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Abstract

Background: Duplication and divergence of genes and genetic networks is hypothesized to be a major driver of
the evolution of complexity and novel features. Here, we examine the history of genes and genetic networks in
the context of eye evolution by using new approaches to understand patterns of gene duplication during the
evolution of metazoan genomes. We hypothesize that 1) genes involved in eye development and
phototransduction have duplicated and are retained at higher rates in animal clades that possess more distinct
types of optical design; and 2) genes with functional relationships were duplicated and lost together, thereby
preserving genetic networks. To test these hypotheses, we examine the rates and patterns of gene duplication and
loss evident in 19 metazoan genomes, including that of Daphnia pulex - the first completely sequenced crustacean
genome. This is of particular interest because the pancrustaceans (hexapods+crustaceans) have more optical
designs than any other major clade of animals, allowing us to test specifically whether the high amount of
disparity in pancrustacean eyes is correlated with a higher rate of duplication and retention of vision genes.

Results: Using protein predictions from 19 metazoan whole-genome projects, we found all members of 23 gene
families known to be involved in eye development or phototransduction and deduced their phylogenetic
relationships. This allowed us to estimate the number and timing of gene duplication and loss events in these
gene families during animal evolution. When comparing duplication/retention rates of these genes, we found that
the rate was significantly higher in pancrustaceans than in either vertebrates or non-pancrustacean protostomes.
Comparing patterns of co-duplication across Metazoa showed that while these eye-genes co-duplicate at a
significantly higher rate than those within a randomly shuffled matrix, many genes with known functional
relationships in model organisms did not co-duplicate more often than expected by chance.

Conclusions: Overall, and when accounting for factors such as differential rates of whole-genome duplication in
different groups, our results are broadly consistent with the hypothesis that genes involved in eye development
and phototransduction duplicate at a higher rate in Pancrustacea, the group with the greatest variety of optical
designs. The result that these genes have a significantly high number of co-duplications and co-losses could be
influenced by shared functions or other unstudied factors such as synteny. Since we did not observe co-
duplication/co-loss of genes for all known functional modules (e.g. specific regulatory networks), the interactions
among suites of known co-functioning genes (modules) may be plastic at the temporal scale of analysis performed
here. Other factors in addition to gene duplication - such as cis-regulation, heterotopy, and co-option - are also
likely to be strong factors in the diversification of eye types.
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Background
Genomic complexity is driven, to a large extent, by gene
duplication, retention, and divergence [1,2]. This is
hypothesized to lead to both an increase in morphologi-
cal complexity, via the evolution of novel features, and
an increase in proteomic network complexity, through
the establishment of new network interactions [3-5].
Here, we examine the genetic histories of 23 gene
families involved in eye development and phototrans-
duction to test: 1) whether gene duplication rates are
higher in a taxon with greater eye disparity (we use the
term disparity as it is used in paleontology to describe
the diversity of morphology [6]) and 2) if genes with
known functional relationships (genetic networks) tend
to co-duplicate across taxa. We test these hypotheses by
identifying gene-family members involved in eye devel-
opment and phototransduction from metazoan full gen-
ome sequences. We use the term ‘eye-genes’ to describe
the genes in our dataset with caution, because many of
these genes have additional functions beyond vision or
eye development and because it is not possible to ana-
lyze all genes that influence vision or eye development.
Next, we map duplication and loss events of these eye-
genes on an assumed metazoan phylogeny. We then test
for an elevated rate of gene duplication/accumulation in
the group with the greatest diversity of optical designs,
the Pancrustacea. Finally, we search for correlation in
duplication patterns among these gene families - a sig-
nature of ‘co-duplication’ [7].
We define Pancrustacea as disparate in eye morphology

because the group has the highest number of distinct
optical designs of any animal group. At the broadest
level, there are eight recognized optical designs for eyes
in all Metazoa [8]. Four of the broad optical types are sin-
gle chambered eyes like those of vertebrates. The other
four eye types are compound eyes with multiple focusing
(dioptric) apparatuses, rather than the single one found
in single chambered eyes. The disparity of optical
designs in pancrustaceans (hexapods + crustaceans) is
relatively high [8]. Other diverse and “visually advanced”
animal groups like chordates and mollusks have three or
four eye types, respectively, but pancrustaceans exhibit
seven of the eight major optical designs found in ani-
mals [8]. In is important to clarify that our use of ‘dis-
parity’ in pancrustacean eyes does not have a direct
relationship to evolutionary history (homology). For
example, although related species often share optical
designs by homology, optical design can also change
during evolution in homologous structures. Insect stem-
mata share homology with compound eyes, but have a
simplified optical design compared to compound eyes
[9]. We argue that because of the range of eye designs,
pancrustaceans are a key group for examining molecular

evolutionary history in the context of morphological
disparity.

Targeted gene families involved in eye development
Despite visual disparity within insects and crustaceans,
morphological and molecular data suggest that many of
the developmental events that pattern eyes are shared
among the Pancrustacea. For example, several key mor-
phological events in compound eye development are
conserved, suggesting that this process is homologous
among pancrustaceans [10-18]. While the genetics of
eye development are unknown for many pancrustaceans,
we rely on comparisons between Drosophila and other
insects. For instance, there are several genes commonly
expressed in the Drosophila compound eye, stemmata
and Bolwig’s organ patterning [rev. in [19]] that are
similarly employed in eye development in other pan-
crustaceans [e.g. [9,11,20-24]].
In our analyses, we examine developmental gene families

