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Abstract: The present study aimed for the synthesis, characterization, and comparative evaluation
of anti-oxidant and anti-fungal potentials of zinc-based nanoparticles (ZnNPs) by using different
reducing or organic complexing-capping agents. The synthesized ZnNPs exhibited quasi-spherical
to hexagonal shapes with average particle sizes ranging from 8 to 210 nm. The UV-Vis spectroscopy
of the prepared ZnNPs showed variation in the appearance of characteristic absorption peak(s) for
the various reducing/complexing agents i.e., 210 (NaOH and NaBH4), 220 (albumin, and thiourea),
260 and 330 (starch), and 351 nm (cellulose) for wavelengths spanning over 190–800 nm. The FT-
IR spectroscopy of the synthesized ZnNPs depicted the functional chemical group diversity. On
comparing the antioxidant potential of these ZnNPs, NaOH as reducing agent, (NaOH (RA)) derived
ZnNPs presented significantly higher DPPH radical scavenging potential compared to other ZnNPs.
The anti-mycotic potential of the ZnNPs as performed through an agar well diffusion assay exhibited
variability in the extent of inhibition of the fungal mycelia with maximum inhibition at the highest
concentration (40 mg L−1). The NaOH (RA)-derived ZnNPs showcased maximum mycelial inhibition
compared to other ZnNPs. Further, incubation of the total genomic DNA with the most effective
NaOH (RA)-derived ZnNPs led to intercalation or disintegration of the DNA of all the three fungal
pathogens of maize with maximum DNA degrading effect on Macrophomina phaseolina genomic DNA.
This study thus identified that differences in size and surface functionalization with the protein
(albumin)/polysaccharides (starch, cellulose) diminishes the anti-oxidant and anti-mycotic potential
of the generated ZnNPs. However, the NaOH emerged as the best reducing agent for the generation
of uniform nano-scale ZnNPs which possessed comparably greater anti-oxidant and antimycotic
activities against the three test maize pathogenic fungal cultures.

Keywords: metal oxides; nano-fungicides; pathogenic fungi; protein profiling; radical scavenging
activity
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1. Introduction

Fungal pathogenic diseases are responsible for yield losses in staple calorie and com-
mercial commodity crops posing a major threat to crop productivity globally. The yield
gaps have enhanced due to the emergence of new fungal crop pathogens [1] as a con-
sequence of intensive monoculture and environment variations arising due to aberrant
climatic conditions [2,3]. Therefore, the agronomic interventions, land management prac-
tices, and climate change have been the primary agents that have altered both abiotic and
biotic components affecting crop growth and yield [4].

Maize, a versatile cereal-food, feed, and industrial crop, is sensitive to attacks and
diseases caused by several fungal pathogens [5]. It is the second-largest considering the
area under production and is ranked fourth in productivity among cereals [6] across the
globe. Substantial annual yield decreases and depreciation in grain quality in maize are
two quantifiable manifestations of the fungal infection and disease [5]. The primary fungal
pathogens of maize include the Macrophomina phaseolina, Curvularia lunata and Fusarium
oxysporum which cause charcoal rot, leaf spot, and stalk rot diseases respectively in maize.
The infected plants are generally treated with anti-fungal compounds or fungicides to
curb the spread of the pathogen. However, for continuous monoculture predominated
agroecosystems, spraying of these antifungals only provides ephemeral protection to
the plants due to the single target site mechanism and the emergence of resistant fungal
strains [1]. This necessitates the development of effective analogous antifungals without
compromising the ecological and bio-safety aspects.

The present decade has witnessed the emergence and use of nano-scale materials as
potent anti-microbials particularly anti-fungal agents. The zinc nanomaterials including
the nano-zinc particles possess excellent anti-mycotic properties against a variety of plant
fungal pathogens [7–12]. The predominant mechanisms governing the anti-mycotic effect
of ZnNPs include the reactive oxygen species enabled stress besides Zn2+-based toxicity
occurring due to the formation of these ions on dissolution of ZnNPs in the cell environ-
ment [7]. The size of ZnNPs and their crystal chemistry can affect the fungicidal potential
as these characteristics alter the ability to trespass the fungal cell wall and membrane struc-
tures to elicit ROS response besides varying the dissolution of the ZnNPs within the fungal
cell cytoplasm. The anti-fungal activity of ZnNPs have been identified against Alternaria
alternata [13], Aspergillus flavus [14], Botrytis cinerea [11,15], Candida albicans [16], Fusarium
graminearum [17], Fusarium moniliforme [8], Fusarium solani [18], Penicillium sp. [19–21], Peni-
cillium expansum [22], Pythium ultimum and P. aphanidermatum [23], Rhizopus stolonifera [24]
and many more fungal pathogens of plants.

