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Abstract

Ribosomal profiling is a promising approach with increasing popularity for studying translation. This approach enables
monitoring the ribosomal density along genes at a resolution of single nucleotides. In this study, we focused on ribosomal
density profiles of mouse embryonic stem cells. Our analysis suggests, for the first time, that even in mammals such as M.
musculus the elongation speed is significantly and directly affected by determinants of the coding sequence such as: 1) the
adaptation of codons to the tRNA pool; 2) the local mRNA folding of the coding sequence; 3) the local charge of amino acids
encoded in the codon sequence. In addition, our analyses suggest that in general, the translation velocity of ribosomes is
slower at the beginning of the coding sequence and tends to increase downstream. Finally, a comparison of these data to
the expected biophysical behavior of translation suggests that it suffers from some unknown biases. Specifically, the
ribosomal flux measured on the experimental data increases along the coding sequence; however, according to any
biophysical model of ribosomal movement lacking internal initiation sites, the flux is expected to remain constant or
decrease. Thus, developing experimental and/or statistical methods for understanding, detecting and dealing with such
biases is of high importance.
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Introduction

Gene translation is the second major step of gene expression

and thus has ramifications related to every biomedical discipline

including human health [1,2], biotechnology [3], evolution [4–6],

functional genomics [7,8] and systems biology [9,10]. One of the

open questions in the field is related to the way translation

efficiency is encoded in the transcript.

The most promising approach for studying gene translation is

the ribosomal profiling method [11]. This approach was

introduced only a few years ago but has already been successfully

employed for answering various fundamental biological questions

[12–19]. Specifically, ribosomal profiling has been used for: 1)

understanding the mechanism of gene expression down-regulation

by microRNAs [13], 2) understanding the dynamics of translation

in mouse embryonic stem cells [12], 3) showing that the anti-

Shine–Dalgarno sequence drives translational pausing and codon

choice in bacteria [14], 4) studying the yeast meiotic program [15],

5) showing that miR-430 reduces translation before causing

mRNA decay in zebrafish [17], and 6) to reveal the co-

translational chaperone action of trigger factor in vivo [16].

In the current study we analyzed ribosomal profiles of mouse

embryonic stem cells measured in a previous experiment [12]. The

experiment output included ribosomal density measurements

along hundreds of genes at a few time points, after preventing

translation initiation. These data enabled us to infer the translation

elongation speed in different genes, allowing us for the first time to

study several biophysical aspects of translation elongation in

mouse embryonic stem cells.

Results

Measuring translation elongation velocities
To study the kinetics of translation elongation in M. musculus,

ribosome footprint profiles of isoforms expressed in embryonic

stem cell were reconstructed based on a previous study [12].

Briefly, translation was halted by applying cyclohexamide.

Fragments covered by ribosomes were mapped to the transcript

and a baseline ribosomal read counts profile for each expressed

isoform was created (see Methods). Let us denote these created

profiles by RCi
0, where i is the index of the analyzed isoform. In

addition, to estimate the elongation speed of ribosomes, in three

additional experiments harringtonine was used to stop translation

initiation, while allowing ribosomes that already started translating

the mRNA to continue their movement on it. Cyclohexamide was

again applied 90/120/150 seconds after applying harringtonine to

stop translation. In this work, the time difference between applying

harringtonine and cyclohexamide for creating depleted profiles is

named the ‘run-off’ time.

Let us denote the ribosomal read counts obtained in each of

these three experiments by RCi
90=RCi

120=RCi
150 accordantly. The

estimated Starting Location of the depleted ribosomal profile (SL)

was defined as the point where the ribosomal read counts profile of

gene i at time point t (RCi
t profile) reached half of the original
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ribosomal read counts profile RCi
0 (Methods). Using these SL

points, local translation elongation velocities were estimated for

each analyzed isoform. Figure 1 outlines a schematic description of

the method used to estimate the SL points, demonstrated on the

uc007gge.1 isoform (see also Figure S7).

In the original work 4,994 isoforms with good read counts were

found [12]. The authors noticed that the effect of harringtonine

was best observed for genes longer than 750 codons, as for shorter

genes the ribosomes managed to exit the mRNA for the used run-

off times. Thus, only genes that were long enough (at least 750

codons) were used to infer the position of the SL points. In the

current work, the same isoforms satisfying these conditions were

analyzed, resulting in 785 processed isoforms (see Table S10). Let

us define the three estimated SL points by x1,x2,x3 corresponding

to time points 90/120/150 respectively. Let us mark with dx1,dx2

the segments defined by ½dx1,dx2�, ½dx2,dx3� accordantly, and the

ribosomal average translation velocity in these segments by v1 and

v2. The average translation velocity of a segment was estimated by

dividing the segments’ length by 30 seconds. For each gene and

time point, various quality checks were performed to reliably

estimate the position of the SL points (see more technical details in

the Methods section). Eventually, only isoforms with SL points

satisfying x1vx2vx3 were selected, resulting in 692 valid

isoforms out of the 785 processed isoforms (88%).

Translation elongation speed varies among genes and
tends to increase along the coding sequence

Analysis of the data indicated that the median length of dx1 was

128 codons (130677 codons) while the median length of dx2 was

184 codons (181675 codons). Therefore, although the mean

translation velocity of all genes is around 5.5 codons/second [12] (see

Figure 2A and Tables S4, S6), the average translation velocity

along the second segment (v2) is larger than the average

translation velocity along the first segment (v1) (6+/22.5 codons/

second vs. 4.3+/22.6 codons/second, Wilcoxon test p = 2.2*10226

Figure 2A). This result remains significant under various

estimations methods of these velocities.