falling into three classes: 1) Gene families used early in
visual system specification: Decapentaplegic (Dpp),
Engrailed (En), Hedgehog (Hh), Kruppel (Kr), Wingless/
Wnt1 (Wnt1), and Zerknullt (Zen). 2) Gene families used
in retinal determination and patterning: Dachshund (Dac),
Eyes absent (Eya), Eyegone/Twin of Eyegone (Eyg/Toe),
Pax-6, and Sine Oculis/Six1/2 (Six1/2). 3) Gene families
used in photoreceptor differentiation: Epidermal Growth
Factor Receptor (Egfr), Glass (Gl), Munster (Mu), Notch,
Spam, Spitz (Spi), and CVC homeobox (Vsx). While most
of the gene families among these three classes have only
been examined extensively in Drosophila, studies in other
arthropods suggest at least some developmental conserva-
tion [e.g. [11,20-25]]. Interestingly, several of these genes
are also involved in vertebrate eye specification, suggesting
possible ancestral bilaterian eye-specification gene families
[26]. However, most of these gene families are used in
multiple developmental contexts, making ancestral assign-
ments impossible without more data. For this reason, we
focus on the evolutionary history of the genes themselves,
rather than ancestral function. Although other genes are
known to be involved in these processes, we focus on gene
families with known functional interactions to maintain a
narrow scope that allows us to test our hypotheses. Other
more extensive datasets could be used in future similar
analyses as new information on eye-gene function
accumulates.

Targeted gene families involved in phototransduction
Phototransduction is the pathway for photosensitivity
and visual processes as it converts a light signal from
the environment to an electrical signal in photoreceptor
cells. The pathway is regulated by photosensitive pro-
teins in the opsin family. In animals, two major opsin
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clades (R- and C-opsins), and their associated pathway
proteins, tend to be segregated between rhabdomeric
and ciliary photoreceptor cell types [27-30]. R-opsins are
thought to have originated prior to the bilaterian ances-
tor [29]. Where the pathway is known, pancrustacean
vision is dependent on the rhabdomeric phototransduc-
tion pathway [31,32]. This begins with R-opsin and pro-
ceeds through a G-protein signaling cascade wherein the
Gq-alpha subunit interacts with Phospholipase C (PLC),
causing Transient Receptor Potential (TRP) ion channels
to open for membrane depoloarization [33]. Arrestin
(Arr) attenuates the signal by inhibiting further G-pro-
tein activation [34,35].

Evolution of complexity
Our first hypothesis, that genomic complexity facilitates
morphological complexity, predicts a pattern of high
gene duplication rate in an organismal clade with high
optical disparity. Our second hypothesis, that functional
relationships constrain the histories of individual genes,
predicts that gene families with direct functional interac-
tions or common regulation (e.g. retinal determination
genes) will show similar patterns of gene loss and dupli-
cation. This second hypothesis addresses the question of
the evolution of gene regulatory networks. In the con-
text of gene duplication, there are two non-mutually
exclusive ways that gene regulatory networks originate.
The first is via co-option, where new regulatory interac-
tions are formed between a duplicated gene and other
genes. The second is via co-duplication, wherein all
genes in a highly-conserved module (such as a

regulatory network) duplicate in the same phylogenetic
interval and continue to interact within diverging
daughter clades. When genes are involved in a highly
conserved module and used in various contexts, we
might expect that changes to specific genes in the mod-
ule via duplication and divergence would be mirrored in
changes to the other components. That is, if two genes
act in a conserved manner over evolutionary time, then
the retention of a duplicate of one gene might result in
a greater chance of retention for the duplicate of the
other gene. One prominent example of co-duplication
of network genes preceding the evolution of greater
visual complexity is the origin of vertebrate rod and
cone specific photoreceptor gene networks [7,36,37].
Similar situations can also be envisaged for co-loss. In
the current study, we look at duplication and loss pat-
terns across a large genetic dataset to ask if genes in our
dataset tend to duplicate and be lost in tandem, showing
patterns of co-duplication/loss.

Results
The sequencing of the Daphnia pulex genome allows us,
for the first time, to infer genomic-level arthropod evo-
lution beyond the insect clade. Within the D. pulex gen-
ome, we identified any homologs of 23 gene families
involved in eye development and phototransduction
(based on those in Drosophila). We then constructed
gene-trees (Additional File 1) for each of these families
based on protein sequence from 19 taxa with completed
genomes (Tables 1 and 2, Additional File 1) and recon-
ciled the gene trees to an assumed species tree to infer

Table 1 Genomes used in our analyses

Organism Reference Protein Database

Apis mellifera (bee) [85] protein (8/7/2006), NCBI

Bombyx mori (silkworm) [86] GLEAN merged consensus, silkworm genome consortium

Branchiostoma floridae (lancelet) [87] annotated proteins v1

Capitella spI (capitella) [JGI, unpublished data] filtered models v1, JGI

Caenorhabditis elegans (roundworm) [88] WS180.49 peptides, wormbase

Ciona intestinalis (tunicate) [89] filtered models v1, JGI

Danio rerio (zebrafish) NCBI protein (6/11/2008)

Daphnia pulex (waterflea) [JGI, unpublished data] filtered models v1.1, JGI

Drosophila melanogaster (fruit fly) NCBI BDGP5.4.49 peptides

Gallus gallus (chick) NCBI protein (11/28/2006)

Helobdella robusta (leech) [JGI, unpublished data] filtered models v3, JGI

Lottia gigantea (snail) [JGI, unpublished data] filtered models v1, JGI

Monosiga brevicollis (monosiga) [90] filtered models v1, JGI

Mus musculus (mouse) NCBI annotated proteins v3,

Nematostella vectensis (anemone) [91] filtered models v1, JGI

Takifugu rubripes (pufferfish) [JGI, unpublished data [92]] filtered models v4, JGI

Tribolium castaneum (beetle) NCBI protein (6/5/2008)

Trichoplax adhaerens (trichoplax) JGI filtered models v1, JGI

Xenopus tropicalis (frog) JGI filtered models v4, JGI
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gene duplication and loss events [38]. These data
allowed us to calculate the frequency of homolog loss
and gain within each gene family across phylogenetic
intervals on our assumed species tree (Figures 1 and 2).
We found that for certain gene families there was a sig-
nificantly higher rate of duplication in the pancrustacean
clade compared to other clades of animals. With these
inferred patterns of gene loss and gain, we performed
correlative analyses to identify co-duplication of gene
families. While we found that several gene families exhi-
bit co-duplication/loss with at least one other gene, in
many cases these correlations are between genes that

are without a known functional relationship (Figure 3,
Additional File 2).