This investigation aims for the wet chemistry-based synthesis of ZnNPs through the
use of different (three each) reducing and complexing/capping agents. The generated
ZnNPs were characterized through UV-Vis spectroscopy, transmission electron microscopy
(TEM), X-ray diffraction spectroscopy (XRD), and Fourier transform Infrared Spectroscopy
(FT-IRS). These ZnNPs were evaluated for anti-fungal potential against three prominent
fungal pathogens of maize viz., Curvularia lunata, Fusarium oxysporum, and Macrophomina
phaseolina in an agar well diffusion assay. The variation in the anti-oxidant potential of
these ZnNPs was assessed through scavenging of the DPPH radicals while the genomic
DNA degradation potential was determined through a DNA-ZnNPs incubation study
followed by agarose gel electrophoresis of the samples.

2. Materials and Methods
2.1. Chemicals and Microbial Cultures

The zinc precursor salts (zinc acetate dihydrate (Zn(OAc)2·2H2O), zinc nitrate hexahy-
drate (Zn(NO3)2·6H2O), and zinc chloride (ZnCl2)) utilized in the study were analytical
grade and purchased from HiMedia (HiMedia Laboratories, Mumbai, India). The re-
ducing agents (sodium hydroxide (NaOH), sodium borohydride (NaBH4)) and other
chemicals (ammonium hydroxide or ammonia solution (NH4OH, 25%), and thiourea
(NH2CSNH2)) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The analytical
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grade complexing-capping agents (starch, cellulose, and bovine serum albumin) were
procured from Himedia (Himedia Laboratories, Mumbai, India). The HPLC grade water
(CAS No. 7732-18-5, Sisco Research Laboratories Pvt. Ltd., Mumbai, India) was used for
the preparation of all the solutions and broth and agar-based media. The broth (CAS No.
M403) and agar-based (CAS No. MH096) potato dextrose media were purchased from
Himedia (Himedia Laboratories, Mumbai, India).

The maize crop-specific three major test fungal cultures, Curvularia lunata (ITCC 7170),
Fusarium oxysporum (ITCC 7093), and Macrophomina phaseolina (ITCC 5467) were purchased
from Indian Type Culture Collection, Division of Plant Pathology, Indian Agricultural
Research Institute, New Delhi, India. The cultures were subcultured on Potato Dextrose
Agar media and incubated at 25 ◦C in the dark.

2.2. Synthesis and Characterization of NMs

The ZnNMs were synthesized using two different approaches: Wet chemical and
Sol-gel synthesis methods. Six different ZnNMs samples were prepared using soluble zinc
salts (zinc acetate/zinc nitrate/zinc chloride) as the precursors. The reducing/complexing-
capping agents used in the study were sodium hydroxide [25], thiourea [26] and natural
polymers such as starch [27,28], and cellulose-nanocomposite [29], and protein (Bovine-
serum albumin (BSA)) [30]. The brief protocols depicting the schematic steps have been
provided in Figure 1.

Figure 1. Schematic representation of steps for the synthesis of zinc nanomaterials using different reducing and complex-
ing/capping agents.

2.2.1. UV-Vis Spectroscopy

The spectral absorbance behavior of the synthesized nanoparticles was analyzed on a
Double Beam UV-Vis Spectrophotometer (model Elico SL 218, India) through screening
over wavelengths ranging from 190 to 800 nm.

2.2.2. Transmission Electron Microscopy

The morphology of the synthesized nanoparticles was determined by the transmission
electron microscopy (Hitachi H-7650, Japan) analysis. The powdered ZnNMs were ground
in a polystyrene pestle mortar, homogenized, and suspended in a known volume of
deionized water. The suspension was bath sonicated for 15 to 30 min and 20 µL of the
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suspension was then placed on a copper grid (carbon film-coated, 200-mesh size). The
prepared grids were air-dried and viewed under high-resolution imaging mode in TEM
operated at 80 kV acceleration voltage.

