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Abstract

Background: In Thomas’ formalism for modeling gene regulatory networks (GRNs), branching time, where a state
can have more than one possible future, plays a prominent role. By representing a certain degree of unpredictability,
branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified
behavior, and (c) interaction with the environment. Introducing more than one possible future for a state, however,
creates a difficulty for ordinary simulators, because infinitely many paths may appear, limiting ordinary simulators to
statistical conclusions. Model checkers for branching time, by contrast, are able to prove properties in the presence
of infinitely many paths.

Results: We have developed Antelope ("Analysis of Networks through TEmporal-LOgic sPEcifications”, http://turing.
iimas.unam.mx:8080/AntelopeWEB/), a model checker for analyzing and constructing Boolean GRNs. Currently,
software systems for Boolean GRNs use branching time almost exclusively for asynchrony. Antelope, by contrast,
also uses branching time for incompletely specified behavior and environment interaction. We show the usefulness
of modeling these two phenomena in the development of a Boolean GRN of the Arabidopsis thaliana root stem
cell niche.
There are two obstacles to a direct approach when applying model checking to Boolean GRN analysis. First,
ordinary model checkers normally only verify whether or not a given set of model states has a given property. In
comparison, a model checker for Boolean GRNs is preferable if it reports the set of states having a desired property.
Second, for efficiency, the expressiveness of many model checkers is limited, resulting in the inability to express
some interesting properties of Boolean GRNs.
Antelope tries to overcome these two drawbacks: Apart from reporting the set of all states having a given property,
our model checker can express, at the expense of efficiency, some properties that ordinary model checkers (e.g.,
NuSMV) cannot. This additional expressiveness is achieved by employing a logic extending the standard
Computation-Tree Logic (CTL) with hybrid-logic operators.

Conclusions: We illustrate the advantages of Antelope when (a) modeling incomplete networks and environment
interaction, (b) exhibiting the set of all states having a given property, and (c) representing Boolean GRN properties
with hybrid CTL.

Background
Gene regulatory network models
A major challenge in current biology is relating spatio-
temporal gene expression patterns to phenotypic traits
of an organism. These patterns result partly from

complex regulatory interactions sustained principally by
genes and encoded proteins. The complexity of such
interactions exceeds the human capacity for analysis.
Thus, mathematical and computational models of gene
regulatory networks (GRNs) are indispensable tools for
tackling the problem of mapping the genotype into the
phenotype. These models have been fruitfully applied in
numerous biological systems (e.g., [1-4]).
Within the various kinds of GRN models [5], Boolean

GRNs are especially valuable for their simplicity and for
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nonetheless having a rich behavior yielding meaningful
biological information [6,7]. Examples where Boolean
GRNs have been successfully used are: the segment
polarity gene network of Drosophila melanogaster [4,8],
the flower organ determination GRN of Arabidopsis
thaliana [9], the mammalian cell cycle [10], and the
yeast cell cycle [11,12].
In a Boolean GRN, each gene has only two possible

activation values: active (1) or inactive (0); intermediate
expression levels are neglected. A network state at time
t is a vector containing the activation values of all the
genes in the GRN at time t. In addition, time is viewed
as proceeding in discrete steps. The value of every gene
X at time t + 1 is specified by a Boolean function of the
values of its regulators g1, g2, . . . , gnX at time t.

Branching time
Boolean GRNs are closely related to the formalism
developed by Thomas and his collaborators [13-15].
Thus, computer systems for Boolean GRNs are often
influenced by Thomas’ formalism, which employs GRN
models with branching time, allowing states with more
than one immediate future [[13], p. 33]. A network state
with more than one immediate future represents the
fact that the next state of the regulatory system mod-
eled by such a GRN can be any one of several states.
Hence, the next state of the modeled system is only
partially determined. Let us then say that there is an
indetermination in the network. This indetermination in
the system’s behavior reflects a certain degree of unpre-
dictability that can be identified with several important
phenomena.
Asynchrony
One such phenomenon is asynchrony [[13], p. 33].
Experiments for inferring gene interaction do not nor-
mally establish the length of time between state changes.
Hence, when such experiments indicate the change in
value of two genes, say, it is preferable to model such a
situation with a single state having two successors, one
for each change, as illustrated in Figure 1. The reasons
are that we do not know the relative values of both
delays in real biological systems [[13], p. 44] and that

complete synchrony might be practically impossible
[[13], pp. 33, 55].
Many computer systems based on, or inspired by,

