
by XPS spectra (Figure S1). While adventitious carbon contamination, appearing as soon
as samples are exposed to atmosphere, can be claimed as carbon source, oxygen is more
likely related to the presence of metallic oxides, as demonstrated by the presence of a
peak at 529 eV (Figure S1). Moreover, we observe that the intensity of the oxygen peak is
modestly reduced by argon sputtering which is consistent with the presence of compounds
formed during film growth rather than as a result of post deposition atmosphere exposure.
Unambiguous identification of these minor compounds is out of the scope of the present
work, however, lead oxides like PbO or PbO2, are the most reasonable candidates. Similar
results are found for all the investigated samples.

Table 2. XPS experimental atomic ratio and expected values for samples C and D.

Element Glass (Sample C) Quartz (Sample D) Expected

Cs 20% 19% 20%
Pb 30% 30% 20%
Cl 50% 51% 60%

Transmittance spectra at room temperature are shown in Figure 2b for B and D samples.
The transitions at 4.4 eV and 3 eV are evident in absorption, as expected and reported in
previous works for caesium lead chloride films and single crystals [14,24,25]. In particular,
the narrow dip at 3 eV is ascribable to the fundamental excitonic resonance, characteristic
of CsPbCl3 [14,24,25].

3.2. Photoluminescence Study

The main focus of our work concerns PL properties to validate the good optical quality
of the material. Different PL experiments were performed changing the spatial resolution of
the PL setup, from 1 µm to 100 µm. A comparison of the PL emission at room temperature
is shown in Figure 2c for samples differing in thickness/substrate (PL spectra at low T
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are shown in Supplementary Information in Figure S2). The PL line shape does not show
relevant changes; only a slight shift of the PL peak energy, likely related to the different
strain between the perovskite film and the substrate. More significant is the PL intensity
change from spot to spot spanning a sample area of ~10 cm2 (Figure S2). While most of the
spectra change in intensity of the order of 30%, a few cold spots are found with a reduced
PL intensity.

3.2.1. Photoluminescence at Macro and Micro-Scale

To gain insights in the PL excitonic features low temperature spectra have been
measured at micro- and macro-scale. A typical macro-PL spectrum of a CsPbCl3 sample
on SLG substrate at 10 K is displayed in Figure 3a and compared with the high-resolution
transmittance spectrum detected in the same sample spot. At 10 K the PL spectrum shows
a dominant emission (α-band) peaked at 2.97 eV, in agreement with literature data on
CsPbCl3 bulk and nano-crystals and thin films [26–28], and a less intense higher energy
band (β-band) peaked at ≈3.02 eV which has also been reported in previous works [28,29].
At 10 K both bands, with a full width half maximum of about 15 meV comparable to single
crystals [26], correspond to two resonances in the transmittance spectrum (Figure 3a) with
a similar Stokes shift ≤5 meV, indicating an overall high quality of the emission that arises
from two excitonic recombinations.
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Figure 3. (a) Macro-PL (black curve) and transmittance (red curve) spectrum on sample A at 10 K
after excitation at 4.67 eV. (b) Emission energy of the maximum of the PL for the α and β-band
along with the corresponding minima of the transmittance spectra as a function of temperature for
sample A.

Figure 3b displays the temperature dependence of the PL peak energy of both bands
and transmission resonances, confirming that excitonic features are observed up to room
temperature. A decrease of the Stokes shift between PL and transmission is observed from
10 to 150 K. The macro-PL spectra as a function of temperature (T) (Figure S3) show, as
expected, a blue shift of the spectrum and a quenching of the emission; moreover, in the
α-band a structure appears at higher energy ascribable to a free exciton (FE) recombination
around 100 K that becomes dominant as the temperature increases.

Power dependent PL spectra at 10 K reveal a linear dependence of the emission as
expected for geminate (excitonic) recombination of carriers or when the radiative recombi-
nation prevails over the non-radiative one.

At low temperature macro-PL spectra show negligible sample inhomogeneity in
terms of PL intensity of each band and peak energy shift. To deeply investigate the
sample inhomogeneity so as to provide information on the origin of the inhomogeneous
broadening (IB) we performed micro-PL experiments with a spatial resolution ≤ 1 µm.
Typical results are shown in Figure 4a where we compare spectra in different points.
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Micro-PL spectra highlight a finer structure of the α-band with contributions in the low
energy side and a shoulder in the high energy side, reported in Figure 4a. According
to literature [27], the shoulder on the low energy side of α-band could come from a free
exciton phonon replica or, more likely, to a bound exciton in a deeper defect. The shoulder
present in the high energy side of the α-band is, instead, related to the β-band (see Pearson
correlation map of Figure 4b). Hereafter the peaks of the two bands are indicated as Pα