2.2.3. X-ray Diffraction Spectroscopy

The crystal structure and size of the synthesized ZnNMs were obtained through X-
ray diffraction spectroscopy analysis. The X-ray diffraction patterns for the six different
ZnNMs were obtained on X-ray diffractometer (Bruker D8 Advance, Germany) using Cu
(Kα λ = 0.150595 nm) radiations at specific operation conditions (voltage: 40 kV, current:
30 mA). The samples were scanned with a scanning angle (2θ) range of 5◦ to 80◦ and a step
size of 0.02◦ respectively.

2.2.4. Fourier Transform Infra-Red Spectroscopy

The FT-IR spectroscopy (Thermo Nicolet 6700, USA) equipped with DTGS (deuterated
triglycine sulfate) detector and KBr beam splitter system was used to characterize and iden-
tify the functional group diversity of the prepared nanoparticles. The summation spectra
were generated in transmittance mode by placing dry, homogenized ZnNMs powdered
samples on zinc selenide (flatbed configuration) crystal of the Attenuated total reflection
(ATR) (Smart assembly, Thermo Fischer, USA) assembly with operational parameters of
32 scans at 4.0 cm−1 spectral resolution and acquired for the mid-IR region spanning over
4000 to 600 cm−1.

2.3. Anti-Oxidant Activity of the ZnNMs

The anti-oxidant potential of the ZnNMs was determined as the free radical scav-
enging potential through neutralization of the 1, 1-Diphenyl-2-picrylhydrazyl (DPPH)
radicals [31,32]. The aqueous suspensions of the ZnNMs were prepared by dispensing a
known amount of the ZnNMs in a defined volume of HPLC-grade water. The prepared
dispersions (1 mL) were bath sonicated, incubated under the same conditions with 3 mL
methanolic solution of DPPH (0.1 mM) for half an hour. Variable color development in the
incubated solutions indicating the radical scavenging rate was measured as absorbance at
517 nm. The percent inhibition was compared with the values obtained for the butylated
hydroxytoluene (BHT) as standard.

2.4. Anti-Mycotic Activity of the ZnNPs
2.4.1. Agar Well Diffusion Assay

The anti-fungal activity of the ZnNPs was evaluated through agar well diffusion as-
say [33] involving estimation of the mycelial growth-inhibiting potential of the synthesized
ZnNPs on the three test maize pathogenic fungal cultures [31]. The PDA media was poured
in sterilized petri dishes (90 × 14 mm, Tarsons triple vent radiation sterile polystyrene,
Code: 460091, Tarsons, Kolkata, India) and allowed to gel. The wells in the solidified media
were prepared using a sterile cork borer (diameter 8.0 ± 0.2 mm, CAS No. LA737, Himedia
Laboratories, Mumbai, India). The ZnNPs stock solutions were prepared in the HPLC
grade water and these suspensions were bath sonicated for 30 min at room temperature.
The stock solutions were then utilized for the preparation of the working concentrations
(0, 5, 10, 20, and 40 mg L−1). These suspensions were then given a quick bath sonication
treatment for another five minutes and 20 µL of the suspensions were loaded in the agar
wells. The respective fungal growth on PDA media served as the negative control. The
fungal disc (8.0 mm diameter) of the freshly grown confluent growth (one-week old culture
plate) was placed at the center of each plate and the inoculated petri plates were incubated
in a BOD incubator at 27 ± 2 ◦C for seven days. The diameter of the zone of inhibition of
the mycelial growth at or near the well containing the ZnNPs was taken as indicator of the
decreased mycelial growth.
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2.4.2. Optical Research Microscopy Studies of the Fungal Hyphae

For the optical microscopy (Leica DM5000 B, Leica Microsystems, Germany) studies,
fresh slides were prepared to observe the effect of ZnNPs on the hyphal morphology
and structure representing the morphological damage caused to the fungi by the ZnNPs.
The slides were stained with lactophenol-cotton blue dye to visualize the variations in
the hyphal morphology at 200 and 400× magnifications and imaged (Leica DFC 420C,
Germany).