Comparison to previously hypothesized gene trees
After searching whole genome sequences (see Methods),
we estimated gene trees for 22 different gene families
(Additional File 1, Table 2). We were unable to estimate
a tree for Munster due to ambiguous homology with
other genes. For many of these gene families, this was the
first phylogenetic analysis utilizing searches of whole-
genome data. For several gene families this was also the
first pan-Metazoa phylogenetic analysis (Table 2).

Table 2 Summary of gene-family phylogenies

Gene family D. pulex genes Protein model name(s) Scaffold #
Location

previous trees expansion in pancrustaceans?

visual system specification gene families

Decapentaplegic (Dpp) 1 Dappu-347232 2:2889112-2890686 [93,94] No

Engrailed (En) 2 Dappu-290630 106:41493-47422 – Yes

Dappu-290638 106:25280-34404

Hedgehog (Hh) 2 Dappu-347555 207:81902-105568 [95] No

Wnt1 1 Dappu-44743 8:1160125-1175065 [96,97] No

Zerknullt (Zen) 0 [98] Yes, fly

retinal determination network gene families

Dachshund (Dac) 1 Dappu- 310049 1:4072756-4116888 [99] Yes, insects

Eyes-absent (Eya) 1 Dappu- 204955 1:62314-73955 [100] No

Eyegone (Eyg/Toe) 1 Dappu- 253988 74:25897-37400 – Yes

Pax-6 2 Dappu- 249978 51:368439-379409 [101,102] Yes

Dappu-249991 51:427984-441429

Six 1/2 1 Dappu-65962 275:49584-50586 [102] No

photoreceptor differentiation gene families

Epidermal Growth Factor 1 Dappu-324147 60:112587-119018 [103] Yes

Receptor (EGFR) Dappu- 321139 39:412588-415432

Kruppel (Kr) 1 Dappu-290527 2:2312128-2315494 – No

Glass (Gl) 1 Dappu-234903 4:2598047-2600296 [39] No

Munster (Mu)** 0 – ?

Notch 1 Dappu-328760 108:325324-337022 [90,104] No

Spam*** 0 — –

Spitz (Spi) 1 Dappu-271304 1714:5914-7575 [103] Yes

CVC Homeobox (Vsx) 1 Dappu-323346 53:603419-625383 [105] Yes, silkworm+fly

phototransduction gene families

Arrestin (Arr) 2 Dappu-216585 86:316599-318172 [106] Yes, beetle

Dappu-207575 5:2476074-2477692

Gq-alpha 2 Dappu-211929 25:514047-515490 [107] No

Dappu-188187 25:531825-536252

R-opsin 30 see Colbourne J et al: Genome Biology of the Model
Crustacean Daphnia pulex, submitted

[29] Yes

Phospholipase-C (PLC) 2 Dappu- 226357 53:369165-377304 [108] Yes, fly, bee

Dappu- 304714 3:1803843-1812297

Transient Receptor 2 Dappu-54362 41:27419-33467 – Yes

Potential Channel (TRPC) Dappu- 309057 9:569391-574613

Dappu- 309057 56:282882-311121

**No genome-scale tree.

***Only a single member with this domain architecture found.
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Figure 1 Duplication and loss of developmental gene-family members in our dataset. Duplications (bold, black background) and losses
(italics, white background) were mapped onto a consensus species tree [79,104,109]. Multiple duplications or losses in a phylogenetic interval
are indicated in parentheses. Gene names are color coded by their function in Drosophila eye development. Reconciliation of gene trees onto
the species tree was performed with Notung using Maximum Likelihood gene family trees (see Methods).
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Figure 2 Duplication and loss of phototransduction gene-family members in our dataset. Duplications (bold, black background) and
losses (italics, white background) were mapped onto a consensus species tree [79,104,109]. Reconciliation of gene trees onto the species tree
was performed with Notung using Maximum Likelihood gene family trees (see Methods).
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By searching whole-genome data, we were able to find
new members of several gene families. For example, we
were able to generate a more complete phylogenetic
hypothesis for the Glass (Gl) gene family with the discov-
ery of a new chordate homolog. While a previous unpub-
lished phylogeny identified an echinoderm Gl homolog
[39], no homologs have been reported previously in chor-
dates. Through the analysis of the chordate Branchistoma
floridae genome, we discovered a putative homolog
which groups with the other Gl genes with very high sup-
port (aLRT = 1) and has similar domain structure to
other known Gl genes. This suggests a loss of the Gl
gene family of zinc-finger members early in chordate
evolution (Additional File 1, Figure S13). In addition, our
analyses uncovered one gene from zebrafish and one
from fugu that together form a sister group to all other
Dpp/BMP2/4 genes. This relationship implies a paralog
present in fugu and zebrafish but absent in all other
eumetazoans. These fish homologs have not, to our
knowledge, been studied, except in having been named
BMP2 based on similarity searches associated with zebra-
fish and fugu genome projects, so confirming the pre-
sence of new functional Dpp/BMP2/4 genes in these fish
would require experimental demonstration.
We examined Pax-6 in greater detail than other gene

families by including sequences from additional arthro-
pod species. This gene has a well-known and conserved
role in eye development, and previous authors have
indicated, counter to our conclusions, that the genes
eyeless (ey) and twin-of-eyeless (toy) are insect- specific
duplications [40]. We found strong phylogenetic evi-
dence for a pre-arthropod duplication of ey and toy. We

found support for a family of genes that includes Droso-
phila toy, a myriapod toy-like gene, plus a newly
described toy-like gene from an ostracod crustacean and
a chelicerate. The toy-clade excludes Drosophila ey and
the ey-like genes of a crustacean and a myriapod. We
conclude it is very unlikely that toy and ey represent an
insect-specific duplication event, although the precise
timing of this duplication is difficult to determine with
currently available data.