We performed additional analyses to support the conjecture that

translation elongation velocity is not similar among genes: first, the

standard deviation of the estimated SL points was between 17%

and 49% (Figure 2A–B, Table S4, S6, columns 1, 2, 3). Second,

the relative difference between the two estimated velocities

(calculated using Dv2{v1D=min (v1,v2)) resulted in a median value

of 0.82 while the median value of the ratio v2=v1 resulted in a

value of 1.37 (see also Figure 2C–D). To compare the attained

results to simulated genes with uniform translation elongation rate,

we simulated 692 synthetic genes with 1) lengths distribution

identical to the lengths distribution of the analyzed genes, and 2)

with constant codons translation efficiency (see Methods). The

ribosomal profile of these genes was simulated with a biophysical

model (see Methods), resulting in a much smaller difference

between the calculated velocities v1, v2 (median = 0.01; KS-test: p-

value ,1.81*102271), as seen in Figure 2C. The ratio between the

velocities v2=v1 was also much more moderate when calculated on

these simulated ribosomal profiles (0.99+/20.03, KS-test p-value

,1.56*102295), as seen in Figure 2D. This comparison supports

the claim that there is a high variance in the elongation speed of

the analyzed genes.

Estimated translation elongation velocity is significantly
associated with features of the coding sequence

In order to explain the high variability among segments length,

those were analyzed with respect to different features of the coding

sequence, such as the adaptation to the tRNA pool (e.g. the tAI

[20] and the CAI measure [21]), local mRNA folding energy [22]

and local charge of the translated amino acids [22,23]. Specifi-

cally, codons recognized by more abundant tRNA molecules

increase the tAI measure, therefore we expect longer segments to

positively correlate with this measure [24]. The CAI index, which

measures the frequency of codons in a segment relatively to their

appearance in highly expressed genes, is also expected to positively

correlate with the segment length.

In addition, it was suggested that strong local mRNA folding

tends to slow down ribosomal translation elongation as it increases

the time it takes the helicases to unfold the mRNA molecules [24].

Therefore, segments more strongly folded (i.e. with lower folding

energy (FE)) are expected to be shorter. Finally, the polypeptide

must traverse two negatively charged regions to exit the ribosome

[22,23,25], thus charged amino acids (specifically positively

charged amino acids [23]) that are encoded in the codons

preceding (upstream) the currently translated codon should have

electrostatic interactions with the ribosome exit tunnel [22,23,25].

Therefore, segments more positively charged are expected to be

shorter. More details about the calculation of these measures

appear in the Methods section.

To estimate the distinct contribution of each of the coding

sequence features to the elongation speed, we calculated the

correlation between the length of the segments and each of these

features, when controlling for the other two features, and after

binning the data (details in the Methods section). Spearman

correlation between the segments length and the genes’ tAI/CAI

when controlling for charge and folding energy of the segments

resulted in a correlation coefficient of r = 0.29/0.21 (P,0.00615/

0.049) accordantly. Spearman correlation between the segments’

length and their mRNA folding energy when controlling for

charge and gene tAI was r = 0.42 (P,4.72*1025). The correlation

between the segments’ length and their charge when controlling

for folding energy and the genes’ tAI was r = 20.21 (P,0.046)

(additional analyses appear in the supplementary). Thus, the

results reported in the current subsection support the conjecture

that the translation elongation speed is independently affected by

each of the following features of the ORF: the adaptation of the

ORF codons to the tRNA pools, local mRNA folding and local

amino acids charge.

Author Summary

Gene translation is the process by which ribosomes
translate mRNA molecules to proteins, a central process
in all living organisms. Thus, understanding the biophysics
of gene translation and the way its efficiency is encoded in
the different features of the coding sequence has
ramifications to every biomedical discipline. Recently, a
new large-scale experimental approach named ‘ribosomal
profiling’, has been developed for monitoring the ribo-
somal density at a resolution of single nucleotides. In this
study, we analyzed ribosomal profiling data of mouse
embryonic stem cells. These data enabled us to directly
show that translation velocity is affected by the adapt-
ation of codons to the tRNA pool, local mRNA folding of
coding sequence, and local charge of the amino acids
encoded in the coding sequence. In addition, our analyses
suggest that ribosomal speed tends to be slower at the
beginning of the coding sequence. Finally, we report
possible biases in the ‘ribosomal profiling’ procedure that
should be considered in future studies utilizing this
method.

Translation Elongation Speed in Mouse Stem Cells
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As mentioned in the previous section, the speed of translation

elongation tends to increase along the coding sequence. Aiming at

explaining this phenomenon, features measured on the first and

second segment were also compared using a paired Wilcolxon test,

resulting in significant values for folding energy (Wilcolxon test:

P,1.04*1023) but not for tAI/CAI and charge. This suggests that

in mouse, a possible explanation of the increase in translation

speed along the coding sequence is the decrease in the strength of

the mRNA folding along the coding sequence. Finally, a weak but

significant correlation between the average v1 and v2 translation

speed and the average transcripts length was observed in mouse

(Spearman correlation: r = 20.05, p = 0.022), supporting the

conjecture that shorter genes are more efficiently translated.

Ribosomal flux inferred based on ribosomal profiling
increases along the coding sequence, contradicting
biophysical models of translation elongation

According to the accepted biophysical model of translation,

during the elongation step ribosomes move along the coding

sequence, translating each codon with a speed related to the features

of the coding sequence in its vicinity and according to cellular

factors such as concentrations of elongation factors and tRNA

molecules. In addition, a ribosome may be delayed if a ribosome is

located downstream in front of it [26]. It is also assumed that in

general, ribosomal abortion during translation is relatively rare and

that initiation usually occurs at the 59UTR (i.e. ribosomes do not

appear in the middle of the coding sequence [26]).

According to the protocol of the experiment (e.g. see [11], [12]),

ribosomal footprint reads of a certain codon are generated when

the codon is covered by ribosomes. From a biophysical perspec-

tive, slower codons are covered by ribosomes for a larger amount

of time (relatively to other codons in the mRNA), creating a higher

number of reads (for an illustration see Figure 3A).

In this study, for each analyzed isoform, both dx1 and dx2

segments were assumed to be translated in an equal time interval

of 30 seconds, therefore according to the above assumption, on

average, it is expected for the sum of read counts in the dx1 and

dx2 segments (measured on the baseline profile RCi
0) would be

equal. Therefore, in each isoform the shorter segment is expected

to have a higher ribosomal read count per nucleotide in

comparison to the longer one.