2.5. Fungal Genomic DNA Degrading Potential of the ZnNPs

The fungal biomass of the three fungi was generated in potato dextrose broth. The
fungal mats were filtered and washed through sterilized filter paper (Whatman qualitative
filter paper No. 1, Sigma-Aldrich, USA). The mycelial mat was then placed in a ceramic
pestle containing liquid nitrogen and finely ground to obtain a powder. The fungal genomic
DNA was extracted [34], quantified for quality and quantity and known quantity (10 µL)
was incubated with 40 µg mL−1 of ZnNPs (NaOH as reducing agent) for 2 and 24 h at
37 ◦C. The incubated genomic DNA was resolved on 1.5% (w/v) agarose gel containing
ethidium bromide (0.05 µg mL−1). The resolved gel was viewed in a Gel Documentation
and Analysis System (Uvitec, Cambridge, UK), and images were captured.

2.6. Statistical Analyses

The antioxidant profile data obtained for five replications were subjected to analysis
of variance (ANOVA) by using the generalized linear model (Proc GLM) command for a
completely randomized experimental design and results were obtained on analysis using
SAS software (version 9.2, Cary, NC, USA). The mean comparisons were performed with
the least significant difference (LSD, p ≤ 0.05) approximation.

3. Results
3.1. Characterization of ZnNPs
3.1.1. UV-Visible Spectroscopy

Among the primary spectroscopy techniques utilized for the characterization of
nanoparticles, this absorption spectroscopy technique is used to evaluate the light-matter
interactions and has profound relevance for the determination of the optical properties
of nanoparticles including key characteristics such as shape, size, and stability [35,36].
The UV-visible absorption study of the six different ZnNPs illustrated distinct and sharp
absorption peaks to vary between wavelengths ranging from 210 to 350 nm (Figure 2). All
the reducing and capping agents derived ZnNPs exhibited a single and sharp peak at 210
or around 210 to 220 nm except Starch (RA) (dual distinct peaks at 212 and 350 nm) and
Starch (CA) (triple peaks at 212, 260, and 330 nm) derived ZnNPs.

3.1.2. Transmission Electron Microscopy

The TEM micrographs exhibit the occurrence of spherical to hexagonal-shaped ZnNPs
having well-defined crystal edges and planes (Figure 3a–f). Partial (Figure 3c,e,f) to high
(a, b, and d) agglomeration can also be observed. The nanoparticle size distribution
was substantially variable for the reducing/capping agents used for the generation of
ZnNPs. The lowest size distribution ranges of 8 to 26 nm and 6 to 22 nm were observed
for thiourea (RA) and starch (CA) ZnNPs respectively. However, the starch (CA) ZnNPs
appeared to be adorned on electronically less dense substrate material possibly derived
from burning/charring of the starch during the calcination process. The average mean
diameter of the nanoparticles (nm ± S.E.) was as follows; NaOH (RA) (31.37 ± 2.48),
thiourea (RA) (15.86 ± 0.59), starch (RA) (36.82 ± 2.41), albumin (CA) (82.94 ± 3.64), starch
(CA) (11.78 ± 0.74) and cellulose (CA) (209.18 ± 15.02).
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Figure 2. Variable UV-Vis absorbance spectra of the synthesized ZnO nanoparticles. RA: reducing
agent, CA: capping/complexing agent.

Figure 3. Transmission electron micrographs depicting the variation in the ZnO nanoparticle di-
mensions for the reducing (RA) and capping/complexing (CA) agents. (a) Sodium hydroxide
(RA), (b) Thiourea (RA), (c) Starch (RA), (d) Bovine serum albumin (CA), (e) Starch (CA), and (f)
Cellulose (CA).
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3.1.3. X-ray Diffraction Spectroscopy

The XRD patterns varied in peak intensity and width according to the reducing/capping
agent used. In general, the peak widening could be observed for all the six types of syn-
thesized ZnNPs which represents the nano-scale crystalline size of the prepared ZnNPs.
The XRD peaks obtained showed close agreement with the characteristic Bragg peaks
of hexagonal ZnO zincite (pattern: PDF 00-036-1451), and hydro-zincite (pattern: PDF
01-072-1100). Mixed crystal phases including the simonkolleite (pattern: COD 9004683)
along with zincite and hydro-zincite specific peaks can be identified in ZnNMs derived
from ZnCl2 salt as substrate (Figure 4). The use of starch as a reducing agent resulted in the
formation of nanoscale hydrozincite crystals. While Starch (CA) ZnNPs had both zincite
and hydrozincite as the predominant crystal phases. This variation may be attributed
to the use of NaOH as a reducing agent during the synthesis of the Starch (CA) ZnNPs.
Cellulose (CA) ZnNPs possessed a mixed crystal phase with simonkolleite as one among
the predominant crystal structure. As indicated above, it can probably be due to the use
of a high concentration of zinc chloride (65 wt %) as the precursor salt for the synthesis
of ZnNPs.