Pancrustaceans have high rates of gene-duplication
within our dataset
While excluding arthropod-specific gene families (Spitz,
Spam, and Zen), we analyzed and compared rates of
gain of gene-family members (duplications) across pan-
crustaceans, across non-arthropod protostomes (Lopho-
trochozoa and Caenorhabditis elegans), and across
vertebrates. We used three denominators to calculate
rates of gene duplication (ie rate equals distance/time,
and we used three different metrics of evolutionary
‘time’ to calculate gene duplications/time). Using total
gene duplications in the denominator normalizes by
overall rates of gene duplication in each clade, which
includes any whole genome duplications that occurred
in a particular group. A second denominator was
genetic distance, utilizing average ortholog divergence
between species in a clade [41]. Genetic distance nor-
malizes by the overall molecular diversity in a clade.
Our third denominator was a molecular clock estimate
of divergence times [42,43]. Compared with other proto-
stomes, we found that duplication rates of eye-genes
were significantly higher in pancrustaceans in all three
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Figure 3 Gene families with correlated patterns of duplication/loss. Loss and gain patterns over 36 phylogenetic intervals (Figures 2 and 3)
were compared between each pair of gene families. A) Gene families with significant correlation of their duplication patterns (see Methods) are
connected with a blue line. Gene families with significant correlation of their loss patterns are connected with a red line. B) To partially account
for the probable high amount of functional overlap between members of the same gene family, we calculated overall gene family duplication/
loss activity over a phylogenetic interval (number of losses subtracted from number of duplications) and compared patterns between gene
families over all phylogenetic intervals. Pairs with a significant amount of correlation (see Methods) are connected by blue lines. 15 genes had
significant correlation with at least one other gene family. This is much higher than the number found in our randomly shuffled matrices (C, see
Methods). C) Histogram representing the numbers of correlations found in 1000 randomly shuffled matrices using the gain minus loss data (see
Methods). Most shuffled matrices had 0 or 1 significant correlations, representing 0 or 2 genes, a few had 5 or 6. Arrow represents the number
of significant correlations (14) found in the unshuffled gain minus loss data matrix.
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analyses (see Methods). Compared with vertebrates, eye-
genes showed higher duplication rates in pancrustaceans
when normalized by total gene duplications. However,
comparing duplication over both molecular clock diver-
gence times and genetic distance yielded similar rates of
eye-gene gain in vertebrates and pancrustaceans.
In our first analytical measure of duplication rates, we

normalized the number of duplications observed in our
eye-gene dataset by the total number of gene duplica-
tions calculated from the genomes of the clade of inter-
est. We inferred 50 duplications of eye-related genes in
pancrustaceans compared to 33113 total duplications in
the pancrustacean genomes, resulting in a ratio (δ) of
0.0015 (Table 3). This is significantly higher than the δ
value for non-arthropod protostomes (δ = 0.00026; Fish-
er’s exact test, p = 1.5e-11) or vertebrates, (δ = 0.00058;
p = 4.9e-6) (Tables 3 and 4). To further scrutinize dupli-
cation rates, we examined developmental and photo-
transduction genes separately. The difference between
the δ of non-arthropod invertebrates and pancrustaceans
was still significant for both developmental (p = 0.0102)
and phototransduction (p = 1.47e-10) genes. When
compared to vertebrates, only the δ for phototransduc-
tion genes, and not developmental genes, was signifi-
cantly higher in pancrustaceans (p = 2.52e-11) (Tables 3
and 4).
We also used genetic distance (average number of

amino acid substitutions between orthologs in a clade)
as a second measure of evolutionary rate [41]. This mea-
sure allows us to calculate gene duplications per amino
acid substitution (ι) to examine gene duplication in the
context of overall lineage diversity (Table 3). For

pancrustaceans, we found that ι for eye genes was
0.0478, significantly higher than ι for non-arthropod
protostomes (ι = 0.0193, p = 0.0010). However, ι was
higher in vertebrates (ι = 0.0577) than pancrustaceans.
We also calculated ι separately for developmental and
phototransduction genes. Pancrustacean ι (0.0124) and
non-arthropod protostomes ι (0.0091) did not differ sig-
nificantly for developmental genes, although vertebrate
ι was significantly greater (ι = 0.043, p = 8.79e-5). For
phototransduction genes, pancrustacean ι (0.0353) was
significantly higher than ι for non-arthropod proto-
stomes ι = 0.0102; p = 0.0004), and significantly higher
than ι for vertebrates ι = 0.0184, p = 0.0080) (Tables 3
and 4).
Finally, we used a calibrated molecular clock as a third

measure of evolutionary time. One critique of ages
inferred by molecular clock studies is that they often
overestimate absolute clade ages [44-48]. Even so, the
estimates could still be reliable estimators of relative
clade age, which is what we require for comparing rates
in different clades. Utilizing published molecular clock-
based divergence time estimates [42,43], we found results
very similar to our analysis using genetic distance. Over-
all, eye-gene duplication rates standardized using clock
divergence time estimates (μ) were found to be signifi-
cantly higher in pancrustaceans (0.1604) than other pro-
tostomes (0.0215, p = 1.9e-9) but were not significantly
different than μ for vertebrates (0.1044). Although devel-
opmental genes analyzed alone were not significantly dif-
ferent between pancrustaceans and vertebrates,
phototransduction genes showed a significantly higher μ
in pancrustaceans compared to vertebrates (p = 0.0010).