Let us mark the sum of read counts in intervals dx1 and dx2 by

SRC1, SRC2 accordantly. Let us define the percentage difference

between SRC1 and SRC2 (relatively to the minimum of SRC1

and SRC2) by

DSRC(SRC1,SRC2)~100:
DSRC2{SRC1D

min (SRC1,SRC2)

This measure is invariant to the genes’ various mRNA levels and

translation initiation rates, therefore enabling comparison between

all analyzed isoforms. Using the above assumption, we expect this

measure to be close to zero. Figure 3B shows the histogram of the

DSRC measure calculated both on the real ribosomal profiles and

on the simulated ribosomal profiles created using the TASEP

biophysical model for various initiation rate values (see Methods).

However, in contrast to the made biophysical assumptions, the

results indicate that for a substantial part of genes, the DSRC

Figure 1. Estimating the SL point. A diagram outlining the methodology for estimating starting location points (SL points)
demonstrated on the uc007gge.1 isoform. The black line depicts the ribosomal baseline profile while the red line represents a depleted profile
(created using harringtonine to halt initiation; cychlohexamide was applied after 120 seconds). The dotted gray line represents the baseline profile
multiplied by a recovery factor of 0.5, to which the depleted profile is compared. The red dotted line represents the estimated SL point.
doi:10.1371/journal.pcbi.1002755.g001

Translation Elongation Speed in Mouse Stem Cells
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measure is abnormally high (median value of 88 vs. 1–6 for

simulative data of different levels of noise; KS test, all p-values

,3.97*102215).

In addition, the ribosomal flux at a certain codon i along the

coding sequence is defined as the multiplication of the translation

velocity and density at this point (vi
:Di). Therefore, according to

any biophysical model with negligible amount of initiation events

inside the ORF, we expect the flux to be constant (i.e. vi
:Di&vj

:Dj

for different i,j) or decrease (due to ribosomal abortion);

Let us mark the mean ribosomal read counts measured in the

first and second segments by �DD1 and �DD2 respectively and the

average velocity in the first and second segment by �vv1 and �vv2. If we

assume that the local flux remains constant, we also expect that

v1
:D1&v2

:D2. Given that the average velocities of �vv1, �vv2 in both

the first and second intervals were measured during the same time

intervals, we can rewrite this relation as dx1
:�DD1&dx2

:�DD2

Thus if

dx1
:�DD1&dx2

:�DD2<dx2=dx1&�DD1=�DD2~1=( �DD2=�DD1)

we would expect the correlation between �DD2=�DD1 and dx2=dx1 to

be negative. Intuitively, for a given gene, longer segments should

have relatively lower mean read counts. Indeed, the calculated

ratios for the simulated densities resulted in a negative correlation

Figure 3. (A). Ribosome read counts measures according to the biophysical model. The green round shapes represent the ribosomes on
the mRNA, which is depicted with a blue line. According to the biophysical model, segments of high ribosomal read counts are associated with
regions more slowly translated (bottom graph). The orange double arrows represent the mRNA segments being translated in equal time intervals. (B).
DSRC histogram calculated on real (blue) and simulated ribosomal profiles for low/high/proportional initiation rates (black/red/green) with zero
noise level. The calculated median value of this measure is 88/2.46/2.39/2.38 accordantly.
doi:10.1371/journal.pcbi.1002755.g003

Figure 2. (A). Estimated position of the SL points (mean and standard deviation): v1 = 4.3+/22.6, v2 = 6+/22.5. v = 5.2+/21.2
(Wilcoxon test: p = 2.2*10226). (B). v1 and v2 histograms. (C). Histogram of Dv2{v1D=min (v1,v2) measure calculated on: 1) the experimental data
(blue) (median value 0.82) 2) on simulated ribosomal densities of the analyzed isoforms for low/high/proportional initiation rates (green/red/black)
and 3) ribosomal densities created using codons of equal translation efficiency for low/high initiation rates (magenta/teal). For the simulations, the
obtained median values of the Dv2{v1D=min (v1,v2) measures were 0.06/0.06/0.06/0.02/0.01, significantly lower than in the case of the experimental
data (KS p-value ,6.18*102153 in all cases). The inset shows the ratio for the simulative data only. (D). Histogram of the v2=v1 ratio calculated on real
and simulative data. The median value of this measure for the real ribosomal profiles was 1.37, significantly higher than for the simulative data, which
resulted in median values of 1/1.01/1.01/1/1.01 accordantly (KS p-value ,5.67*102250 in all cases).
doi:10.1371/journal.pcbi.1002755.g002

Translation Elongation Speed in Mouse Stem Cells
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(Figure 4B, Spearman correlation of R = 20.9, P,102291;

R = 20.91, P,102294; R = 20.91, P,102297; for low/high/

proportionate initiation rates). However, when measured on real

ribosomal read counts profiles, the correlation between ( �DD2=�DD1)
and dx2=dx1 achieved a significant positive value (R = 0.13,

P,0.00082; Figure 4A), contradicting the accepted translation

model. Finally, the flux itself dxi
:�DDi is expected to remain constant

or decrease (due to ribosomal abortion), i.e. (dx2
:�DD2)=

(dx1
:�DD1)ƒ1. Yet, we found that this ratio tends to increase

(median((dx2
:�DD2)=(dx1

:�DD1))~1:69w1).

Next, we calculated the values of all presented measures on the

simulated ribosomal profiles for different initiation rate regimes

(see Methods) and compared them to the values obtained when

calculating them on the real ribosomal profiles. This analysis

resulted in significantly different values: the (dx2
:�DD2)=(dx1

:�DD1)
measure calculated on the simulative data resulted in a median

value of 1.01 (KS test in comparison to the measured data: p-value

,9*10295; Figure 4C, Table S9), while the difference between the

velocities v1 and v2 resulted in a median value of 0.06 (KS test: p-

value ,6.18*102153; Figure 2B). In addition, the ratio between the

velocities resulted in median values of 1–1.01 (KS test: p-value

,5.67*102250) (Figure 2C). Overall, the comparisons between all

measures calculated on the experimental data and on the

simulative ribosomal profiles created by the biophysical model

point on the existence of substantial biases in the data produced by

the ribosomal profiling procedure.