Figure 4. X-ray diffraction spectroscopy of the synthesized ZnNPs depicting the formation of wurtzite
hexagonal crystal structure zincite (ZnO) on the use of various reducing and capping/complexing
agents i.e., Sodium hydroxide (RA), Thiourea (RA), Starch (RA), Bovine serum albumin (CA), Starch
(CA), and Cellulose (CA).

3.1.4. Fourier Transform Infra-Red Spectroscopy

The characteristic FTIR peaks for metal oxides appear in the fingerprint region of 1700
to 600 cm−1 due to vibrations among the metal and other atoms (O or OH) associated
with it [37]. The NaOH (RA) ZnNPs exhibited specific peaks in this region at 663.0, 815.2,
952.0, 1016 (ν1 frequency), and 1624 cm−1 featuring Zn-O bond deformation and stretching
vibrations respectively [37]. The presence of adsorbed water molecules can be identified
due to the appearance of a broad peak at 3443.0 and a sharp peak at 1103.0 cm−1 which
can be ascribed to stretching and deformation vibrations of the O-H bond (Figure 5).
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Further, the occurrence of the hydrozincite phase in the starch (RA), albumin (CA), and
starch (CA) ZnNPs, the stretching vibrations of the C=O and C–O bonds in the carbonate
functional group (CO3

2−) can be ascribed to bands at 1360 and 1407 cm−1. The conspicuous
broadband (3690 to 2975 cm−1) was observed in starch (RA), and albumin, starch and
cellulose (CA) which can be ascribed to hydroxyl (O–H) and amine (N–H) group vibrations.
Similar peaks have also been reported for thiourea derived ZnNPs [26].

Figure 5. FT-IR cumulative spectra of the prepared ZnNPs for the mid-IR region (2000 to 650 cm−1

wavenumbers) indicating variability in the occurrence of chemical functional groups.

3.2. Anti-Oxidant Activity of the ZnNPs

The DPPH synthetic radicals are considered relatively stable to evaluate the radical
scavenging potential of nanoparticles or other compounds. The prepared ZnNPs exhibited
significant free radical scavenging activity (DPPH FRSA) which ranged from 25 to 84%
inhibition (Figure 6). The NaOH (RA) ZnNPs possessed the highest antioxidant activity.
The order of the FRSA was NaOH (RA) > Starch (RA)/(CA) > Albumin (CA) > Cellulose
(CA) > Thiourea (RA).

Figure 6. Comparative antioxidant potential of ZnNPs as determined through scavenging activity
(%) of DPPH radicals. Different letters denote a significant difference (p ≤ 0.05) among six different
types of ZnNPs.
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3.3. Anti-Mycotic Activity of the ZnNPs
3.3.1. Agar Well Diffusion Assay

Post three days of incubation, the prepared ZnNPs were evaluated for five differ-
ent concentrations (0, 5, 10, 20, and 40 mg mL−1) to exhibit an inhibitory effect on the
mycelial growth for all three test fungi. Among the three fungal cultures, maximum
mycelial inhibitory activity was recorded in order Fusarium oxysporum > Curvularia lunata >
Macrophomina phaseolina (Figure 7). The efficacy of the NaOH (RA) derived ZnNPs was
identified by the formation of a larger inhibition zone compared to the other ZnNPs evalu-
ated. The control well containing only sterilized HPLC grade water did not exhibit any
antifungal activity (Figure 7). The radial diameter of all the three-test fungi was the smallest
for the NaOH (RA) derived ZnNPs particularly clear cottony-white hyphal inhibition could
be observed for Macrophomina phaseolina (Figure 7d). Moreover, the sparse, aerial, and fluffy
fungal growth of the Fusarium oxysporum indicates the response of hyphae to ZnNPs stress.
This is the first report on variability in the anti-mycotic efficacy of the ZnNPs derived from
different reducing/complexing agents on maize crop-specific pathogenic fungi.