Table 3 Gene duplication rates

clade(s) Dataset gene duplication rates

Eye duplications/
total duplications (δ)

Eye duplications/
genetic distance (ι)

Eye duplications/
molecular clock (μ)

All Dev* PT* All Dev PT All Dev PT

pancrustacean .0015 3.9e-4 .0011 .0478 .0124 .0353 .1064 .0277 .0787

other protostomes 2.6e-4 1.2e-4 1.4e-4 .0193 .0091 .0102 .0215 .0101 .0114

vertebrate 5.8e-4 4.3e-4 1.5e-4 .0577 .0430 .0184 .1044 .0778 .0267

*Developmental genes (Dev) and Phototransduction genes (PT)

Table 4 Duplication rates in Pancrustacea compared to other clades

clade(s) compared to Pancrustacea p-values for significant difference in dataset gene duplication rates compared to Pancrustacea

Eye duplications/total duplications (δ) Eye duplications/
genetic distance (ι)

Eye duplications/
molecular clock (μ)

All Dev PT All Dev PT All Dev PT

Other protostomes 1.5e-11 .0102 1.47e-10 .0010 .5180 .0004 1.9e-9 .0381 8.2e-9

vertebrate 4.9e-6 .8741 2.52e-11 .4015 8.79e-5 .0080 1.00 .0016 .0010

Bold = significantly more duplications in pancrustaceans

Italics = significantly more duplications in non-arthropod clade
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Both sets of eye-genes showed a significantly higher μ
compared to other protostomes (Tables 3 and 4).
In all three analyses, eye genes showed a higher rate of

duplication in pancrustaceans than in non-arthropod
protostomes. In contrast, pancrustaceans only show
higher rates of duplication than vertebrates when photo-
transduction genes are included in the analysis. That is,
pancrustaceans do not show higher rates of develop-
mental gene duplication compared to vertebrates under
any analysis.

Co-duplication is significant in our dataset
We compared gene losses and gene duplications sepa-
rately across Metazoan genomes and found that 15 of
22 gene families had correlated patterns of loss or gain
with at least one other gene family (Figure 3a). In a
separate analysis, we compared patterns of gene loss
and duplication simultaneously by taking the total num-
ber of duplications minus losses for each gene family
over each branch of the species tree. Both analyses
yielded similar results (Figure 3b).
To test the statistical significance of our observed

number of correlations, we randomized our data matrix
by shuffling to generate a null distribution of correla-
tions. We found that the majority of shuffled matrices
(1000 total) had only either 0 or 1 significant correla-
tions between gene families and none had over 6 corre-
lations, making our observed result of 15 significantly
different from the null distribution (Figure 3c). This
confirmed that the number of correlated gene families
in the real dataset is greater than expected under by
chance. However, the genes showing high levels of cor-
relation in gain/loss patterns were not primarily genes
with known functional relationships (Figure 3, Addi-
tional File 3).

Discussion
Here we have examined the evolutionary history of
genes involved in eye development and phototransduc-
tion by analysis of gene family trees, reconciled trees,
and co-duplication data. Thus, we examined gene-family
evolution in the context of both morphological disparity
(eye disparity vs. gene duplication rates) and protein
network evolution (co-duplication/loss). In most of our
analyses, we found that increased rates of duplication
within specific eye-gene families were correlated with
the increased optical disparity seen in pancrustaceans.
At the protein network level, we found significant co-
duplication of eye-genes, though the patterns of duplica-
tion are more complex than we originally hypothesized
with respect to previously known functional interactions
among proteins.

Gene trees
In our examination of gene duplication and loss, we
generated phylogenetic hypotheses for 22 gene families.
Many of these are the first detailed analyses of the evo-
lution of the gene family, which will be of use in future
research on these gene families in various contexts. We
found that gene trees of orthologs often are incongruent
with assumed species-level relationships. Assuming our
inferred gene trees are accurate, our results imply that
there is a more complex pattern of gain and loss than
would have been expected by simply comparing number
of gene orthologs in each species. Because errors in our
trees could lead to overestimations of complexity, we
required support values of 90% or higher in our reconci-
liation analysis. That is, we allowed branch swapping to
minimize duplications and losses in cases where the
node support was less than 0.9. However, this method
can underestimate the numbers of gains and losses [49].
Future inquiries could focus on these poorly supported
nodes, by including additional species in the analyses as
they become available, or by including additional infor-
mation (e.g. domain structure or intron presence/
absence) in attempts to estimate phylogenies with higher
support. In addition, presumably more accurate recon-
ciled trees could be generated in the future using more
computationally expensive methods, such as fully Baye-
sian estimation of gene and species reconciliation
[50,51], which currently would be very difficult at the
scale of analysis conducted here. The inclusion of addi-
tional genomes in future studies will also be of help in
generating accurate hypotheses, as taxon (in this case
gene) sampling is an important determinant of phyloge-
netic estimation [52].

Rates of gene duplication
We found overall support for the hypothesis that gene
duplication and/or retention rates are higher in pancrus-
taceans, the group with the highest disparity of optical-
types. We examined the sensitivity of this overall con-
clusion in three different ways. First, we compared pan-
crustaceans to both non-arthropod protostomes and to
vertebrates. Second, for each of these comparisons, we
estimated gene duplication rates using three different
denominators: total gene duplications, overall genetic
distance, and divergence time estimates from molecular
clock analyses. These different denominators are neces-
sary to understand the influence of different modes of
genome evolution on our conclusions, such as the mul-
tiple genome duplications known in vertebrates. Third,
we examined (both separately and together) duplication
rates of genes from different eye-gene categories (devel-
opmental versus phototransduction genes), allowing us
to test whether one category was the primary driver of
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the overall rates. For example, developmental genes are
probably involved in more non-visual phenotypes than
phototransduction genes since phototransduction genes
often have localized expression [e.g. [53]], and this dif-
ference in pleiotropy could influence final results.
Comparisons between eye-gene duplication rate in