Discussion

In this study, we reanalyzed the ribosomal profiling data of

mouse embryonic stem cells that was generated in a previous study

[12]. Our analysis demonstrates that even for relatively long

analyzed genes, that are not expected to be under strong selection

for translation efficiency [27], in unusual tissue/conditions such as

embryonic stem cells, translation elongation speed is affected by

features such as the adaptation of codons to the tRNA pool, local

mRNA folding, and charge.

In addition, our analysis directly shows for the first time that the

translation elongation speed tends to increase along the coding

sequence. The reasons for this phenomenon may be related to the

fact that at the beginning of the coding sequence features such as

adaptation to the tRNA pool and mRNA folding strength tend to

slow down ribosomal movement (see, for example, [22,24]). This

may also be related to the fact that there is a selection for lower

codon bias at the beginning to reduce the costs of both missense

and nonsense translational errors [28,29]. The statistical analysis

performed in this study support the conjecture that the slower

speed at the beginning of the coding sequence is due to stronger

mRNA folding in this region. This phenomenon, however, may

also be related to yet unknown properties of this process or to

biases of the ribosomal profiling methods.

Finally and importantly, at least in the reported study, our

analysis demonstrates the existence of some unexplained

Figure 4. (A). �DD2=�DD1 vs. dx2=dx1 measured on the real data (B). �DD2=�DD1 vs. dx2=dx1 measured on the simulative data for low/high/
proportional initiation rates (black circles/red crosses/green dots) (C). Histogram of the flux ratio (dx2

:�DD2)=(dx1
:�DD1) measured on the

real (blue; median = 1.69) and on the simulative data created using low/high/proportional initiation rates (black/red/green;
median = 1/1.01/1.01; KS test: p-value ,9*10295).
doi:10.1371/journal.pcbi.1002755.g004

Translation Elongation Speed in Mouse Stem Cells
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deviations between the output of the ribosomal profiling approach

and any of the accepted models of translation elongation, which

assume that the rate of initiation from sites inside the ORF is

negligible. This discrepancy may be explained by the fact that

current models of translation elongation are inaccurate and, for

example, initiation does tend to occur from sites inside coding

sequences. However, the most plausible explanation is that

ribosomal profiling approach, as in the case of the more traditional

approaches for studying mRNA levels (e.g. [30]), includes

experimental biases that should be further explored. Another bias

of the ribosomal profiling approach which is related to the

increased ribosomal density at the beginning of the ORF has been

suggested recently in [12].

We also suggest a few explanations for these observed biases,

while taking into consideration that there might be additional

sources of bias in the ribosomal profiling protocol that are not

mentioned here. For example, an insufficient number of mRNA

molecules could increase the estimation errors and bias all the

presented measures. Specifically, the ribosomal profiling approach

produces for each gene the ribosomal positions along the mRNA

molecules that have been transcripted from it and that are present

in the cell at the time of the experiment. As the read counts per

location of a single mRNA are stochastic, averaging them over

many mRNA molecules of a gene should theoretically produce a

profile that is similar to the stationary density profile of the gene.

Thus, the number of mRNA copies affects the averaged profile

and eventually the quality of the estimated measures mentioned in

this study. In practice, genes with a relatively low number of

mRNA molecules can result in highly biased profiles. Indeed,

when we modified our computational simulation of the experi-

ment to simulate a low number of mRNA molecules per gene (see

Methods), the correlation between �DD2=�DD1 and dx2=dx1 decreased

(Figures S12, S13, S14) while the DSRC measure increased

(Figures S9, S10, S11), contrary to the expected trend.

Another source of bias may be related to the fact that the

current ribosomal density protocol involves filtering some of the

reads, distorting the resultant ribosomal density profiles. Specif-

ically, by the protocol of the experiment, only short mRNA

fragments that are covered by exactly one ribosome (i.e.

monosomes) are purified for further analyses [11,31], while

mRNA segments covered by polysomes are discarded. Thus, it is

also possible that the reported biases are, at least partially, due to

the fact that fragments that origin from ribosomes located very

close to each other on the mRNA are filtered and not analyzed,

creating deviated ribosomal profiles. Indeed, cases of fragmented

mRNA covered with more than one ribosome as a result of very

close ribosomes were reported in a previous study [32]. In

addition, when only monosomal footprints were considered in the

simulation (see Methods), we obtained a decrease in the

correlation between the �DD2=�DD1 and dx2=dx1 ratios and a major

increase in the DSRC measure (see Figures S9, S10, S11, S12, S13,

S14).

The deviations from the accepted biophysical model could also

be explained by the non-uniform effect of the harringtonine/

cyclohexamide substances on the different mRNA molecules,

causing uneven run-off times, and distorting the location of the SL

points. The simulation of this possible experimental bias (see

details in Methods) also resulted in an increased DSCR and a

decrease in the correlation between �DD2=�DD1 and dx2=dx1 (Figures

S15, S16, S17).

Finally, complex relations between the sequence features, their

effect on ribosomal density and on the output of the ribosomal

profiling approach may also contribute to the deviation from the

biophysical model. For example, it was suggested that elongation

speed and ribosomal density are affected by the strength of the

local folding of the mRNA (stronger foldingRslower elongation

speedRhigh ribosomal density) [22]. However, it is also possible

that stronger mRNA folding decreases the efficiency of footprint

production in the ribosomal profiling protocol (e.g. the efficiency of

RNase activity decreases for mRNA fragments with strong folding;

e.g. see [33]), contributing to a distorted ribosomal density profiles.

Nonetheless, currently, the ribosomal profiling approach is the

major method for studying gene translation, therefore under-

standing these biases and accurately correcting them should

significantly affect studies in various biomedical disciplines. As was

demonstrated in this study, one possible direction for detecting

such biases is by comparing the ribosomal profiling outcome to the

computational biophysical models using statistical analysis. We

believe that such approach will be used in the future for employing

filters and normalization procedures that are inversed to the

noise/bias obtained in the experimental procedure and for

adjusting the experimental procedure itself.