Figure 7. Effect of different ZnNPs and zinc salts on hyphal growth of three maize pathogenic cultures, Curvularia lunata,
Fusarium oxysporum, and Macrophomina phaseolina. (a) Zinc acetate, (b) Zinc chloride, (c) Zinc sulphate, (d) Sodium
hydroxide (RA) ZnNPs, (e) Thiourea (RA) ZnNPs, (f) Starch (RA) ZnNPs, (g) Bovine serum albumin (CA) ZnNPs, (h) Starch
(CA) ZnNPs, and (i) Cellulose (CA) ZnNPs. The figures from 0 to 4 indicate different concentrations of the zinc salts and
ZnNPs. 0 = distill water, 1 = 5 mg L−1, 2 = 10 mg L−1, 3 = 20 mg L−1, 4 = 40 mg L−1.

3.3.2. Optical Research Microscopy Studies of the Fungal Hyphae

The optical research microscopy of the mycelial growth at the fringes of the colony
exhibited variation in the hyphal morphology as observed through appearance of swelling/
rolling, thinning, fragmentation, and hyper-branching of the mycelia. The hyphae of all the
three fungal genera sampled near the well containing NaOH (RA) (40 mg L−1 concentration)
showed cell wall distortion, cytoplasmic shrinkage, oozing out of the cytoplasmic material,
and hyphal fragmentation. The optical micrographs of the Fusarium oxysporum hyphae in
NaOH (RA), Albumin (CA), and Starch (CA) ZnNPs (40 mg L−1 concentration) treatment
showed extensive leakage of the cytoplasmic material from the hyphal tissue (Figure 8).
The swelling of the hyphae cells can also be identified in the Thiourea (RA) ZnNPs and
NaOH (RA) ZnNPs for Curvularia lunata, and Macrophomina phaseolina respectively.
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Figure 8. Optical micrographs of the three test fungal cultures depicting cytological events such as hy-
phal fragmentation, clearing of the cell cytoplasm, hyphal thinning, and dissolution of the fungal cell
wall on incubation with ZnO nanoparticles derived from various reducing and capping/complexing
agents. (a) Control, (b) Sodium hydroxide (RA), (c) Thiourea (RA), (d) Starch (RA), (e) Bovine serum
albumin (CA), (f) Starch (CA), and (g) Cellulose (CA). Magnification-400×. The solid arrow indicates
the thickening of the hyphae, dotted arrow indicates the clearing of cell cytoplasm.

3.4. Fungal Genomic DNA Degrading Potential of the ZnNPs

Incubation of the genomic fungal DNA with NaOH (RA)-derived ZnNPs resulted in
fragmentation of the DNA which can be identified as smeared DNA appearance in the
1.5% agarose gel compared to the intact DNA band in the control lane of the three test
fungi (Figure 9). After 2 h of incubation with the NaOH (RA) derived ZnNPs (40 µg mL−1

concentration), a slight decrease can be noticed in the genomic DNA of all the test fungi in
lanes 4, 5, and 6 (Figure 9). Therefore, the incubation was extended until 24 h to observe
any further impact on the genomic DNA of these fungal genera. A clear fragmentation and
decrease in the genomic DNA content can be visualized in lanes 7, 8, and 9 as compared to
lanes 1, 2, and 3 respectively (Figure 9).
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Figure 9. Fragmentation and degradation of the fungal genomic DNA on incubation with NaOH
(RA)-derived ZnNPs. Lane L = Marker ladder, Lane 1 = gDNA of Fusarium oxysporum (FO), Lane 2
= gDNA of Curvularia lunata (CL), Lane 3 = gDNA of Macrophomina phaseolina (MP), Lane 4 = FO
gDNA incubated with ZnNPs for 2 h, Lane 5 = CL gDNA incubated with ZnNPs for 2 h, Lane 6 =
MP gDNA incubated with ZnNPs for 2 h, Lane 7 = FO gDNA incubated with ZnNPs for 24 h, Lane 8
= CL gDNA incubated with ZnNPs for 24 h, Lane 9 = MP gDNA incubated with ZnNPs for 24 h.