pancrustaceans and non-arthropod protostomes clearly
supported our hypothesis, even when taking the conser-
vative approach of not counting arthropod-specific
genes. The observed difference in gene duplication rate
between these two clades does not depend on the
denominator used in rate calculations, and is signifi-
cantly different for both developmental and phototrans-
duction genes (Tables 3, 4). Despite the consistency of
these results, it is important to consider that there are
multiple possible causes for our observed correlation
between higher optical disparity and higher eye-gene
duplication rate. One possible explanation is that gene
duplications, perhaps retained by natural selection, are a
causal factor in increasing optical disparity in pancrusta-
ceans. In fact, gene duplications are known to have
increased retinal complexity in vertebrates, leading to
separate rod and cone phototransduction pathways
[7,36,37]. Whether these vertebrate duplications were
fixed by natural selection or neutral processes is
unknown. At present, however, too little is known about
the relationship between pancrustacean genes and opti-
cal design phenotypes to claim that gene duplication
was a causal factor leading to higher optical disparity.
Another explanation is that the available full genome
sequences do not allow for appropriate estimates of
duplication rates in these clades. For example C. elegans
does not possess conventional eyes, even though many
other non-arthropod protostomes do. If, as a result of
losing eyes during evolution, the lineage of C. elegans
has a lower rate of eye-gene duplication, this could
result in an underestimate of eye-gene duplication rate
for the entire clade. Similarly, the pancrustaceans used
here could have more eye-genes than other arthropods.
In fact, Daphnia pulex does have a large number of
genes compared to other arthropods, perhaps because of
its asexual/sexual life history (Colbourne J et al: Genome
Biology of the Model Crustacean Daphnia pulex, sub-
mitted). These hypotheses could be examined using the
approaches developed here, once additional genome
sequences become available.
Compared to rate differences between pancrustaceans

and non-arthropod protostomes, rate differences
between pancrustaceans and vertebrates were more vari-
able. That is, using different denominators in our rate
calculations led to different results (total gene duplica-
tions, genetic distance, or molecular clock). An impor-
tant consideration in these comparisons is that
vertebrates are known to have undergone multiple

whole-genome duplications, which raised the overall
estimated rate of gene duplication and accumulation for
the group. This is evident in total gene duplications that
we counted (80673 in vertebrates vs. 33113 in pancrus-
taceans) but is not reflected in our other distance mea-
sures (denominators): both clades show similar genetic
distance (as measured by average ortholog distance -
1047 and 814 respectively) as well as similar clade ages
(as estimated by a molecular clock - 470 and 450 mya).
The high overall rate of gene duplication and accumula-
tion in vertebrates may therefore explain why, counter
to our hypothesis, vertebrates show a significantly higher
rate of eye development gene duplication than
pancrustaceans.
The high rate of duplication and/or retention of genes

in vertebrates further suggest that the best rate compari-
son might be that using total number of gene duplica-
tions as the distance between species (denominator). It
is this rate calculation that corrects for vertebrate
whole-genome duplications. Even here, we see a differ-
ence between gene types, with only phototransduction
genes, and not developmental genes, supporting our
starting hypothesis that pancrustaceans have a higher
eye-gene duplication rate. However, much of the signifi-
cant difference in phototransduction genes is driven by
extensive duplications of opsin in the D. pulex lineage
(Colbourne J et al: Genome Biology of the Model Crus-
tacean Daphnia pulex, submitted), a phenomenon also
known in other crustaceans [54,55]. Given the observed
difference between developmental and phototransduc-
tion genes when comparing vertebrates and pancrusta-
ceans, it is tempting to speculate on possible biological
causes for this result. For example, we expect develop-
mental genes to be pleiotropic, and several of the genes
studied here are known to function in many contexts
besides eye development [e.g. [56]]. Phototransduction
genes have a more specific functional role and may be
less pleiotropic [e.g. [53]]. The more pleiotropic devel-
opmental genes could rely more heavily on modifica-
tions in the protein and cis-regulatory sequences, rather
than on gene duplication for diversifying function [57].
If so, correlation between gene duplication rate and
morphological disparity could be low or nonexistent.
The consideration of pleiotropy also highlights

another avenue for future research. If pleiotropy does
result in a weaker correlation between eye disparity and
gene duplication rate, gene choice must influence the
final results. Therefore, future research might focus on a
broader sampling of genes, especially to the extent that
analyses conducted here could be fully automated to
allow the analysis of very large datasets. For example, a
recent study focusing on the insects found higher num-
bers of gene duplications in dipterans than other insects
by examining 91 fly eye-genes [58]. Integrating this type
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of “retinome” scale analysis with the methods we show
here would give a more detailed and informed view of
gene evolution in the context of morphological disparity
and innovation.
The available genomic data allowed us to test the

hypothesis that pancrustaceans, a group with many dis-
parate eye types, have more duplications of eye-genes
than less optically-diverse groups. This relies on an
assumed species phylogeny, and our assumption that we
are estimating rates of pancrustacean duplication for the
entire clade. Complicating this assumption, the phyloge-
netic position of branchiopods (including Daphnia
pulex) within Arthropoda remains somewhat uncertain
[59-62]. We here consider the hexapod/D. pulex ances-
tor to be the common ancestor of all pancrustaceans for
simplicity. This is justified by the wide variety of optical
designs found in this hypothesized hexapod-branchio-
pod clade, regardless of whether it represents the ances-
tral pancrustacean or whether crustaceans are in fact
paraphyletic [59-62]. Future research using genomes
from more crustaceans and taxa with a wider range of
eye-type disparity could allow testing for a broader cor-
relation between eye disparity and eye-related gene
number, a possibility supported by our results. Namely,
if the ratio of eye-types to gene duplication rate is simi-
lar in different clades, then a broader correlation may
exist.