Methods

Reconstructing the genes’ ribosomal profiles
Sequencing data were downloaded from the GEO database

(accession number GSE30839) [12]. We analyzed all data related

to the study of the kinetics of translation elongation. The specific

processed files are summarized in Table S1.

Sequenced reads comprise short RNA fragments of different

lengths; therefore, a generated linker sequence (CTGTAGGCAC-

CATCAATTCGTATGCCGTCTTCTGCTTGAA) was attached

to enable the recovery of the original fragment. More details of this

method appear in the original work [12]. In this study, linkers were

first detected and removed from the published fragments and only

then aligned to transcripts. The start location of the linker was

estimated to be between the 20–36 nt of the RNA fragment. Next,

the distance between the estimated linker and the published linker

was calculated (in terms of number of different nucleotides); a valid

linker was accepted if this distance differed by up to two nucleotides.

If no valid linker was found, the fragment was rejected. Table S2

summarizes the number of fragments published by Ingolia et al. (see

Table S1, column 2) and the percentage of processed fragments after

removing the attached linker (column 3).

Aligning the fragments directly to the genome resulted in a high

number of ambiguous matches. Therefore, fragments were aligned

to known transcripts (exons) and spliced junctions. The M. musculus

transcripts were derived from the UCSC Genes data set [34] and

the alignment was performed using the Bowtie software [35],

allowing up to two mismatches.

As mentioned by Ingolia et al., fragments of different lengths

tend to have slighter different A site locations, therefore the

beginning of the A site for fragments of 29–30/31–33/34–35 nt

was defined to begin +15/+16/+17 nt relatively to the 59 end of

the fragment. Additional details about this topic appear in the

original work [12].

As summarized in Table S2, part of the processed fragments

matched to more than one location. To overcome multiple

mapping of a single fragment, we performed the following

procedure: first, only fragments aligning to a single location were

mapped. In the second iteration, for all fragments aligning to more

than one location, the mean read counts in the region of the

possible locations was calculated (10 nt before and after the

location of the A site for each possible location). These mean read

counts defined the probability of an ambiguous fragment to be

aligned to only one of the locations.

Translation Elongation Speed in Mouse Stem Cells
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For each isoform, nucleotide read counts profiles were recon-

structed by assembling read counts of relevant exons and spliced

junctions. Codon reads were calculated by averaging the obtained

reads of each three non-overlapping consecutive nucleotides.

Estimating the position of the ribosomes at each time
point by the original method

In the original work, the RCi
t profiles were smoothed using an

averaging window of five codons and normalized by the average

read counts of codons 800–1000. This normalization assumed that

read counts in regions not affected by harringtonine (codons 800–

1000) have a similar value (for each one of the run-off profiles

apart). When assuming the experiment is reproducible, i.e.

ribosomal read counts of all RCi
t profiles are similar after the

first 750 codons (the harringtonine effect did not extend beyond

this point for any isoform in the experiment [12]), it is possible to

estimate the Starting Location (SL) point of a depleted profile RCi
t

by comparing it to the baseline profile, RCi
0. The SL of the

depleted ribosomal profile of each isoform was defined as the

position beyond the first 40 codons, where the normalized

ribosomal density profile RCi
t exceeded a value of 0.5. In this

work, this parameter is defined as the recovery factor. Isoforms

with SL points not satisfying x1vx2vx3 (see Table S3) were

discarded. When smoothing the profiles with longer averaging

windows, the number of isoforms with non-physical SL points

reduced to 141 (out of 785, see also Table S3).

Estimating the position of the ribosomes at each time
point by the new method

Further study of the nature of ribosomal profiles revealed that

the original SL estimation method suffers from some difficulties:

the results presented in Figure S3-A show that read counts in

regions not affected by harringtonine (beyond the 750th codon,

excluding the last 20 codons) have a high variability, therefore

their average read count value cannot be used for normalizing the

ribosomal profiles. In addition, in the original method the SL point

was defined as the location where the run-off profile exceeded the

threshold value 0.5. This criterion assumes again that RCi
0 profiles

are relatively homogenous, and small spikes caused by noises can

be filtered by first smoothing them. However, the results in Figure

S3-B show that different profiles have a high read counts

variability, also suggesting that ribosomal read counts could be

position dependent, making the comparison of the run-off profile

to a static threshold of 0.5 problematic.

To overcome these issues, in the current work we suggested

scaling each run-off profile to the baseline profile by a dynamic

factor that derives from the read counts beyond the 750th codon of

both profiles (excluding the last 20 codons). This factor is set to

minimize the distance between these regions. In the current study,

we also tested the effect of the smoothing window size (10/15/20/

25/30 codons) on the number of genes with physical SL points, as

presented in Table S5. The SL location of each isoform was

defined as the position beyond the first 40 codons, where the

ribosomal density profile RCi
t exceeded the value of the RCi

0

profile multiplied by the recovery factor. This created a dynamic

threshold for the run-off profiles to be compared to. The influence

of the recovery factor on the number of genes with physical SL

points was also evaluated, as presented in Table S6. In addition, to

improve robustness of the method to local bursts of noise, an SL

point was defined to be valid if 50% of the next 20 points could

also exceed the dynamic threshold. The optimal smoothing

window size and recovery factor were selected to maximize the

number of genes whose SL points were physically estimated

(x1vx2vx3), resulting in a window size of 30 codons and a

recovery factor of 0.5 (see Table S3, S4, S5, S6).

To compare between the methods’ ability to correctly estimate

SL points in a noisy environment, both the original [12] and the

newly suggested methods were also evaluated on synthetic data

created using the TASEP model (e.g. see [22]). SL points were

estimated for different run-off times and different levels of additive

noise (see Methods, evaluating the error rate of the SL points).

Figures S4, S5, S6 show the mean and standard deviation

estimation error as function of noise level and size of the

smoothing window for both estimation methods. As seen from

the results, on the simulative data the newly suggested method

achieved a lower estimation error for all levels of noise and

smoothing window sizes.