Thomas’ formalism (such as BooleanNet [16], BoolNet
[17], GINsim [18-20], GNBox [21,22], SMBioNet
[23,24], and SQUAD [25-27]) employ asynchronous
models. Thomas’ formalism, however, incorporates two
additional phenomena with indeterminations, that are
typically excluded in such systems.
Incompletely specified behavior
One such additional phenomenon is incompletely speci-
fied behavior [[13], p. 24]. This behavior may emerge,
first, from a “synthetic” approach [[13], pp. 60-67],
where we are interested in all Boolean GRNs having cer-
tain properties (e.g., a certain set of steady states)
regardless of other properties. The tables specifying the
network behavior would then have outputs whose value
“does not matter” [[13], p. 24]. Second, lack of some of
the experimental information of a regulatory system also
emerges as incompletely specified behavior. In this case,
the behavior tables would have outputs whose value we
do not know.
Interaction with the environment
Another phenomenon usually neglected in computer
systems for GRN analysis and that can be modeled with
branching time is that of interaction with the environ-
ment. Assume that the next state of a regulatory system
depends on the temperature: If the temperature is low,
the system’s next state will be one, but if the tempera-
ture is high, the system’s next state will be different.
Another example is the unpredictability of radiation-
induced apoptosis [28]. In this case, for the same degree
of radiation some cells will initiate apoptosis while
others will not. Thomas and D’Ari reflect such an
unpredictability with an “input variable” [[13], pp. 33-
35] of an unknown value. This phenomenon can be
readily incorporated with indeterminations.

Simulators
Boolean GRNs are sometimes studied with simulators
(e.g., Atalia [9], BooleanNet [16], and BoolNet [17]). A
simulator attempts to replicate the behavior of a system
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Figure 1 A fragment of the state-transition graph of a Boolean GRN exemplifying asynchrony. Assume that the behavior of a network
specifies a simultaneous transition of the value of the two rightmost genes from 0 to 1 (panel (a)). If we exclude the possibility of simultaneous
changes, it might be more realistic to model such a phenomenon with an indetermination (panel (b)).
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by performing state changes in the same order as they
occur in the system being modeled. Hence, network
paths are traversed forward from one state to the next.
In the presence of a state with more than one successor,
such a straightforward approach must be complemented
with additional mechanisms. Two of such mechanisms
are: (a) a random device (randomly selecting one succes-
sor) and (b) backtracking (systematically selecting one
successor after another by remembering which succes-
sors of each state have already been selected) coupled
with a cycle-detection mechanism.
A random device, on the one hand, allows for only

drawing statistical conclusions. The reason is that in the
presence of a state with more than one successor, the
number of paths may be infinite [6], as depicted in Fig-
ure 2. Backtracking and cycle detection, on the other
hand, can be inefficient (taking, in the worst case, an
exponential amount of time in the size of the network
[[29], p. 82]).
There are two important approaches for circumvent-

ing these difficulties. One of these techniques is an ela-
boration of backtracking so as to increase its efficiency
by requiring certain constraints to be satisfied as the
network is traversed [30]. The work by Corblin et al.
[21,22] uses this approach. Another relevant method is
model checking.

Model checking
Model checking [31,32] is a collection of techniques for
automatically verifying properties especially of discrete
systems. The main ideas of model checking appeared 30
years ago [31,32]. At present, numerous model-checking
tools exist. Model checking is routinely used, mainly for
hardware verification, but also for software verification
[33], and was distinguished with the A. M. Turing
award in 2007. Model checking has been advocated for
analyzing biological systems with increasing interest
[6,24,34-43].
A model checker normally has as input (1) a “Kripke

structure” representing a discrete system (comprising a
finite number of states), (2) a distinguished “initial” state
(or set of states) in the Kripke structure, and (3) a “tem-
poral-logic” formula expressing a desirable property,