and Pβ. It clearly appears that micro-PL spectra have IB similar to the one of the macro-PL
spectrum of Figure 3a; differences are observed in the relative emission intensity of α and
β-band (Figure 4a). It has to be noted that no normalization has been applied to the spectra
of Figure 4a so that the emission of β-band is constant in the investigated sample region.
Figure 4b reports the Pearson correlation map (in the Pearson correlation map each pixel,
identified by two energy values, E1 and E2, is calculated correlating the PL intensity at E1
with the one at E2 over the entire ensemble of spectra (2500 in our case) in the micro-PL
map) in a 25 × 25 µm2 sample area, showing that the emission of α and β bands are
spectrally uncorrelated, therefore excluding the attribution of the β-band to an excited state
of the α-band. A comparison among micro-PL maps, AFM and SEM images (Figure 1b–d)
and results from XRD spectrum (Figure 2a) suggests the attribution of α-band to MCs and
β-band to NC. In Figure 4c,d the PL intensity variations for the α and β-band contributions
are reported, respectively. β-band is constant in intensity in sample macro-areas (hundreds
of µm2), while intensity fluctuations at most of a factor 3 are observed for α-band. The
PL peak energy variation in the sample is at maximum ± 3 meV for Pα (Figure S4) and
less than 1 meV for Pβ. No correlation emerges between the emission peak energy and
PL intensity, as from the comparison between the maps of Figure S4 and Figure 4c. The
micro-PL shows also that, for all the investigated samples, the largest contribution to the
IB of PL at the macro-scale does not come from disorder detectable at the micro-scale: in
fact, the spatial fluctuation of the PL peak energy (average value 2.969 eV and standard
deviation 1.8 meV) accounts for ≈ 10% of the overall IB, the remaining part being related
to a sub-micrometer disorder attributable to the size inhomogeneity of the MCs. Moreover,
we exclude that the major part of the broadening comes from a homogeneous contribution
given the long dephasing time measured in inorganic lead halide perovskites [30].
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3.2.2. Time-Resolved Photoluminescence

In order to clarify the nature of the recombination of α and β-band, we performed TR
spectra at different temperatures (from 10 to 280 K) after picosecond excitation at 3.45 eV
with an intensity of 10 W/cm2, corresponding to a photon flux of ~4 × 1011 photons/cm2.
Results at 14 K are reported in Figure 5. A typical streak camera image is shown in
Figure 5a, from which TR spectra and decays are extracted (Figure 5b–d). The TR spectra
at different delay times are shown in Figure 5b on a log scale: all spectra, at each time
delay, exhibit an exponential thermal tail whose effective time dependent temperature
can be evaluated assuming the Boltzmann distribution for the carriers [31,32]. In this case
the initial carrier temperature around 140 K progressively decreases down to 80 K (see
Figure S5), maintaining a value higher than the lattice temperature for a long time, as
already observed in CsPbBr3 [32]. After a fast rise the population thermalizes and, as a
consequence, all the states around Pα (in the range 2.960–2.990 eV) decay with the same
time constant. Instead, a strong difference of the PL lifetime is observed at Pα and Pβ

(Figure 5d), and the TR spectra of Figure 5b indicate a substantial independence of the two
bands recombination with a lack of population transfer between β and α bands, confirming
the absence of correlation of the two (Figure 4b).
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from (a) at peaks energy of Pα (in red) and Pβ (in black) along with the experimental time response
(in green). The fit functions (dashed lines) are shown superimposed to the experimental PL decays.

The initial change in the spectral shape of α-band, due to thermalization, is shown
in Figure 5c where we can easily notice that by increasing the time delay the population
transfers from higher energy, corresponding to FE, to lower energy states, i.e., to localized
or bound exciton states. After nearly 60 ps the PL decreases in intensity without further
change in its shape, attesting the achievement of the thermalization. It is to remark that
the TI spectrum at low T has a peak energy at Pα, corresponding to a bound exciton
recombination. Further evidence of such attribution comes from temperature-dependent
spectra showing increased contribution of FE at higher temperature (Figure S3).

The PL time evolution at Pα and Pβ, at short times, and the corresponding fits are
shown in Figure 5d, along with the experimental time response. In the fastest time scale, up
to 100 ps, a single exponential decay with a time constant τ1 can substantially describe the
PL time evolution. Each fitting curve is obtained as convolution between the experimental
time response and the PL decay function, using an exponential rise and decay; the time
constants for Pα are τrise 4 ps and τ1 22 ps, while for Pβ τrise is resolution limited and τ1
is 7 ps. TR PL data for all the investigated samples do not show remarkable changes in
the time constant for α and β-band. It is also worth to remark that no change into the PL
dynamics was observed by changing the excitation power over two orders of magnitude,
between 1 and 100 W/cm2.