Co-duplication of genes
We found that duplication and/or loss patterns in 15 of
22 gene families correlated significantly with duplication
and/or loss patterns in at least one other gene family,
significantly more than expected by chance (Figure 3C).
Interestingly, many of the genes we found to co-dupli-
cate are not known to have any functional relationship
with each other. This suggests the possibility of novel
functional relationships between genes, at least in ani-
mals where the genetics are relatively unstudied (the
majority of our samples). Co-duplications may also be
the result of undiscovered constraints at the genomic
level (e.g. synteny), or an unknown systematic artifact of
our gene reconciliation analysis that infers that unre-
lated genes duplicate or are lost at particular nodes.
While new gene pairings were suggested by our co-
duplication analysis, some pairings predicted by func-
tional modules were not found.
One functional module of particular interest is the

suite of phototransduction genes [31]. We found that
even though multiple ciliary phototransduction genes
are known to have co-duplicated early in vertebrate his-
tory [29,36,63], rhabdomeric phototransduction genes
have not co-duplicated as a unit when considering the
entire history of Metazoa. A notable exception is that R-
opsin and Gq-alpha (genes known to interact directly)

exhibit a significant pattern of co-duplication. This sug-
gests that R-opsin and Gq-alpha have been a tightly
linked functional module throughout animal evolution,
and if so, specific R-opsin paralogs may be expressed
with specific Gq-alpha paralogs.
We also found that some phototransduction genes co-

duplicate with developmental genes (Figure 3). Some of
our data could represent novel genetic interactions, but
they could also stem from other unknown aspects of
these genes including the number of protein interac-
tions, the number of functions a protein is involved in,
or genomic location. Although we tested the general
false-positive rate by generating randomized matrices of
our data, future studies might also compare the num-
bers of co-duplicating eye-genes to that of a set of genes
drawn at random that are not necessarily involved in
the same organ system.
Similarly, we found extensive co-duplication/loss

between only a few gene families known to be involved
in the same developmental pathway [19]. The retinal
determination pathway, for example, includes Pax6, Dac,
Eya and Six1/2, gene families known to have functional
interactions in disparate taxa [56]. From this pathway,
Pax6 and Dac had correlated loss patterns as did Eya
and Six1/2. Perhaps the functional relationship between
these gene pairs is more constrained than that of other
genes in the retinal determination network. Dac and
Pax6, for instance, are known to have a complex induc-
tive relationship in both vertebrates and invertebrates
[56,64]. Other gene families with known interactions in
Drosophila compound eye development also showed
correlations in either their loss or gain patterns. These
include Hh and Eya [65], Dac and Dpp [66] and Six 1/2
and Eya [67]. However, the majority of genes with
known regulatory interactions in eye development did
not tend to be duplicated/lost together more often than
expected by chance. This finding - that the evolutionary
history of genes belonging to complete genetic modules
do not share similar patterns of gain and loss - is con-
sistent with a functional study that found network
degeneration after genome duplication in yeast [68]. In
that study, genes that function together before genome
duplication do not necessarily function together after
genome duplication.

Conclusion
Our research provides new methodology for examining
genomic complexity in the context of morphological
complexity. In particular, we examined the evolutionary
histories of genes acting in arthropod eye development
and phototransduction to evaluate hypotheses of gene
and protein module duplication. The phylogenetic trees
we created lay a foundation for research into the gene
histories of several understudied, but developmentally

Rivera et al. BMC Evolutionary Biology 2010, 10:123
http://www.biomedcentral.com/1471-2148/10/123

Page 11 of 16



important, gene families. Future research will likely lead
to advances in understanding evolutionarily conserved
protein domains in these genes as well as the signifi-
cance of the expansion of some families in particular
lineages (e.g. the Six1/2 family in the lineage leading to
the Helobdella robusta). Our analyses of these gene his-
tories revealed that, by one analysis, genes involved in
eye development and phototransduction had higher
rates of duplication in the taxon with the largest num-
ber of eye types (pancrustaceans) (Table 3). Our
co-duplication analysis found higher than expected
numbers of co-duplicating genes, yet genes in known
genetic modules were not always found to be gained
and lost together (Figure 3). Moreover, some genes that
are not known to have extensive interactions did show
high correlation in loss and gain pattern. Future
research could clarify these findings, comparing the
genomic locations of co-duplicating genes in order to
identify synteny, identifying gene modules in the eyes of
non-model organisms, confirming the function of the
gene families in non-insect arthropods, and testing for
patterns consistent with positive selection acting on the
genes and modules of interest.

Methods
Overview
We first found all homologs of genes of interest in the
Daphnia pulex v1.0 genome. We next found all homo-
logs in 18 other metazoan genomes. We constructed
phylogenies for each gene family using maximum likeli-
hood. Assuming species-level relationships to be known,
we next reconciled each gene family tree with the
metazoan tree to estimate timing of gene duplication
and loss events. We then estimated rates of gene dupli-
cation within major metazoan clades. Finally, we tested
for significant correlation of gene duplication/loss pat-
terns across gene families. Detailed methods for each of
these general steps are detailed below.

Daphnia pulex genome searches and gene family
assignment
With a protein sequence for each gene of interest from
FlyBase used as a “bait” sequence, Blastall searches were
performed, using protein sequences for each gene of
interest as a “bait” sequence, against all gene models of
Daphnia pulex v1.0 obtained from JGI [http://genome.
jgi-psf.org/Daphnia; http://wfleabase.org/]. Searches first
retrieved the top 15 hits, this number was raised in sub-
sequent searches until D. pulex models outside the
group of interest were obtained. Redundant sequences
were determined by examining the visual scaffold model
on JGI and then removed by hand. The gene family for
each D. pulex gene was assigned by inclusion in a maxi-
mum likelihood tree using UniRef50 and UniRef90

sequences. These trees were estimated using an in-
house pipeline of shell and perl scripts that merge exist-
ing bioinformatic tools. The bait sequence from FlyBase
was used to perform a similarity search using blastp [69]
of non-redundant protein databases curated by uniprot
http://www.uniprot.org/. In most cases, we used two
blast search strategies for each bait gene: 25/10 (where
the top 25 blast hits of the Uniref90 and the top 10
blast hits of the Uniref50 database were retained for
further analysis). In cases when there was either not
enough resolution or no outgroup hits obtained; more
hits were taken from the Uniref90 or Uniref50 data-
bases, respectively (See Additional file 1 for details).
Identical sequences, such as those obtained from both
Uniref90 and Uniref50 databases, were removed from
further analysis. Second, all retained sequences and bait
were aligned using MUSCLE [70]. Third, we estimated
maximum likelihood phylogenetic trees using aLRT-
PHYML [71,72] assuming a JTT [73] model of protein
evolution. We visualized resulting phylogenetic trees
with TreeView [74,75] or FigTree http://tree.bio.ed.ac.
uk/software/figtree/. Where relevant, we tested whether
gene trees were significantly different from previous
trees using the Shimodaira-Hasegawa (SH) test [76]
implemented in PhyML [71,72] by comparing con-
strained trees to the best trees.