that may or may not hold (i.e., be true) at a state. The
output of the model checker is either a confirmation or
a denial that the formula holds at the initial state(s)
(given by the user as part of the input).
In a Kripke structure time is branching, so that there

may be more than one possible future of a given state.
The introduction of branching time may produce infi-
nitely many forward traversals (see Figure 2). Model
checkers, however, unlike simulators randomly selecting
a successor state, can systematically analyze such infi-
nitely many possibilities [6]. Intuitively, this is often
done by traversing the Kripke structure in reverse and
accumulating the set of all states at which a subformula
holds. Model checking amounts, thus, to performing an
exhaustive search (in the presence of branching time).
Such a search plays the role of a mathematical proof
establishing a property for infinitely many paths.

Programming vs. formula writing
By being based on properties formalized in temporal
logic, model checkers have another advantage over
simulators. The decision of whether or not a state satis-
fies a property of interest is programmed in the simula-
tor itself. Therefore, if an unforeseen property appears
during the usage of a Boolean GRN simulator, such a
property must be incorporated in the simulator by mod-
ifying program code. This renders simulators rigid:
either the user’s needs are anticipated or reprogramming
must be done.
Compared with simulators, model checkers exhibit the

benefit of having replaced programming with temporal-
logic formula writing. Instead of having to modify the
computer program of a simulator, many new queries
can be dealt with by writing new temporal-logic formu-
las (as long as the queries can be expressed in the
selected logic), which (unlike large programs and their
modifications) are concise and self-contained.

Organization of this paper
In the Implementation section, we first illustrate both
Computation-Tree Logic (CTL) [31] and its hybrid
extension, Hybrid CTL (which we based on [44,45]),
chosen to be able to express interesting properties for
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Figure 2 A fragment of the state-transition graph of a Boolean GRN showing the appearance of infinitely many paths. Infinitely many
paths appear in this Boolean GRN because of one state (s1) having more than one future and occurring in a cycle. Some paths are: (s0s1s2 ...),
(s0s1s1s2 ...), (s0s1s1s1s2 ...), ... A simulator using a random device traverses the model forward, state by state, following a single path of the state
graph, limiting the use of such a tool to drawing only statistical conclusions about all paths in models such as this one. Model checkers, by
contrast, can prove precise properties, even in the presence of infinitely many paths resulting from states having more than one future.
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Boolean GRN analysis and construction. The term
“hybrid” here means a combination of propositional
modal logic with classical predicate logic, and should
not to be confused with hybrid model checking, com-
bining discrete with continuous variables. The Imple-
mentation section subsequently covers the model-
checking algorithms and some implementation details.
Next we show, in the Results section, the use of the
Antelope model checker in the presence of indetermina-
tions either caused by environment interaction or by an
incompletely specified behavior. Finally, the Discussion
section reviews other similar software systems, compares
Antelope with such systems, and outlines features
planned for the future.

Implementation
This section first covers the temporal logics used by
Antelope. After explaining CTL, we turn our attention to
its hybrid extension. Next, we cover the model-checking
algorithms, as well as additional implementation issues.

Computation-Tree Logic
We now give a short account of CTL and refer the
reader to additional file 1 of this paper for a gentle
introduction and to additional file 2 for a formal defini-
tion of CTL. More thorough treatments can be found in
[46-50].
Boolean and temporal operators
Formulas in CTL can have Boolean operators, such as
not and or. In addition, such formulas can have “tem-
poral operators”, allowing us to refer to formulas hold-
ing in the future of a particular state. In this case, we
must indicate whether we mean some future or all
futures. Hence, it is possible to refer either (1) to some
path starting in the present with the “modality” E, or (2)
to all paths starting in the present with the modality A.
Similarly, it is possible to refer (a) to the immediate
future with the modality X, (b) to any state in the pre-
sent or any point in the future with the modality F, or
(c) to all states in the present and in the future with the
modality G. Table 1 summarizes these modalities.
A temporal operator is composed of a modality in the

upper part together with a modality in the lower part of this
table, which results in six temporal operators. (Often more
temporal operators are included in CTL [49].) For example,