4. Data Analysis and Discussion

Our TR data prove that α and β emissions, which are present in all the investigated
samples with similar features in terms of spectral line shape, relative intensity and time
evolution, do not originate from a relaxation of higher energy (β-band) to lower energy
states (α-band). This is an additional confirmation that they do not originate from the
same spatial region in agreement with results of Figure 4b. Moreover, in this context, the
significant faster decay of Pβ respect to Pα is naturally explained by the major role played
by surface state recombination in the NC as expected by the increased surface over volume
states when the crystal size decreases [33].

In the comparison of our PL results with literature data on single crystal and amor-
phous films, it turns out that the main peak Pα (≈ 2.97 eV at 10 K) corresponds to a localized
exciton recombination of CsPbCl3 [26,27].

More controversial is the assignment of the emission at ≈3.02 eV (β-band) already
observed in single crystals, nanocrystals and amorphous films. This band is reported in
previous works with different attributions; Ito et al. assign the β-band to the 2S excitonic
transition [29], whereas Lohar et al. to a bound exciton [28]. Kondo et al., performing
experiments at 77 K and high excitation density (>10 kW/cm2) observes a band at 2.97 eV
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with a superlinear behavior claimed as stimulated emission, while the FE emission is
assigned to a band at ≈3.03 eV [34]. Our data exclude all the previous assignments of the
β-band. Indeed, concerning the 2S recombination we have proven in TR spectra and in
micro-PL maps that the β-band has no correlation in time and space with Pα. Moreover,
the power dependence of the PL intensity and excitation density used in our experiment
exclude the presence of stimulated emission in the spectra. It has to be noted that β-band
cannot be attributed to the precursor salts [35,36]. Moreover, the analysis of micro-PL maps
(Figure 4) exclude any intermixing between α and β-band, corresponding respectively to
the MCs and to the NC with a lack of “communication” between the two kind of emitters.
We remark that such spectral features are always found in our samples, even though with
different intensity, indicating that they are related to the growth conditions. To explain the
different energies of the α and β-band several effects can be invoked: first of all, given the
size of NC and MCs and the exciton Bohr radius of 2.5 nm [9], quantum confinement effects
must be excluded provided that they are relevant only for NC with dimensions smaller
than 10 nm. A possible origin could be related to the presence of a different strain between
the substrate and NC and MCs, that show, however, an equal temperature dependent
behavior (Figure 3b). We can envisage also two other possible origins of the different bands:
a change in the stoichiometry of Cs, Pb, Cl [37] or different crystalline phase of CsPbCl3
in the MCs and NC, in analogy with reports on hybrid perovskites [38–40]. Two recent
papers [41,42] highlighted structural changes crossing between NC and MCs and therefore
it is very likely to suppose that the different energies of the α and β bands reflect such
changes. Presently, we cannot experimentally distinguish between the previous hypotheses
about the origin of the β-band: however, it must be pointed out that our data clearly
show the formation of extended electronic states as certified by the excitonic resonances
of Figure 3.

A relevant aspect of our work concerns the temperature-dependent TR data and, in
particular, the relative contribution of radiative and non-radiative recombination, providing
quantitative estimate of the PL yield. In Figure 6a the PL time evolution at Pα for different
temperatures is reported, over an extended range with respect to Figure 5d, showing a
non-exponential behavior: for each temperature the decay can be nicely fitted with two
exponentials with time constants τ1 and τ2, and the results are plotted in Figure 6b. The fast
decay time τ1, after an initial rise at low temperature (T), decreases to smaller values, but
the overall variation in the range 10–300 K is less than a factor 5; similar limited variation
is observed for τ2; the small increase of both time constants observed for T > 150 K can
be ascribed to the second order phase transition reported around this temperature for
CsPbCl3 [43–45]. The fast initial decay time constant agrees with results of [46]. In Figure 6c
we report different Arrhenius plots extracted from the PL intensity as a function of T that
gives account of the PL quenching. In Figure 6c ITI indicates the PL intensity of the α-band
integrated in time and over all the spectrum of the band itself, I(EPα) is the TI PL intensity
at Pα peak energy EPα, and I(EPα,0) is the maximum of intensity at EPα as obtained from
the TR spectra at different temperatures. The quantity F(EPα)/τR will be defined in the
following. Similar trends concerning the temperature dependence of the PL intensity are
found for all the investigated samples. Despite the loss of PL intensity increasing the
temperature (Figure 6c), the emission at room temperature is easily detectable. In order to
correctly analyze the data, it is necessary to consider not only the variation with T of the
PL intensity, but also the change in the PL time evolution. Indeed, under the assumption
that the overall dynamics of the states involved in the radiative recombination is linear at a
given temperature T (as proven by power-dependent measurements previously discussed),
the time evolution of the PL intensity I(E,t), at a given energy E, is proportional to:

I(E, t) ∝
N(E)

