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Malaria in 2022: Increasing
challenges, cautious optimism
Prasanna Jagannathan 1,2✉ & Abel Kakuru3✉

Malaria cases and deaths remain unacceptably high and are resurgent in several
settings, though recent developments inspire optimism. This includes the
approval of the world’s first malaria vaccine and results from novel vaccine
candidates and trials testing innovative combinatorial interventions.

Despite gains over the first 15 years of this millennium, malaria control has stagnated in the last
several years, with resurgence and rising morbidity in several highly endemic countries exa-
cerbated by service disruptions due to the COVID-19 pandemic1. In 2020, malaria was estimated
to have resulted in 627,000 deaths and 241 million cases, with 77% of deaths in children <5 years
of age1. Overall, 90% of malaria cases and deaths are reported in Africa, and six countries—
Nigeria, DRC, Uganda, Mozambique, Angola, and Burkina Faso—account for 55% of all cases
globally.

The main interventions used for prevention of malaria include vector control with long lasting
insecticidal bednets (LLINs) and indoor residual spraying of insecticides (IRS). However,
Anopheles vector resistance to pyrethroids, the main insecticide used in LLINs, has become
widespread, and insecticide resistance also increasingly threatens the utility of IRS. In addition to
vector controls, prompt treatment of malaria with artemisinin-based combination therapy
(ACTs) is recommended in all settings where falciparum malaria is endemic. ACTs have played
a crucial role in controlling malaria over the past 20 years2, with artemether-lumefantrine being
the most widely used ACT in Africa. However, artemisinin-resistant Plasmodium falciparum
parasites have spread in Southeast Asia3, resulting in reduced treatment efficacy of some ACTs4.
More alarmingly, recent reports from Rwanda5,6 and Northern Uganda7,8 suggest the emergence
of artemisinin-resistant parasites in Africa. Loss of artemesinin activity would threaten the
activity of partner drugs such as lumefantrine; loss of both components of ACTs could have
devastating consequences across the continent9.

To combat the emergence of artemisinin-resistant parasites, identification of novel therapeutic
approaches has become critically important. Although new antimalarial drugs are being iden-
tified, they are still in various stages of clinical development (www.mmv.org). One such drug,
KAF-156, was found to be active against artemisinin-resistant parasites in a small trial of
adults10, and is currently being tested in Phase 2 trials in children when given with the partner
drug lumefantrine (NCT 04546633). Another emerging therapeutic strategy is the use of arte-
misinins along with two long-acting partner drugs instead of one, similar to the therapeutic
approach to HIV and tuberculosis (e.g., triple ACTs.). Triple ACTs have been found to be
effective in clinical trials conducted in the setting of artemisinin-resistant parasites11,12, and may
be useful as a “stop-gap” therapy for drug-resistant malaria until new antimalarials become
available, or to prevent and/or delay the development of resistance to antimalarials in settings
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where resistance has not yet emerged13. Given potential safety
and tolerability concerns, questions remain about which agents to
use, and how and when to deploy such a strategy.

One of the most elusive interventions to aid malaria control has
been an effective malaria vaccine that can prevent severe malaria
and deaths. The WHO and partners set a strategic goal of
achieving a malaria vaccine with >75% efficacy by 203014. How-
ever, this goal has been a major challenge, and very few candidate
vaccines have demonstrated significant efficacy15. The malaria
vaccine RTS,S/AS01 is the only vaccine tested to reach Phase 3
trials with reproducible efficacy in different populations. This
recombinant protein vaccine targets the circumsporozoite protein
(CSP) of P. falciparum, which is expressed at the pre-erythrocytic
stage of infection. Although RTS,S has been found to be effica-
cious, overall efficacy in the Phase 3 trial was low, with 36%
protective efficacy against clinical malaria, and 32% against severe
malaria, in the 4 years after vaccination among children who
began the vaccination series between 5 and 17 months of age and
received a booster 21 months later16. RTS,S efficacy was highest
(~60–70%) in the first 6 months following vaccination, but rapidly
decayed, and was limited or non-significant by 18 months17. This
waning of vaccine efficacy was broadly mirrored by a decline in
antibody responses against CSP18, although definitive correlates of
protection remain unclear. Identification of correlates and
mechanisms that contribute to malaria vaccine performance in
endemic settings remains an active area of research.

Given results from the Phase 3 trial, the WHO launched pilot
implementation studies of RTS,S in Malawi, Kenya and Ghana
beginning in 201919. These implementation studies showed that
delivery of the vaccine was feasible, with high uptake of the vac-
cine, confirming demand. Importantly, these studies also reaf-
firmed vaccine safety and efficacy, observing that vaccination was
associated with a 30% reduction in severe malaria1. Given these
results, in October of 2021, after 30 years of development, the
WHO-approved RTS,S for use in children living in regions with
moderate to high transmission of malaria caused by P. falciparum.