a formula asserting that there exists a path such that in the
present or in the future g0 does not hold (i.e., g0 is inactive)
and g1 does hold (i.e., g1 is active) would be: “EF((not g0)
and g1)”. Hence, assuming that there is a single state s in
which g0 does not hold and g1 does hold, this formula can
be used to obtain the basin of attraction of such a state,
with a model checker computing all states at which a given
formula holds. The formula “AX ((not g0) and g1)” holds at
all states from which it is necessary to reach s in one step, i.
e., states which have s as their only next state. The formula
“EX ((not g0) and g1)” holds at all states from which it is
possible to reach s in one step, i.e., states which have s as a
next state (and possibly other next states because of indeter-
minations). Other CTL formulas can characterize, for
instance, whether or not it is necessary to go through a state
s1 to reach another state s2. See [51] for a list of CTL formu-
las specifying various biological properties.
Some properties not expressible in CTL
There do not exist, however, CTL formulas for charac-
terizing steady states (i.e., a formula holding exactly at
the set of all steady states of an arbitrary Boolean GRN)
[51], or oscillations. This motivates the use of a more
expressive logic than CTL. Antelope provides a “hybrid”
extension of CTL.

Hybrid Computation-Tree Logic
This subsection is devoted to Hybrid CTL. We refer the
reader to additional file 1 of this paper for a gentle introduc-
tion and to additional file 2 for a formal definition of Hybrid
CTL. Deeper treatments of hybrid logics are in [52,53].
State variables
The main idea behind the hybrid extension of a temporal
logic consists in the addition of variables allowing us to
refer to states (i.e., state variables). The downarrow binder
“↓s“ sets the state variable s to the current state of evalua-
tion. The formula “↓s.AX s“, for example, characterizes
the set of states which have themselves as their only next
state. Hence, Hybrid CTL allows us to characterize the set
of steady states. Moreover, by employing branching time,
we are able to distinguish between two kinds of steady
state. When a state has only one transition from and to
itself, following Thomas and D’Ari [13], we will call it a
stable steady state. When a state has, in addition to a self-
loop, other transitions going to other states, following [13],
we will call it an unstable steady state (named “stationary”
state in [51]). Hybrid CTL formulas for calculating both
these sets of states are: “↓s.AX s“, for the set of stable
steady states, and “↓s.EXs“, for the union of the sets of
stable and unstable steady states.

Other formulas
Attractors of various sizes and oscillations
The notion of a steady state can be generalized in an
attractor, possibly involving more than one state. A

Table 1 CTL modalities

modality meaning

E some path (i.e., there Exists a path)

A All paths

X neXt state (i.e., immediate future)

F any state either in the present or in the Future

G all states in the present and in the future (Global)
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steady state would then be a one-state attractor. A for-
mula characterizing attractors of any size would be: “↓s.
EX EF s“.
Another interesting formula would be “↓s.EX((not s)

and EX s)”, which holds at states belonging to a size-
two attractor. Oscillations, where a gene is alternatively
active and inactive, can also be characterized in Hybrid
CTL: Additional file 1 explains a formula for the basin
of attraction of possible oscillations. We refer the reader
to the Antelope web site http://turing.iimas.unam.
mx:8080/AntelopeWEB/ for more formulas.

Algorithms
CTL
Antelope uses a standard “labeling” algorithm [46] for
ordinary CTL formulas. Labeling algorithms for model
checking are so called because we can think of each
state as being labeled with the subformulas holding at
that state.
Say that the formula given by the user is �. The label-

ing algorithm starts by considering the simplest subfor-
mulas of �, that is, the names of the genes. For each
gene g, labeling all states at which the formula “g“ holds
is easy, as that information is already present in the
Kripke structure.
Next, the labeling algorithm proceeds to more com-

plex subformulas, until � is reached, by treating the
operator of each such subformula by cases. For instance,
if the subformula is of the form “ψ1 and ψ2“, then the
labeling algorithm computes the set of states at which
such a subformula holds as the intersection of the set of
states at which ψ1 holds with the set of states at which
ψ2 holds. All Boolean operators can be treated by com-
bining set operations, like union, intersection, and set
difference.
The labeling algorithm treats some temporal opera-