τR

∫ t

0
S
(
t′
)

F
(
E, t− t′

)
dt′ (1)

where S(t) represents the time evolution of the exciting laser pulse, or more generally the
response function of the experimental setup, N(E) the initial population of the excitonic
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states and F(E,t) the function describing the PL time evolution normalized to 1 at t = 0 (i.e.,
F(E,0) = 1). τR is the radiative time that, as a consequence of the increasing population of
the excitonic states outside the light cone, scales as T3/2 in bulk samples [47]. If S(t) is short
enough with respect to the decay time, we can assume S(t) = δ(t) and then:

I(E, t) ∝
N(E)F(E, t)

τR
(2)
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Therefore, in a TI measurement we get:

I(E) ∝
N(E)F(E)

τR
(3)

where F(E) is the integral over t, between 0 and infinite, of F(E,t).
In general both N(E) and F(E,t) depend on temperature (T): as a consequence, from

the Arrhenius plot of TI PL data we cannot distinguish between a quenching originating
from N(E), i.e., from a decrement of the initial filling of the state, or from F(E,t), i.e., from a
temperature evolution of radiative state dynamics.

In Figure 6c we report the Arrhenius plot of the PL intensity of the α-band integrated
in time and over all the spectrum (indicated as ITI), of the TI PL intensity at Pα peak energy
EPα (i.e., I(EPα) = N(EPα) × F(EPα)/τR), and of the maximum of intensity at EPα as obtained
from the TR spectra at different temperatures (i.e., I(EPα,0) = N(EPα)/τR). On a linear scale
we also plot the T-dependence of F(EPα)/τR, as obtained from the TR PL at EPα at the
different temperatures.

The strong resemblance in the T-dependence of ITI and I(EPα) brings evidence that the
thermal quenching is the same for all the states responsible for the α-band. Instead, the
comparison between the Arrhenius plot of I(EPα) and I(EPα,0) gives account of the different
contributions to the thermal quenching: provided that the variation of F(EPα)/τR with T
is quite small, it turns out that the main PL quenching comes from N(EPα), i.e., from a
decrease of the initial exciton population due to a fast (less than a few ps) free carriers
capture in traps, before they reach the bottom of the band. In Figure 6c we show a fit of
I(EPα,0) obtained with the expression:

I(EPα,0) =
N(EPα)

τR
=

A

(kT)3/2
(

1 + Be−
EA
kT

) (4)
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where EA represents the effective activation energy of the capture center for the free carriers
and the factor (kT)3/2 accounts for the variation of τR with T. In Figure 6b we report τ1 and
τ2 as obtained from the fits of the PL decay as a function of T, and the corresponding fits
obtained with a standard two-level model describing the dynamics of an upper radiative
state U interacting with a lower dark state L [48]. The fast time constant τ1 comes mainly
from that of the upper state U and is given by the parallel of a non-radiative (τNR) and
a radiative (τR) time constants. The non-radiative rate 1/τNR is assumed to vary with T
as exp(−EU/kT) and the radiative rate 1/τR to scale as 1/(kT)3/2, according to data and
theory for bulk systems [47]. The longer time constant τ2 is essentially the decay time of
the lower state L, commonly attributed to a dark exciton [49], that thermally repopulates
the upper one; the refilling rate from L to U is assumed to be thermally activated and
then varying with T as exp(−EL/kT). From the fit a quite long refilling time at low T is
obtained, i.e., ≈125 ps, and an activation energy EL = 16 meV. For the activation energy
of the non-radiative rate of the upper state we get from fit EU = 7 meV, in agreement with
the exciton localization energy (≈ 7 meV). In other words, by increasing T, excitons are
promoted from localized to extended states and then are quickly captured by non-radiative
recombining centers. For the radiative rate of the upper level from the fit we get τR = 40 ps
at low temperature that, taking into account the proper scaling with T, corresponds to
τR = 450 ps at room temperature, in agreement with literature [50,51]. Therefore, the
strong decrease of the PL yield has to be ascribed, rather than to the exciton recombination,
mainly to the reduced number of excitons that initially populate the radiative state: as a
consequence, the presence of efficient traps for free carriers has to be invoked to explain
the experimental findings as already found [52,53]. From this point of view, the observed
presence of O and C in the XPS spectra (in particular O) could be responsible for traps.
The role of oxygen in halide perovskites (both hybrid and inorganic) has been investigated
by several authors. On the one hand in hybrid perovskites oxygen promotes the material
decomposition [54], while in CsPbBr3 it can produce passivation of surface states, that
increases the PL yield [55], or, depending on the material nanostructure, a detrimental
effect [56,57]. As an alternative, or in addition to this, also a Pb rich and a Cl defective
surface can provide efficient non-radiative recombination [49,51].

In our samples, having measured the PL yield at room temperature, from the Arrhe-
nius plot, we estimate a PL yield at 10 K of ≈90% which agrees with what expected from
the radiative and non-radiative rate at low T (Figure 6b).