For comparison, in this work, the various tested measures were

calculated based on SL points estimated using both methods. The

smoothing window size was set to 30 codons and the recovery

factor was set to 0.5. The figures in the main text were generated

using the new method with these parameters. More details appear

in Text S1.

Calculating the average folding energy of a segment
Folding energy (FE) of a nucleotide was defined as the folding

energy of a 40 nt segment, starting from the current nucleotide.

The segment’s FE was calculated using the rnafold Matlab

function [36]. The FE of a gene (segment) was defined as the

average folding energy of its nucleotides.

Calculating the average tAI measure of a segment
Codon tAI values were calculated according to [20], using

tRNA copy numbers published in http://gtrnadb.ucsc.edu/

Mmusc10/. The tAI value of a segment was calculated using:

tAIg~( P
lg

k~1
wikg)

1
lg

Where wikg is the relative adaptiveness of codon of type i, j the

index of the codon and lg the number of codons in segment g. Let

tCGNij be the copy number of the jth anti-codon that recognizes

the ith codon, and let Sij be the selective constraint of the codon/

anti-codon coupling efficiency. Then, the absolute adaptiveness

value of a codon is defined by

Wi~
Xni

j~1

(1{Sij)tCGNij

The relative adaptiveness value of a codon wi is obtained by

normalizing Wi with the maximal Wi value among its 61 values

(for specific values see Table S10).

Calculating the average CAI of a segment
To calculate CAI of a segment, codons were ranked according

to their usage in ribosomal proteins ffig61
i~1 (Table S10). Using

these frequencies, the CAI of a segment was similarly defined in

the following manner:

CAIg~( P
lg

k~1
fikg)

1
lg
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Calculating the average charge measure of a segment
For each gene, a vector of charges was defined by assigning +1

to positively charged amino acids (Arg and Lys) and 21 to

negatively charged amino acids (Asp and Glu). The charge of

other amino acids was set to 0. A sliding window of 40 codons was

applied on the charge vector to smoothen the charge effect on the

mRNA. The overall charge of a segment was defined as the sum of

its charges.

Simulating ribosomal densities
To enable analysis of various features in a simulated environ-

ment, ribosomal densities of the analyzed isoforms in this work

were calculated using the TASEP biophysical translation model,

previously used in different studies (e.g. [22,37]). The mRNA was

modeled using a lattice of N sites, representing the number of

codons of the isoform. Each ribosome was defined to cover 11

codons and the A site was located at the sixth codon. During

translation, any codon could be covered at a time by a single

ribosome at most. In each step of the simulation, a single ribosome

was allowed to attach itself to the lattice or advance to the next

codon if the first/next six codons were not occupied. The time

between initiation attempts was set to be exponentially distributed

with a constant rate l. Similarly, the time between jump attempts

from site i to site iz1 was assumed to be exponentially distributed

with rate li.

The time between events, (initiation or jumping between sites) is

therefore exponentially distributed (minimum of exponentially

distributed random variables) with rate:

m(ni)~lz
XN

i~1

nili

where i describes the site (codon) number on the lattice and ni~1
if codon i is being translated, otherwise ni~0. Therefore the

initiation probability is given by l=m(ni) and the probability of a

ribosome to jump from site i to iz1 is given by nili=m(ni).

The li parameter was determined for each codon type

according to its translation efficiency, estimated by the tAI

measure (for specific values see Table S10). The initiation rate l
was studied for different values, depicting different initiation rate

regimes.

To achieve an initial scattering of the ribosomes on the mRNA,

106 simulations steps (events) were performed. This number of

steps was selected to enable full initial steady state ribosomal cover

for the analyzed genes. In general, longer genes or genes with low

initiation rates (relative to the gene’s codon translation efficiencies)

require a higher number of simulation steps to achieve this

condition.

To calculate ribosomal density profiles, we simulated another

107 steps. In each step, the simulation updated the time each site

was translated by a ribosome. The final vector of times

representing the total time a site was translated by a ribosome

was then normalized by the total time of the simulation. In

addition, the final scattering location of the ribosomes on the

mRNA was saved.

Simulating ribosomal densities for different run-off times
Simulated ribosomal profiles were created by using three

different initiation rate regimes (l): low, high and proportional

to the genes’ mean ribosomal read counts. The low initiation rate

was set to be 10% of lowest codon translation rate (based on the

tAI measure), while the high initiation rate was set to be twice the

value of the highest codon translation rate (based on the tAI

measure).

Proportional initiation rates were set for each isoform according

to its measured mean ribosomal read counts (excluding the first 60

and last 40 codons). This initiation rate type assumed that in

general, genes with higher mRNA and ribosomal densities levels

(thus higher ribosomal read counts) are more highly expressed,

therefore their initiation rate should be higher. Thus, for this

regime initiation rate of the isoform with the lowest mean read

counts was set as half of the slowest codon translation rate, while

the initiation rate of the isoform with the highest mean ribosomal

read counts value was set to twice the value of the highest codon

translation rate. Initiation rates for the rest of the genes were set

with equal distance between these two extremes, according to the

genes’ mean ribosomal read counts.

To simulate ribosomal profiles for different run-off times, the

TASEP model was run 106 simulations steps to achieve a steady

state ribosomal spread on the mRNA. Initiation halting was

simulated for 100 different run-off times, defined by

DT ,10DT , . . . 1000DT

where DT was defined to be the maximal translation time of a

codon (based on the tAI measure).

To simulate numerous mRNA copies per gene, for each run-off

time and analyzed gene, 500 ribosomal density profiles were

calculated and those were averaged with equal weight to obtain a

representative ribosomal profile for each gene and run-off time.

More details appear in Text S1.

Simulating ribosomal densities for different run-off times
for genes with codons of equal translation efficiency

In the original work, it was claimed that translation elongation is

constant throughout the translation of the mRNA. To test this

hypothesis, we created synthetic genes using the length of the

analyzed genes in this work, but with codons of equal translation

efficiency, which was set as the mean tAI value of the codons

calculated in M. musculus. Using the TASEP model, the ribosomal

profile of each one of the synthetic genes was created for different

run-off times ½DT ,10DT , . . . 1000DT � for low and high initiation

rates. More details appear in Text S1.