tors, such as AX, by using equivalences. For example,
“AX ψ“ is equivalent to “not EX not ψ“. The rest of the
temporal operators, however, must be dealt with expli-
citly. For all such primitive operators the labeling algo-
rithm traverses the Kripke structure in reverse. Take for
instance “EX ψ“, which holds if there Exists a neXt state
at which ψ holds. Given the set of states at which ψ
holds, the labeling algorithm treats “EX ψ“ by obtaining
all states which have an immediate successor in such a
set, i.e., all the predecessors of the states in such a set.
The labeling algorithm processes operators such as EG
by repetitively traversing the Kripke structure in reverse.
Hybrid CTL
The labeling algorithm is efficient (taking polynomial
time in the size of the Kripke structure). The additional
expressiveness of hybrid operators, such as “↓” comes at
a price, however. Given a CTL formula �, the computa-
tion of the set of states at which a formula of the form

“↓s.�“ holds involves calling the labeling algorithm with
� once for each state. The decrease in efficiency is even
more if the “↓” operator appears nested. Antelope, how-
ever, treats certain patterns in special ways, requiring
less time than a direct approach.

More implementation issues
Antelope is a symbolic model checker [54], representing
state sets by Reduced, Ordered Binary-Decision Dia-
grams (BDDs) [55]. (In particular, Antelope employs
JavaBDD [56], which in turn uses BuDDy [57].)
Representation of a set of states
A BDD is a representation of a Boolean function. Thus,
to use a BDD for representing a set of states in a Kripke
structure we must view such a set as a Boolean function.
This is possible if each row of the truth table of the
Boolean function corresponds to an element which may
or may not belong to such a set. The value of such a
function will be 1 at exactly those states belonging to
the set.
Representation of a set of transitions
In addition to representing sets of states, BDDs are used
for representing the set of transitions of Kripke struc-
tures. In this case, the Boolean function has twice as
many variables as there are genes. The reason is that
each transition (corresponding to a row in the truth
table of such a function) has both a source and a termi-
nating state. BDDs are often surprisingly concise, allow-
ing the verification of many large Kripke structures,
with more than 1020 states [54]. We refer the reader to
[49] for a detailed description of BDDs and their use in
symbolic model checking.
Optimizations
Apart from the use of BDDs, Antelope has several “opti-
mizations” (i.e., special treatment of particular patterns
so as to increase the efficiency). For example, a straight-
forward formula characterizing the states with more
than one successor has the pattern “↓s.EX ↓τ.�“. If eval-
uated as described in the Algorithms section, this for-
mula would call the labeling algorithm a number of
times proportional to the square of the number of states
(O(|S|2), where |S| is the number of states). To find the
set of states with more than one successor, however, it
is not necessary to visit all states for each state of the
Kripke structure. It suffices to be able to enumerate the
successors of each state. Antelope treats the formula for
characterizing the states with more than one successor
as a special case so that the CTL model-checking algo-
rithm is called with � as input a number of times linear
in the size of the Kripke structure (O(|S| + |R|), where |
R| is the number of transitions).
Another optimization is that of the operator EY (for

“Exists Yesterday”), which is the converse of EX.
Although this operator need not be primitive, Antelope
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does treat it as primitive by simply traversing the transi-
tions forward. This operator allows the user to view
Antelope as a kind of simulator.
Additional file 3 has a table comparing the verification

times for a few models with respect to some properties
of increasing complexity.
Input formats
Antelope accepts two formats for describing the Boolean
GRN: tables and equations. In both cases, the values of a
gene (at the current time step) are specified as a Boolean
relation which depends on the values of (some) genes (at
the previous time step). A table can be viewed as an exten-
sion of an ordinary truth table, where stars are allowed on
the right-hand side, denoting indeterminations. Some-
times, however, it may be more convenient to use a logical
formula instead of a truth table. Hence, Antelope accepts
equations, each of which is of the form:

X := fX(g1, g2, . . . , gnX )

where the left-hand side represents the value of the
gene X at the current time step, and the right-hand side
is an arbitrary Boolean function (defined employing the
usual Boolean operators, such as conjunction, disjunc-
tion, or negation) on the values of genes at the previous
time step. To be able to represent indeterminations, we
need two equations with the same left-hand side. We
refer the reader to the Antelope user’s manual, which
appears in additional file 4, and in the URL http://tur-
ing.iimas.unam.mx:8080/AntelopeWEB/.