4. Discussion

The UV-Vis absorption peaks exhibited all the ZnNPs are way below the characteristic
excitonic absorption peak value of 370 nm attributed to intrinsic band-gap absorption
phenomena exhibited by the bulk ZnO under valence to conduction band electron transi-
tions [36,38]. Similar reports of blue-shifted UV vis absorption peaks have been reported
for ZnNPs synthesized through sol-gel [25,39], microemulsion route [37], and green syn-
thesis approach [40]. Moreover, a similar UV-Vis peak at 347 nm has been observed for
the starch (CA)-ZnNPs on laser ablation synthesis in an aqueous starch solution for 15 to
20 min which could be ascribed to the formation of a layered nanocomposite comprised of
starch-β-Zn(OH)2 sheets [41]. The occurrence of a single sharp peak indicates the formation
of monodispersed ZnNPs and therefore, the narrow size distribution pattern of the synthe-
sized ZnNPs [42]. The dual or triple peaks indicate the polydisperse nature of the aqueous
nano-sol probably due to the formation of larger agglomerates by coalescence during or
post-nucleation process [43]. The albumin (CA) ZnNMs showed a sharp peak at 220 nm,
and multiple stout peaks at 400, 620, 700, and 760 nm wavelength which showcased the
highly polydisperse nature of the albumin (CA) ZnNMs aqueous sol. However, the small
area under these multiple peaks is also indicative of the presence of variable larger-sized
ZnNPs in low amounts.

On the estimation of the bandgap energy of different ZnNMs according to Einstein
equation; Energy = hC/λ, where h = Plank’s constant (6.626 × 10−34 Joules sec), C = Velocity
of light (3 × 108 m s−1) and λ = wavelength (nm), the calculated values were 5.90, 5.64,
3.76 and 3.50 eV for the sharp and distinct absorption peak wavelengths of 210, 220, 330
and 350 nm respectively. These values are quite high compared to the moderate band-gap
energy (3.35 eV) of ZnO which corresponds to UV and deep blue region indicating O2p to
Zn3d electron transitions [44]. These blue shifts in the band-gap energy may be ascribed
to the inadvertent occurrence of other metal atom impurities that may have altered the
electronic movement across the valence and conduction bands [45]. Similar blueshifts
have been observed on doping of zinc with IIIa group metal atoms [46] and 3d transitions
metals [45].

The particle size of less than 10 nm have been reported for NaOH-ethanol reaction
mix [43] while ZnNPs generated from NaOH-isopropanol reaction mixture formed particles
with the mean size dimensions of 189.0 ± 6.0 and 447.0 ± 22.0 nm by sonochemical and
hydrothermal techniques respectively [47]. However, unlike Chen et al. [30] the ZnNPs size
was larger for the albumin (CA) ZnNPs while similar size distribution and average size
have been observed for thiourea (RA) [26], cellulose (CA) [29], and starch (CA) ZnNPs [27].
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The use of a high concentration of ZnCl2 can lead to the formation of hexagonal layered
plate-like crystals of simonkolleite [18]. However, the XRD spectra for NaOH and thiourea
reducing agents exhibited the presence of only hexagonal zincite phase crystals. Similar
diffraction peaks have been reported for ZnNPs obtained by green synthesis from fruit
parts of Citrullus colosynthis [14] and cotton linter pulp [11]. The XRD spectra of the albumin
(CA) ZnNMs showed a very broad peak spanning over 30 to 50 20◦ diffraction region
with several substantially indistinct peaks within this range indicating the occurrence of
mixed crystal phase. As Bovine serum albumin (BSA) exhibits affinity to adsorb or form
protein corona structure on the surface of the ZnNPs [19,20], it may have restrained the
coalescence of the smaller-sized particles to form larger aggregates during the nucleation
process. However, the transmission electron micrograph indicated the formation of plate-
like hexagonal ZnNPs (Figure 2).

The DPPH FRSA of the ZnNMs may be ascribed to the transfer of electron density
from oxygen atom in ZnNMs to N-atom odd electron in DPPH compound [48]. The
antioxidant properties further depict the efficiency of the redox-catalysis reactions, elec-
tronic configuration, surface-interface effect, and biocompatibility of the ZnNMs. From
the results obtained for the FRSA potential, it appears that the NPs of a particular size
is critical beyond which any further reduction in the size of the NPs does not contribute
significantly to the antioxidant behavior. These observations are in line with the antici-
pated size-dependent phenomena and larger surface area to volume ratio to be involved
in improved neutralization/deactivation of the hydroxy (•OH) radicals [49]. Similar to
observations of this study, the report on electron spin resonance (ESR) spectroscopy study
of 4 to 15 nm AuNPs, showcased maximum antioxidant activity by 9 nm NPs and not by
NPs with a size smaller than 9 nm [49]. Therefore, it can be argued that the dose [50,51] or
concentration [52], specific surface, and crystallinity status [49] of the ZnNMs are relatively
more critical features for altering the efficiency with which the ZnNMs interact with the
DPPH radicals.