5. Conclusions

We have demonstrated that fairly compact nanocrystalline thin films of CsPbCl3
can be realized by RF magnetron sputtering with high homogeneity in terms of optical
properties with at most a variation of the PL energy position of the order of 0.1% over
~10 cm2. Samples prepared with this technique without any post-growth treatment and
in absence of a polymeric coating show very good PL emission. To our knowledge, such
homogeneity results are not achievable with standard deposition techniques without the
addition of specific chemicals. In particular, the sample high optical quality is proven
by the presence of limited IB (~15 meV). Detailed PL investigation provides quantitative
information concerning the contribution of radiative and non-radiative recombination in
CsPbCl3; the loss of PL yield comes from efficient capture of carriers in traps during the
relaxation path. The presence of oxides could be responsible of such traps.

In conclusion, our results envisage the possibility of the use of RF magnetron sputter-
ing for integration of fully inorganic perovskites in multilayer nanometric structures, such
as photonic cavities, resonators and optical circuits.
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PL Photoluminescence
SLG Soda Lime Glass
RF Radio Frequency
SEM Scanning Electron Microscopy
AFM Atomic Force Microscopy
XPS X-Ray Photoelectron Spectroscopy
XRD X-Ray Diffraction
TI Time-integrated
TR Time-resolved
NC Network of nanocrystals
MCs Sub-micrometer size larger crystals
FE Free Exciton
IB Inhomogeneous Broadening

References
1. Sutherland, B.R.; Sargent, E.H. Perovskite photonic sources. Nat. Photogr. 2016, 10, 295–302. [CrossRef]
2. Zhang, Y.; Lim, C.-K.; Dai, Z.; Yu, G.; Haus, J.W.; Zhang, H.; Prasad, P.N. Photonics and optoelectronics using nano-structured

hybrid perovskite media and their optical cavities. Phys. Rep. 2019, 795, 1–51. [CrossRef]
3. Song, J.; Xu, L.; Li, J.; Xue, J.; Dong, Y.; Li, X.; Zeng, H. Monolayer and few-layer all-inorganic perovskites as a new family of

two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861. [CrossRef]
4. Zhang, J.; Hodes, G.; Jin, S.; Liu, S. All-inorganic CsPbX3 perovskite solar cells: Progress and prospects. Angew. Chem. Int. Ed.

2019, 58, 15596. [CrossRef] [PubMed]
5. Bruzzi, M.; Talamonti, C.; Calisi, N.; Caporali, S.; Vinattieri, A. First proof-of-principle of inorganic perovskites clinical radiother-

apy dosimeters. APL Mater. 2019, 7, 051101. [CrossRef]
6. Li, D.; Liao, P.; Shai, X.; Huang, W.; Liu, S.; Li, H.; Shena, Y.; Wang, M. Recent progress on stability issues of organic–inorganic

hybrid lead perovskite-based solar cells. RSC Adv. 2016, 6, 89356. [CrossRef]
7. Mitzi, D.B. Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials, in Progress in Inorganic Chemistry;

Karlin, K.D., Ed.; Wiley: Hoboken, NJ, USA, 1999; pp. 1–121.
8. Biccari, F.; Falsini, N.; Bruzzi, M.; Gabelloni, F.; Calisi, N.; Vinattieri, A. Defects in Perovskites for Solar Cells and LEDs, Chapter 3

in “Defects in Functional Materials”; Ling, F.C., Zhou, S., Kuznetsov, A., Eds.; World Scientific Publishing: Singapore, 2020; ISBN
978-9811203169. [CrossRef]

9. Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V.
Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright
emission with wide color gamut. Nano Lett. 2015, 15, 3692. [CrossRef] [PubMed]

10. Yang, Z.; Zhang, S.; Li, L.; Chen, W. Research progress on large-area perovskite thin films and solar modules. J. Mater. 2017, 3, 231.
[CrossRef]

11. Pasquarelli, R.M.; Ginley, D.S.; O’Hayre, R. Solution processing of transparent conductors: From flask to film. Chem. Soc. Rev.
2011, 40, 5406. [CrossRef] [PubMed]

12. Hirotsu, S.; Sawada, S. Crystal growth and phase transitions of CsPbCl3. Phys. Lett. 1969, 28, 762. [CrossRef]
13. Yunakova, N.; Miloslavsky, V.K.; Kovalenko, E.N.; Kovalenko, V.V. Effect of structural phase transitions on the exciton absorption

spectrum of thin CsPbCl3 films. J. Low Temp. Phys. 2014, 40, 690. [CrossRef]
14. Heidrich, K.; Künzel, H.; Treusch, J. Optical properties and electronic structure of CsPbCl3 and CsPbBr3. Solid State Commun.