Results
We now exemplify the use of Antelope for analyzing
Boolean variants of the A. thaliana root stem cell niche
GRN. Stem cells or initials are undifferentiated cells
from which particular cell types of the organisms are
generated; the microenvironment in which stem cells
are located is called the stem cell niche.
Anatomically, stem cell niches are conformed by two

different cell types, the stem cells themselves, and
another cell or group of cells sometimes generically
called organizer cells [58]. The organizer cells maintain
the stem cells in the undifferentiated state through
short-range signals. Understanding how the different
cells conforming stem cell niches are specified, as well
as how the balance between cell division and cell differ-
entiation is maintained in the niches, is central for
understanding the development, growth and regenera-
tion processes occurring in plants and animals. In parti-
cular, plant stem cell niches constitute valuable model
systems for studying regenerative and plastic develop-
mental processes, as these organisms grow new organs
and structures throughout their life [58,59].

We focus on the root stem cell niche of A. thaliana,
that is located near the root tip and is well characterized
at the anatomical and molecular level (see the recent
review in [60]). This niche is conformed by the so-called
quiescent center (QC), which is in turn conformed by
the organizer cells of the root SCN, and is surrounded
by four different stem cell types [59]. Each of these four
types of stem cell will give rise to a different cell lineage:
vascular, cortex/endodermal, epidermal, and columella/
root-cap cells. However, in this contribution two of the
stem cell types (epidermal and root-cap cells) are
considered as only one since the available experimental
evidence is not enough to distinguish between them at
the gene expression level (see more details in [61]), leav-
ing only four types of initial cells (QC, vascular, cortex/
endodermal (CEI), and epidermal/root-cap (CEpI)
initials).
Besides being thoroughly characterized at the anato-

mical level, the root stem cell niche of A. thaliana has
been relatively well described from a molecular and
genetic perspective. Indeed, some of the molecular com-
ponents that are necessary to establish and maintain the
root SCN cellular patterning have been recently uncov-
ered. Among these components are the genes SHORT-
ROOT (SHR) and its target gene SCARECROW (SCR),
the immediately downstream genes of the dimer SHR/
SCR, and other genes that interact with them. Another
set of relevant genes includes the PLETHORA (PLT)
genes, which have been proposed to be key components
of the molecular readout of the plant hormone auxin.
Finally, the QC specific gene WUSCHEL RELATED
HOMEOBOX5 (WOX5) is fundamental for root SCN
organization [60,62-64]; see the graphical representation
of the interactions between these genes in Figure 3.
Moreover, the expression patterns of these genes and
the localization of their corresponding proteins have
been described. Thus, it is possible to postulate a gene
expression profile that characterizes each of the SCN
cell types mentioned above according to the Table 2.
In order to define the rules for a Boolean GRN model

for this system, we considered all the genes that have
been reported to play a relevant role in the specification
of the root stem cells and gathered the available experi-
mental information for the regulation of their expression
[60,61]; see Figure 3. These data included mostly mole-
cular genetics experiments, such as experiments with
plants containing a mutant allele of a gene. The result-
ing rules can be summarized in the following logical
statements (uploaded in Antelope under the name ‘Root
gene regulatory network’’):
// SHR; without regulators
// Auxin; without regulators
PLT: = ARF;
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AUXINS: = AUXINS;
IAA: = ~ AUXINS;
ARF: = ~ IAA;
SHR: = SHR;
SCR: = SHR & SCR & (JKD | ~MGP);
JKD: = SHR & SCR;
MGP: = SHR & SCR &~ WOX;
WOX: = ARF & SHR & SCR & (~ MGP | WOX);
As has been proposed for other systems (e.g., [1,9]),

we expected the stable steady states of our GRN model
to correspond to the gene expression profiles character-
izing the different stem cells within the root niche of A.
thaliana (table above). Thus, from our knowledge of the
system, we expected four stable steady states. The
expected steady states are indeed obtained after

postulating a mutual negative interaction between
WOX5 and MGP, which gives rise to a new testable pre-
diction [61].
Using this GRN model, we first illustrate the use of

indeterminations representing incomplete experimental
data. Next, we use indeterminations for modeling the
influence of unpredictable external signals.