Pax-6 sequences
In phylogenetic analyses of Pax-6, we utilized previously
unpublished sequence data from Daphnia pulex (con-
firming the automated genome assemblies with cDNA
sequencing) and the ostracod crustacean Euphilomedes
carcharodonta. Euphilomedes carcharodonta were col-
lected at the University of Southern California’s Wrigley
Marine Lab on Catalina Island, California by free diving,
collecting sediment with an aquarium net, and sorting
with a dissecting microscope. Daphnia pulex were
obtained from stock collections at Indiana University.
We first isolated Pax-6 fragments using degenerate PCR
primers to highly conserved regions in the paired and
homeo domains of published Pax-6 sequences. After
sequencing an initial Pax-6 fragment, we designed speci-
fic primers for 5’ and 3’ RACE, often using nested pri-
mers and the Gene Racer kit (Invitrogen). Primers and
cycling conditions are given in Additional File 3. Addi-
tional arthropod Pax-6 sequences were obtained from
GenBank.

Genome comparisons
With protein sequence for each gene of interest from
FlyBase, initial blastall searches were executed against
19 genomes obtained from JGI and NCBI (Table 1) with
parameters set to return five best hits with e values less
than 0.5. To ensure no paralogs were omitted, blastall
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searches were modified and repeated to allow more
returns in cases where all five best hits fell within the
in-group for the gene of interest in initial phyogenetic
analyses. Sequence alignment and maximum likelihood
estimates of gene trees were performed as described
above. Genes were identified phylogenetically as mono-
phyletic ingroups sharing conserved domain architecture
using Pfam databases and NCBI’s Conserved Domain
Database [77,78] (See Additional File 1 for details). With
outgroups identified and pruned from the alignment,
each gene tree was reconstructed and then reconciled to
the metazoan species tree [79] using NOTUNG [80].
Rearrangements were allowed for node supports below
0.9 in order to minimize the inferred number of gene
duplication and loss events implied by poorly supported
nodes.

Duplication pattern analysis
We estimated rates of gene duplication while normaliz-
ing for overall evolutionary time using three different
denominators. Total numbers of duplications of genes
along each branch of a species tree were estimated
using data from the reconciled tree analysis (Figures 1,
2). For each phylogenetic group, the numbers of dupli-
cations along each branch falling within the group were

added together, to get a total number of duplications
within a clade. Caenorhabditis elegans-specific duplica-
tions were added to Lophotrochozoa-specific duplica-
tions to get a total duplications value for “non-
arthropod protostomes.” Ciona intestinalis, Branchios-
toma floridae, and Nematostella vectensis were not
included in this analysis. To estimate total numbers of
gene duplications and losses during animal evolution,
we used EvolMAP software [41], which estimates the
gene content of hypothetical ancestral species relative to
evolutionary transitions marked by speciation events.
EvolMAP uses an assumed species tree, performs pair-
wise similarity comparisons of all genes, and assumes
that gene families cannot be gained independently in
separate lineages. Second, we used EvolMAP to calculate
average ortholog divergence, here termed “genetic dis-
tance”, see [41] for details on the calculation. Third, we
normalized gene duplication rates using clade age esti-
mates from molecular clock studies [42,43].
To examine co-duplication, two methods were used.

First, data matrices were created representing the num-
ber of losses or duplications for each gene along each
branch of a species tree using the data from reconciled
tree analysis (Figures 1, 2). Gene patterns were com-
pared in the loss and gain cases separately by examining
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Figure 4 Test for significant co-duplication of genes. A) Gene Duplications and losses are mapped to the branches (B1 - B36) of the
assumed species phylogeny (see Methods for details). Circles represent gene duplication events; different shades represent different gene
families. B) Gene duplication data illustrated in matrix form. Rows are gene families (G1-G21) columns are branches on the phylogeny (B1-B36).
Gene duplication events are represented in the matrix as a 1, absence of gene duplications on branches are represented as 0. C) All pair-wise
comparisons were made between gene families (rows). P-values were calculated using Spearman’s rho [82]. The number of significantly similar
gene family pairs is represented in this panel (see Methods). D) To test whether the observed number of significantly co-duplicating gene family
pairs could be due to chance, we next shuffled each row of the data matrix (G1S-G21S), thus randomizing the gene duplication events on the
tree. In this way, we created 1000 shuffled matrices. E) Using the shuffled matrices (D), we calculated p-values for the similarity of each pairwise
comparison of shuffled matrix rows. The number of significantly similar rows was counted for each of the 1000 shuffled matrices to form a null
distribution (Fig 4C), to which the observed value was compared.
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correlation using Spearman’s rho implemented in R with
p-values calculated using Algorithm AS 89, a test of
upper tail probability [81,82]. The second method used
the same methodology comparing duplication and loss
patterns together by looking at the number of duplica-
tions minus the number of losses for each gene along
each branch of the species tree. Significance of correla-
tion was assessed using sequential Bonferroni to accom-
modate multiple comparisons [83,84]. A null
distribution for the expected number of co-duplicating
gene family pairs was created by randomizing the data
matrix 1000 times and analyzing each pseudoreplicate in
R (Figure 4).

Additional file 1: Results of phylogenetic analyses on the 22 individual
gene families used in this study.

Additional file 2: Pairwise correlation values of between duplication and
loss of the 22 gene families examined.

Additional file 3: PCR conditions for the amplification of Pax6 homologs
from Euphilomedes carcharodonta and Daphnia pulex.
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