Evaluating the error rate of methods that estimate SL
points

To allow accuracy evaluation of the original and new method

for estimating SL points, ribosomal density profiles with specific

run-off times were created, as previously described. To test the

robustness of the estimation method for different levels of noise,

additive uniformly distributed noise of different levels was added

prior to estimating the SL points of each analyzed gene. The noise

level added to each gene was selected to be proportional to its

maximal simulated ribosomal density, such that

N*U½{a max½RCi
x�

4
,
a max½RCi

x�
4
�, a~½ 1

40
,

2

40
,::1�

Let us mark by x̂xa the estimated SL location for a noise level

characterized by a. The estimation error is then defined by

err(x̂xa)~Dx̂xa{x̂x0D

The SL points for all simulated genes for run-off times of

½20DT , 50DT , 80DT , . . . 200DT � were calculated for the above
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noise levels. The general estimation error for a given noise level

was defined as the average estimation error for all tested genes and

run-off times. More details in Text S1.

Calculating different measures on the simulated
ribosomal densities

For each simulated ribosomal profile (based on the real

analyzed genes) and various initiation rates (low/high/propor-

tional) the estimated SL points were calculated for run-off times of

½150DT , 200DT , 250DT �. These points were selected to resemble

the real aggregated profiles (see Figures S1, S2).

These SL points were used for calculating the ratio between the

estimated velocities v2 and v1, analysis of the DSRC measure and

correlation between the ratio of the mean read counts and the

ratio of the segments length.

In addition, these measures were also calculated for the

simulated ribosomal profiles of genes composed of codons with

equal translation efficiency (same run-off times as described

above), for low and high initiation rate. More details appear in

Text S1.

Simulating the influence of removing fragments covered
by polysomes on the obtained ribosomal densities

To simulate ribosomal densities profiles obtained after filtering

long fragments (created by adjacent ribosomes), for each simulated

mRNA copy, ribosomal read counts were considered only for

fragments covered by ribosomes that had a least one codon gap

between themselves and their neighboring ribosomes, on both

sides (using the final ribosome scattering on the mRNA). More

details appear in Text S1.

Simulating non-uniform effect of harringtonine
To simulate a non-uniform effect of the propagation time of

harringtonine, the analyzed isoforms were simulated using the

TASEP model for low initiation rate (this regime results in profiles

similar to the real measured profiles, see Figure S1, S2). For each

gene, initiation halting was calculated for the following run-off

times ½DT , 2DT , . . . 750DT � when using 500 mRNA copies per

gene. Let us denote the ribosomal profile of gene i calculated for

the mRNA copy j and run off time t by RDt
ij Let us denote the

aggregated profile of gene i for the run-off time by RDt
i . The non-

uniform effect of harringtonine was simulated for each gene by

aggregating different run-off profiles is the following manner:

RDt
i~

1

J

XJ

j~1

RD
max½1,t{Dtj �
ij

Where J is the number of mRNA copies simulated per gene and

Dtj is a random variable, such that 0ƒDtjƒK . The simulation

was calculated for K~½0, 10DT , 20DT , . . . 200DT �. The higher

the K value, the more prominent the effect of the non-uniform

propagation time of haringtonine. More details appear in Text S1.

Calculating correlations between various measurements
and computation of p-values

The comparison between the translation velocity v1 and v2 was

done using the paired Wilcoxon test, as supplied in the Matlab

2011b software. The comparison between the

Dv2{v1D=min (v1,v2), v2=v1, DSRC, (dx2
:�DD2)=(dx1

:�DD1) measures,

calculated on the real ribosomal profiles and on the simulated

ribosomal profiles, was done using the two samples Kolmogorov-

Smirnov (KS)-test. The correlation between the segments’ length

and their tAI/CAI/FE/charge properties was calculated using

partial Spearman correlation, as supplied in the Matlab 2011b

software. The comparison between the translation velocities of

segments with top/bottom 20%–50% of the tAI/CAI/FE/charge

properties that appear in the supplementary results was calculated

using the unpaired t-test and the two samples KS-test. The value

of the tAI/CAI/FE/charge in the first and second segment (dx1

and dx2) was also compared using a Wilcolxon test. The

correlation between the tAI/CAI and gene length was calculated

using Spearman correlation.

Before we performed partial correlation between tAI/CAI/FE/

charge measurements and segment length we binned the data in

the following manner: first, segments were sorted according to

their length and then divided into bins of 15 samples. For each bin,

the average length/tAI/CAI/folding energy/charge was calculat-

ed in order to reduce noise.

Supporting Information

Figure S1 Reconstructed ribosomal profiles using real
fragments, for different run-off times – average view.

(TIF)

Figure S2 Simulated ribosomal profiles for different
run-off times – average view.

(TIF)

Figure S3 Histogram of the normalized standard devi-
ation (STD) calculated for genes with good reads and
with at least 1000 codons. The standard deviation was

calculated using the real ribosomal profiles RCi
0 (blue) and based

on simulative profiles created using the TASEP model. We

considered different initiation rate regimes for the TASEP - low

(red), high (black) and proportional (green). (A.) Normalized STD

calculated on read counts of codons 730–1000. (B.) Normalized

STD calculated on read counts of all codons, except for the first 40

and last 20 codons.

(TIF)

Figure S4 Estimation errors of the old (red) and the
newly suggested estimation method (blue) as function of
different noise levels, created with a TASEP simulation
with low initiation rates.

(TIF)

Figure S5 Estimation errors of the old (red) and the
newly suggested estimation method (blue) as function of
different noise levels, created with a TASEP simulation
with high initiation rates.

(TIF)

Figure S6 Estimation errors for the old (red) and the
newly suggested estimation method (blue) as function of
different noise levels, created with a TASEP simulation
with proportional initiation rates.

(TIF)

Figure S7 Estimated SL points using both the old and
the newly suggested methods on the ribosomal read
counts profile of isoform uc007gge.1.