The fungal radial growth inhibition in the agar-well diffusion assay for the three test
fungi indicated superior antimycotic activity of NaOH (RA) derived ZnNPs. Similar radial
growth inhibition has also been reported for ZnO NPs by He et al. [11] for Penicillium
expansum and Botrytis cinerea. The hyphal thinning effects can be observed for most of
the ZnNMs evaluated in the study which appears to be a characteristic feature of any
fungal tissue in response to nanoparticle challenge [53,54]. However, the morphological
manifestations such as breakage of the cell wall and leakage of the cytoplasmic contents,
and appearance of swollen hyphal cells indicate the alteration in the osmotic conditions and
formation of physical pores in the cell wall/membrane of the treated fungal cells [19,23].
Coherent to the results of the mycelial inhibition in agar well assay as described in the
previous Section 3.3.1, maximum impact on the hyphal morphology was recorded for the
Fusarium oxysporum. However, the hyphal fragmentation can be observed in Macrophomina
phaseolina, unlike the agar well assay which indicates the subtle cytological changes that
occur in the fungal hyphae on treatment with ZnNMs. A substantially low concentra-
tions of the ZnNMs have been evaluated in this study unlike the studies performed on
Pythyium [23], F. graminearum, A. flavus, and P. citrinum [19], and Aspergillus flavus [14].

The genomic DNA fragmentation may be attributed to the physical and chemical
properties of the NPs [55] including the size, concentration [56,57], chemistry [56–58], and
surface functionalization [59]. Though within a fungal cell the predominant mechanism
of degradation of the cellular DNA by ZnNPs is through formation of reactive oxygen
species (ROS) which causes extensive DNA scissoring and fragmentation [7]. However,
direct interactions of ZnNPs with DNA molecules involve the binding of DNA with ZnO
nanoparticles to nucleobases [60]. The specific conjugation of the DNA on ZnO NPs surface
has been further identified by Das et al. [61] evidenced through varied conductivity and
mobility under electric field on an agarose gel. The results of this study effectively demon-
strate that the ZnNPs can intercalate with the DNA and exhibit non-photocatalytic DNA
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degradation unlike the sunlight-induced fragmentation of Leishmania DNA on incubation
with Ag-doped ZnO NPs [62].

5. Conclusions

This study provides evidence on variation in the anti-mycotic, anti-oxidant, and DNA
degrading effect of the ZnO nanoparticles generated through wet chemical synthesis meth-
ods by using different reducing or complexing/capping agents. Both the anti-oxidant and
anti-mycotic potentials were not observed to follow strict nanoparticle size-dependence.
Thus, the NaOH (RA) derived ZnNPs had zincite crystal phase and the particle size distri-
bution ranging from 10 to 90 nm and possessed the highest antioxidant and antimycotic
activities. This study also illustrates the subtle hyphal morphological changes occurring
on the use of lower concentration of the ZnNPs which may span over a variety of mani-
festations ranging from thinning, fragmentation, swelling, and lysis of the fungal hyphae.
These alterations in the hyphal morphology could be attributed to variability in the func-
tionalizations or chemical functional groups present on the surface of the ZnNPs. Further,
the fungal DNA-NaOH (RA) ZnNPs incubation study enunciated the DNA degradation
and exacerbation of the total genomic DNA of the test pathogenic fungi in a concentration
and time-dependent manner with complete degradation of the Macrophomina phaseolina
genomic DNA after 24 h of incubation. It could also be inferred from the study that the
DNA damaging effect of the ZnNPs is also fungal genera/species-specific and may vary
according to the fungal culture being studied. Therefore, this work establishes the impact of
the appropriate nano-crystallite size dimensions and surface functionalizations as the key
factors that vary the anti-mycotic, anti-oxidant, and DNA degrading potentials of ZnNPs.
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