1978, 25, 887. [CrossRef]

http://doi.org/10.1038/nphoton.2016.62
http://doi.org/10.1016/j.physrep.2019.01.005
http://doi.org/10.1002/adma.201600225
http://doi.org/10.1002/anie.201901081
http://www.ncbi.nlm.nih.gov/pubmed/30861267
http://doi.org/10.1063/1.5083810
http://doi.org/10.1039/C6RA19801E
http://doi.org/10.1142/11352
http://doi.org/10.1021/nl5048779
http://www.ncbi.nlm.nih.gov/pubmed/25633588
http://doi.org/10.1016/j.jmat.2017.09.002
http://doi.org/10.1039/c1cs15065k
http://www.ncbi.nlm.nih.gov/pubmed/21687838
http://doi.org/10.1016/0375-9601(69)90608-2
http://doi.org/10.1063/1.4894319
http://doi.org/10.1016/0038-1098(78)90294-6


Nanomaterials 2021, 11, 434 14 of 15

15. Somma, F.; Aloe, P.; Lo Mastro, S. Structural and optical properties of ternary Cs–Pb–Cl nanoaggregates in thin films. J. Vac. Sci.
Technol. 2001, 19, 2237. [CrossRef]

16. Nikl, M.; Nitsch, K.; Polak, K.; Pazzi, G.P.; Fabeni, P.; Citrin, D.S.; Gurioli, M. Optical properties of the Pb2+-based aggregated
phase in a CsCl host crystal: Quantum-confinement effects. Phys. Rev. B 1995, 51, 5192. [CrossRef]

17. Kondo, S.; Nakagawa, H.; Saito, T.; Asada, H. Photoluminescence of CsPbCl3 films prepared by quench deposition and subsequent
heat treatments. J. Phys. Condens. Matt. 2003, 15, 1247. [CrossRef]

18. Borri, C.; Calisi, N.; Galvanetto, E.; Falsini, N. First proof-of-principle of inorganic lead halide perovskites deposition by
magnetron-sputtering. Nanomaterials 2020, 10, 60. [CrossRef]

19. Scardi, P.; Setti, S.; Leoni, M. Multicapillary optics for materials science studies. Mat. Sci. Forum 2000, 321, 162. [CrossRef]
20. Yoshimura, Y.; Tozaki, K.; Kojima, A.; Iwasaki, H. In Smart Structures and Materials 2001: Active Materials: Behavior and

Mechanics. In Proceedings of the SPIE 2001, Newport Beach, CA, USA, 4–8 March 2001; Volume 4333.
21. Iwanaga, M. Photoacoustic detection of phase transitions at low temperatures in CsPbCl3 crystals. Phase Trans. 2005, 78, 377.

[CrossRef]
22. Chen, H.; Guo, A.; Gu, X.; Feng, M. Highly luminescent CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with tunable photolumi-

nescence properties. J. Alloys Comp. 2019, 789, 392. [CrossRef]
23. Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden

Prairie, MI, USA, 1992.
24. Fröhlich, D.; Heidrich, K.; Künzel, H.; Trendel, G.; Treusch, J. Cesium-trihalogen-plumbates a new class of ionic semiconductors.

J. Luminescence 1979, 18, 385. [CrossRef]
25. Ito, H.; Onuki, H.; Onaka, R. Optical and photoelectronic studies of CsPbCl3 and CsPbBr3. J. Phys. Soc. Jpn. 1978, 45, 2043.

[CrossRef]
26. Sebastian, M.; Peters, J.A.; Stoumpos, C.C.; Kostina, S.S.; Liu, Z.; Kanatzidis, M.G.; Freeman, A.J.; Wessels, B.W. Excitonic

emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Phys. Rev. B
2015, 92, 235210. [CrossRef]

27. Pashuk, P.; Pidzyrailo, N.S.; Matsko, M.G. Exciton absorption, luminescence, and resonant Raman scattering in CsPbCl3 and
CsPbBr3 at low temperatures. Sov. Phys. Solid State 1981, 23, 1263.

28. Lohar, A.; Shinde, A.; Gahlaut, R.; Sagdeo, A.; Mahamuni, S. Enhanced photoluminescence and stimulated emission in CsPbCl3
nanocrystals at low temperature. J. Phys. Chem. C 2018, 122, 25014. [CrossRef]

29. Ito, H.; Nakahara, J.; Onaka, R. Magneto-optical study of the exciton states in CsPbCl3. J. Phys. Soc. Jpn. 1979, 47, 1927. [CrossRef]
30. Becker, M.A.; Scarpelli, L.; Nedelcu, G.; Rainò, G.; Masia, F.; Borri, P.; Stöferle, T.; Kovalenko, M.V.; Langbein, W.; Mahrt, R.F.

Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals. Nano Lett. 2018, 18, 7546.
[CrossRef] [PubMed]

31. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures; Springer: Heidelberg, Germany, 1996.
32. Gabelloni, F.; Biccari, F.; Falsini, N.; Calisi, N.; Caporali, S.; Vinattieri, A. Long-living nonlinear behavior in CsPbBr3 carrier

recombination dynamics. Nanophotonics 2019, 8, 1447. [CrossRef]
33. Cavigli, L.; Bogani, F.; Vinattieri, A.; Faso, V.; Baldi, G. Volume versus surface-mediated recombination in anatase TiO2

nanoparticles. J. Appl. Phys. 2009, 106, 053516. [CrossRef]
34. Kondo, S.; Suzuki, K.; Saito, T.; Asada, H.; Nakagawa, H. Confinement-enhanced stimulated emission in microcrystalline CsPbCl3

films grown from the amorphous phase. J. Cryst. Growth 2005, 282, 94. [CrossRef]
35. Nikl, M.; Birch, D.J.S.; Polak, K. Blue and violet emission of PbCl2. Phys. Solid State 1991, 165, 611. [CrossRef]
36. Voloshinovskii, A.; Myagkota, S.; Gloskovskii, A.; Zazubovich, S. Luminescence of CsPbCl3 nanocrystals dispersed in a CsCl

crystal under high-energy excitation. Phys. Solid State 2001, 225, 257. [CrossRef]
37. Bai, K.; Tan, R.; Ke, B.; Xue, X.; Zhao, J.; Zouc, B.; Zeng, R. Room temperature synthesis of Mn-doped Cs3Pb6.48Cl16 perovskite

nanocrystals with pure dopant emission and temperature-dependent photoluminescence. Cryst. Eng. Comm. 2019, 21, 3568–3575.
[CrossRef]

38. Biccari, F.; Gabelloni, F.; Burzi, E.; Gurioli, M.; Pescetelli, S.; Agresti, A.; Castillo, A.E.D.; Ansaldo, A.; Kymakis, E.; Bonaccorso, F.;
et al. Graphene-based electron transport layers in perovskite solar cells: A step-up for an efficient carrier collection. Adv. Energy
Mat. 2017, 7, 1701349. [CrossRef]

39. Dobrovolsky, A.; Merdasa, A.; Unger, E.L.; Yartsev, A.; Scheblykin, I.G. Defect-induced local variation of crystal phase transition
temperature in metal-halide perovskites. Nat. Commun. 2017, 8, 34. [CrossRef]

40. Meng, X.; Zhang, R.; Fu, Z.; Zhang, Q. Domain-dependent electronic structure and optical absorption property in hybrid
organic–inorganic perovskite. Phys. Chem. Chem. Phys. 2016, 18, 27358. [CrossRef] [PubMed]

41. Piveteau, L.; Aebli, M.; Yazdani, N.; Millen, M.; Korosec, L.; Krieg, F.; Benin, B.M.; Morad, V.; Piveteau, C.; Shiroka, T.; et al. Bulk
and nanocrystalline cesium lead-halide perovskites as seen by halide magnetic resonance. ACS Cent. Sci. 2020, 6, 1138–1149.
[CrossRef] [PubMed]

42. Shi, H.; Zhang, X.; Sun, X.; Zhang, X. Phonon mode transformation in size-evolved solution-processed inorganic lead halide
perovskite. Nanoscale 2018, 10, 9892. [CrossRef]

43. Cape, J.A.; White, R.L.; Feigelson, R.S. EPR study of the structure of CsPbCl3. J. Appl. Phys. 1969, 40, 5001. [CrossRef]

http://doi.org/10.1116/1.1421542
http://doi.org/10.1103/PhysRevB.51.5192
http://doi.org/10.1088/0953-8984/15/8/309
http://doi.org/10.3390/nano10010060
http://doi.org/10.4028/www.scientific.net/MSF.321-324.162
http://doi.org/10.1080/01411590500114732
http://doi.org/10.1016/j.jallcom.2019.03.049
http://doi.org/10.1016/0022-2313(79)90146-7
http://doi.org/10.1143/JPSJ.45.2043
http://doi.org/10.1103/PhysRevB.92.235210
http://doi.org/10.1021/acs.jpcc.8b06579
http://doi.org/10.1143/JPSJ.47.1927
http://doi.org/10.1021/acs.nanolett.8b03027
http://www.ncbi.nlm.nih.gov/pubmed/30407011
http://doi.org/10.1515/nanoph-2019-0013
http://doi.org/10.1063/1.3211291
http://doi.org/10.1016/j.jcrysgro.2005.04.088
http://doi.org/10.1002/pssb.2221650232
http://doi.org/10.1002/(SICI)1521-3951(200105)225:1&lt;257::AID-PSSB257&gt;3.0.CO;2-H
http://doi.org/10.1039/C9CE00428A
http://doi.org/10.1002/aenm.201701349
http://doi.org/10.1038/s41467-017-00058-w
http://doi.org/10.1039/C6CP03377F
http://www.ncbi.nlm.nih.gov/pubmed/27711423
http://doi.org/10.1021/acscentsci.0c00587
http://www.ncbi.nlm.nih.gov/pubmed/32724848
http://doi.org/10.1039/C7NR09101J
http://doi.org/10.1063/1.1657345