(TIF)

Figure S8 Explaining the semgents’ length by using
their tAI/CAI/folding energy/charge values. Segments

were divided into two groups (top/bottom 20%(black)/30%(red)/

40%(blue)/50% (green)) according to their genes’ (A.) tAI, (B.)

CAI and segments’ (C.) folding energy and (D.) charge values.

(TIF)
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Figure S9 DSRC measure calculated for simulated
ribosomal profiles for low and high initiation rates; for
each isoform we simulated 20 mRNAs. (A.) Read count

profiles created using a low initialization rate, constructed with all

fragments or (B.) only fragments covered by monosomes. (C.)

Read count profiles created using high initialization rate,

constructed with all fragments or (D.) with fragments covered

only by monosomes.

(TIF)

Figure S10 DSRC measure calculated for simulated
ribosomal profiles for low and high initiation rates; for
each isoform we simulated 50 mRNAs. (A.) Read count

profiles created using a low initialization rate, constructed with all

fragments or (B.) only fragments covered by monosomes. (C.)

Read count profiles created using high initialization rate,

constructed with all fragments or (D.) with fragments covered

only by monosomes.

(TIF)

Figure S11 DSRC measure calculated for simulated
ribosomal profiles for low and high initiation rates; for
each isoform we simulated 500 mRNAs. (A.) Read count

profiles created using a low initialization rate, constructed with all

fragments or (B.) only fragments covered by monosomes. (C.)

Read count profiles created using high initialization rate,

constructed with all fragments or (D.) with fragments covered

only by monosomes.

(TIF)

Figure S12 Spearman correlation between �DD2=�DD1 and
dx2=dx1 calculated for simulated ribosomal profiles for
low and high initiation rates; for each isoform we
simulated 20 mRNAs. (A.) Read count profiles created using

a low initialization rate, constructed with all fragments or (B.) with

fragments only covered by monosomes. (C.) Read count profiles

created using high initialization rate, constructed with all

fragments or (D.) with fragments covered only by monosomes.

(TIF)

Figure S13 Spearman correlation between �DD2=�DD1 and
dx2=dx1 calculated for simulated ribosomal profiles for
low and high initiation rates; for each isoform we
simulated 50 mRNAs. (A.) Read count profiles created using

a low initialization rate, constructed with all fragments or (B.) with

fragments only covered by monosomes. (C.) Read count profiles

created using high initialization rate, constructed with all

fragments or (D.) with fragments covered only by monosomes.

(TIF)

Figure S14 Spearman correlation between �DD2=�DD1 and
dx2=dx1 calculated for simulated ribosomal profiles for
low and high initiation rates; for each isoform we
simulated 500 mRNAs. (A.) Read count profiles created using

a low initialization rate, constructed with all fragments or (B.) with

fragments only covered by monosomes. (C.) Read count profiles

created using high initialization rate, constructed with all

fragments or (D.) with fragments covered only by monosomes.

(TIF)

Figure S15 Simulating the effect of unequal propagation
time of harringtonine. (A.) K~0 (B.) K~40DT (C.)

K~90DT (D.) K~140DT . As can be seen from the results, an

increased non-uniform harringtonine effect disturbs the profiles

and decreases the slope of the run-off profiles.

(TIF)

Figure S16 Estimating the bias of SL points caused by
non-uniform effect of harringtonine. (A.) Mean and

standard deviation of the SL points were calculated for each of

the tested K values, in comparison to the SL points calculated for

K~0. (B.) Velocities ratio v2=v1 were calculated as function of the

intensity of the non-uniform effect. As seen from the figure, for

higher K the bias of the estimated SL points increases; however,

the ratio between the estimated velocities is almost not affected.

(TIF)

Figure S17 Calculating DSRC and the correlation be-
tween �DD2=�DD1 and dx2=dx1 under the effect of unequal
propagation times of harringtonine. As seen from the

results, a higher non-uniform effect of harringtonine increases the

DSRC measure and decreases the correlation between the �DD2=�DD1

and the dx2=dx1 measures.

(TIF)

Table S1 Description of the analyzed data.

(DOCX)

Table S2 Alignment results.

(DOCX)

Table S3 Estimated SL locations using the old estima-
tion method. SL points locations were calculated for a recovery

factor of 0.5 for profiles smoothed with averaging windows of

different lengths (codon units).

(DOCX)

Table S4 Estimated SL locations using the old estima-
tion method. SL points locations were calculated for different

recovery factors for profiles smoothed with an averaging window

of 30 codons.

(DOCX)

Table S5 Estimated SL locations using the new estima-
tion method. SL points were calculated for a recovery factor of

0.5 for profiles smoothed with averaging windows of different

lengths (codon units).

(DOCX)

Table S6 Estimated SL locations using the new estima-
tion method. SL points were calculated for different recovery

factors for profiles smoothed with an averaging window of 30

codons.

(DOCX)

Table S7 Explaining the segments’ length by using
various features of the coding sequence. Segments were

divided into top/bottom 20%/30%/40%/50% according to their

genes’ tAI index/CAI index/segments’ folding energy/segments’

charge and were compared by using an unpaired t-test and two

samples KS-test.

(DOCX)

Table S8 DSRC values and Spearman correlation
between �DD2=�DD1 and dx2=dx1 for different recovery
factors, when using both estimation methods. Ribosomal

densities were smoothed for all profiles using a window of 30

codons.

(DOCX)

Table S9 Flux ratios (mean and median values) for a
recovery factor of 0.5, using both the old and new
estimation methods. Ribosomal densities were
smoothed for all profiles using a window of 5–30 codons.

(DOCX)
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Table S10 Sheet 1: Isoforms in the analysis of this study
were selected according to the criterion presented in the
original work of Ingolia et al., 2011. Sheet 2: Calculated codons

frequencies, based on ribosomal proteins (second column) and codons

tAI value, calculation based on tRNA copy numbers (third column).

Sheet 3: Selected ribosomal proteins for calculating the codon

frequencies presented in the second sheet, second column.

(XLSX)

Text S1 Supplementary methods.

(DOCX)
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