Although RTS,S is now WHO-approved, its availability will be
limited in the short term. GlaxoSmithKline (GSK), which pro-
duces the vaccine, is committed to donate up to 10 million vac-
cine doses to the pilot implementation regions of Ghana, Kenya,
and Malawi through 2023, and to supply up to 15 million doses of
vaccine per year to the end of 2028 if it is recommended for wider
use, pending financing. However, this represents only ~10–15%
of the annual doses required if provided to all children living in
highly endemic settings20. GSK has committed to transfer the
technology to manufacture RTS,S to Bharat Biotech (BBIL), and,
by 2029, BBIL is expected to be the sole supplier of the vaccine,
with increased production capacity expected. Given the relatively
low efficacy of RTS,S, and its limited short-term availability, new
vaccines are needed to reach the WHO target of malaria vaccines
with >75% efficacy by 2030. One such candidate is R21, another
CSP-based subunit vaccine with a similar construct to RTS,S but
with more CSP antigen in the virus-like particle. In a phase 2 trial,
R21 was recently shown to have 71–77% protective efficacy
against a first episode of clinical malaria in the year following
vaccination among children living in an area with seasonal
malaria transmission21. However, this study only reported pro-
tection across one malaria transmission season; the durability of
this protection, and whether R21 would be efficacious in areas
with year-round malaria transmission, remains unclear. Phase 3
trials in 4 countries, with longer follow-up, are underway. In
addition, several other vaccines for both P. falciparum and Plas-
modium vivax are under development, targeting each of the life
cycle stages of Plasmodium, including sporozoite/pre-ery-
throcytic, asexual/erythrocytic, and sexual/mosquito22.

Another promising intervention for malaria control is intermittent
preventive therapy (IPT)—the provision of full treatment doses of
antimalarial drugs to at risk populations to clear existing infections
and prevent new infections. IPT with sulfadoxine-pyrimethamine
(SP) given at the time of routine vaccination in infants (IPTi) has
been shown to be safe and modestly effective against malaria in the
first year of life23, but is only recommended in areas with low levels
of SP resistance. Uptake of IPTi has therefore been very low, with
only one country (Sierra Leone) recently adopting this strategy.
Seasonal malaria chemoprevention (SMC) using monthly SP plus
amodiaquine during the transmission season is a proven strategy to
decrease morbidity and mortality in young children24, and is cur-
rently deployed in parts of West and Central Africa where annual
malaria transmission is confined to a few months. However, neither
IPTi nor SMC are recommended in areas with high level SP resis-
tance and/or year-round malaria transmission as in much of Central
and East Africa25. In these settings, the ACT dihydroartemisinin-
piperaquine (DP) has emerged as an excellent candidate for use as
IPT in children26, including as perennial malaria chemoprevention in
areas with year-round malaria transmission27. IPT during pregnancy
(IPTp) with DP has also been shown to be more effective than IPTp
with SP for prevention of malaria in pregnancy in areas with high
level SP resistance28,29, although IPTp with SP may result in
improved birth outcomes independent of SP’s antimalarial activity30.
As above, there are important concerns about selection of drug-
resistance through IPT, though modeling suggests that this could be
limited via prevention of infections and/or optimization of target
drug concentrations31. IPT studies should therefore be accompanied
by close monitoring for emergence of genotyping and phenotypic
evidence of antimalarial drug resistance. An added concern is that
preventing malaria in children may delay acquisition of antimalarial
immunity, increasing the risk of malaria after IPT has stopped
(rebound malaria). Though some studies have reported rebound
following cessation of IPT32,33, other studies have reported either no
increase23 or evidence of sustained protection27,34 following cessa-
tion. How IPT impacts the acquisition of immunity to malaria
remains an important area of investigation.

Finally, exciting new data suggest that combinations of malaria
control interventions might be more efficacious than individual
interventions. Vaccination of malaria-naïve adults with P. falciparum
sporozoites under prophylactic cover with either chloroquine or
pyrimethamine induced durable sterile protection against controlled
challenge with either a homologous or heterologous P. falciparum
strain35. A follow-up study conducted in malaria-exposed Malian
adults has recently been completed (NCT03952650), with results
eagerly anticipated. However, studies of this strategy in malaria-
exposed children will be needed, given prior vaccination studies
showing limited efficacy in children despite higher vaccine efficacy in
adults36. In another recent randomized controlled trial conducted in
West Africa, investigators found that the combination of seasonal
malaria chemoprevention (SMC) in children with amodiaquine+
sulfadoxine-pyrimethamine (AQ+ SP) along with RTS,S vaccination
was superior to either intervention alone37. This promising dual
intervention deserves additional study in settings where malaria
transmission is seasonal. However, in settings with year-round
malaria transmission and/or high SP resistance, alternative IPT+
vaccine regimens require urgent evaluation.

In conclusion, despite earlier gains, malaria cases and deaths
remain unacceptably high and are resurgent in several settings,
and our ability to prevent and control malaria with current tools
is challenged by the specter of insecticide-resistant vectors and
drug-resistant Plasmodium parasites. Clearly, renewed focus—
and new interventions—are needed to achieve the goals high-
lighted by the WHO “high burden to high impact” campaign to
reduce cases and deaths in countries hardest hit by malaria. There
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are reasons for cautious optimism, including approval of the
world’s first malaria vaccine and results from novel vaccine
candidates and trials testing innovative combinatorial interven-
tions. However, critical research gaps remain, and there is an
urgent need to prioritize and fund development of novel ther-
apeutic, prophylactic, and vaccine strategies against malaria.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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