Nanomaterials 2021, 11, 434 15 of 15

44. Carabatos-Nédelec, C.; Oussaїd, M.; Nitsch, K. Raman scattering investigation of cesium plumbochloride, CsPbCl3, phase
transitions. J. Raman Spectrosc. 2003, 34, 388. [CrossRef]

45. Yi, J.; Ge, X.; Liu, E.; Cai, T.; Zhao, C.; Wen, S.; Sanabria, H.; Chen, O.; Rao, A.M.; Gao, J. The correlation between phase transition
and photoluminescence properties of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Nanoscale Adv. 2020, 2, 4390. [CrossRef]

46. Becker, M.; Vaxenburg, R.; Nedelcu, G.; Sercel, P.; Shabaev, A.; Mehl, M.; Michopoulos, J.; Lambrakos, S.; Bernstein, N.; Lyons, J.;
et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189–193. [CrossRef] [PubMed]

47. Andreani, L.C.; d’Andrea, A.; del Sole, R. Excitons in confined systems: From quantum well to bulk behaviour. Phys. Lett. A 1992,
168, 451. [CrossRef]

48. Haug, R. (Ed.) Advances in Solid State Physics; Springer: New York, NY, USA, 2008; Volume 48.
49. Chen, L.; Li, B.; Zhang, C.; Huang, X.; Wang, X.; Xiao, M. Composition-dependent energy splitting between bright and dark

excitons in lead halide perovskite nanocrystals. Nano Lett. 2018, 18, 2074. [CrossRef]
50. Mondal, N.; De Samanta, A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals.

ACS Energy Lett. 2019, 4, 32. [CrossRef]
51. Ahmed, G.H.; El-Demellawi, J.K.; Yin, J.; Pan, J.; Velusamy, D.B.; Hedhili, M.N.; Alarousu, E.; Bakr, O.M.; Alshareef, H.N.;

Mohammed, O.F. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface
passivation. ACS Energy Lett. 2018, 3, 2301. [CrossRef]

52. Ahumada-Lazo, R.; Alanis, J.A.; Parkinson, P.; Binks, D.J.; Hardman, S.J.O.; Griffiths, J.T.; Rivarola, F.W.R.; Humphrey, C.J.;
Ducati, C.; Davis, N.J.L.K. Emission properties and ultrafast carrier dynamics of CsPbCl3 perovskite nanocrystals. J. Phys. Chem.
C 2019, 123, 2651. [CrossRef]

53. Lai, R.; Wu, K. Picosecond electron trapping limits the emissivity of CsPbCl3 perovskite nanocrystals. J. Chem. Phys. 2019, 151,
194701. [CrossRef]

54. Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S.A. The role of oxygen in
the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 2015, 54, 8208–8212.
[CrossRef] [PubMed]

55. Lu, D.; Zhang, Y.; Lai, M.; Xie, C.; Lin, J.; Lei, T.; Lin, Z.; Kley, C.S.; Huang, J.; Rabani, E.; et al. Giant light-emission enhancement
in lead halide perovskites by surface oxygen passivation. Nano Lett. 2018, 18, 6967–6973. [CrossRef]

56. Rodà, C.; Abdelhady, A.L.; Shamsi, J.; Lorenzon, M.; Pinchetti, V.; Gandini, M.; Meinardi, F.; Manna, L.; Brovelli, S. O2 as a
molecular probe for nonradiative surface defects in CsPbBr3 perovskite nanostructures and single crystals. Nanoscale 2019, 11,
7613. [CrossRef]

57. Meggiolaro, D.; Mosconi, E.; De Angelis, F. Mechanism of reversible trap passivation by molecular oxygen in lead-halide
perovskites. ACS Energy Lett. 2017, 2, 2794–2798. [CrossRef]

http://doi.org/10.1002/jrs.1005
http://doi.org/10.1039/D0NA00545B
http://doi.org/10.1038/nature25147
http://www.ncbi.nlm.nih.gov/pubmed/29323292
http://doi.org/10.1016/0375-9601(92)90535-T
http://doi.org/10.1021/acs.nanolett.8b00184
http://doi.org/10.1021/acsenergylett.8b01909
http://doi.org/10.1021/acsenergylett.8b01441
http://doi.org/10.1021/acs.jpcc.8b11906
http://doi.org/10.1063/1.5127887
http://doi.org/10.1002/anie.201503153
http://www.ncbi.nlm.nih.gov/pubmed/26014846
http://doi.org/10.1021/acs.nanolett.8b02887
http://doi.org/10.1039/C9NR01133A
http://doi.org/10.1021/acsenergylett.7b00955

	Introduction 
	Materials and Methods 
	Results 
	Samples Characterization at Room Temperature 
	Photoluminescence Study 
	Photoluminescence at Macro and Micro-Scale 
	Time-Resolved Photoluminescence 


	Data Analysis and Discussion 
	Conclusions 
	References