Experimental gap
Steady states and SCARECROW
While developing the truth tables for this GRN, we
detected an experimental gap. We know that SCARE-
CROW (SCR), a target gene of the dimer SHORTROOT
(SHR)/SCR [62,63], either loses or diminishes its own
expression in the JACKDAW single mutant (jkd) in the
stem cell niche [64]. The same is true for SCR-depen-
dent quiescent-center marker QC25 [65]. The MAGPIE
mutant (mgp), by contrast, has no visible phenotype.
Finally, the mgp jkd double mutant recovers the SCR
expression [64] (but see [66] for different results).
Based on this information, we established the truth

table for SCR, which appears in Table 3. Observe the
indetermination, reflecting the fact that activity could or
could not be lost in a jkd background. Antelope pro-
duced three stable steady states, but four unstable steady

SCR

JKD MGP

WOX5

SHR

ARF

PLT

IAA

Auxin

Figure 3 The interaction diagram of the GRN underlying cell type determination in the root stem cell niche of the model plant A.
thaliana. The abbreviated names of the genes are inside ellipses and the edges correspond to the regulatory interactions. Auxin is a
morphogene. The genes are: Auxin/INDOLE-3-ACETIC ACID (Aux/IAA), AUXIN RESPONSE FACTOR (ARF), JACKDAW (JKD), MAGPIE (MGP), PLETHORA
(PLT), SCARECROW (SCR), SHORTROOT (SHR), and WUSCHEL-RELATED HOMEBOX5 (WOX5). Ordinary arrow heads denote activation; T-bar arrow
heads denote inhibition.

Table 2 Expected expression profiles for the cells
conforming the A. thaliana root stem cell niche

Cell
type

PLT Auxin ARF Aux/
IAA

SHR SCR JKD MGP WOX5

QC 1 1 1 0 1 1 1 0 1

Vascular 1 1 1 0 1 0 0 0 0

CEI 1 1 1 0 1 1 1 1 0

CepI 1 1 1 0 0 0 0 0 0
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states (see the Hybrid Computation-Tree Logic subsec-
tion for definitions of stable and unstable steady states).
Hence, removing the indetermination in the above table
may recover the four expected stable steady states. We
performed the jkd loss-of-function simulation in our
models to distinguish which of the two possibilities (i.e.,
no SCR transcription in jkd or SCR transcription in jkd)
recovered the expected states. Interestingly, following
the GRN state transitions backwards, using the EX
operator, we noted that if SCR is unable to be expressed
in jkd, then neither the WUSCHEL-RELATED HOME-
BOX5 (WOX5) (another quiescent-center marker,
dependent on SCR [60]) expression nor the SCR expres-
sion disappeared at the quiescent-center.
Furthermore, our jkd mutant does cause a loss of the

cortex-endodermis initials attractor, contrary to what is
observed in experimental jkd mutants [64], suggesting
that jkd only diminishes SCR expression. Again, follow-
ing the GRN transitions backwards for the case in
which jkd loss-of-function does not lose SCR expression,
we found that the system was able to recover the jkd
loss-of-function mutant. Based on the result found with
the system including indeterminations, we replaced the
star by a 1 in the table for SCR. Once the indetermina-
tion was so removed, we obtained four stable steady
states.

External signals
FAS and SCR
Let us now exemplify Antelope as used for modeling the
effect of external signals that affect one or more GRN
nodes. The root stem cell niche of A. thaliana is
affected by several external signals, such as genes and
molecules from modules involved in other processes in

the organism. For example, Kaya and collaborators [67]
reported that FASCIATA1 (FAS1) and FASCIATA2
(FAS2), hereafter collectively called FAS, affect SCR
expression. In the fas mutant, SCR expression is deregu-
lated and can be either expressed or not expressed in
almost any cell of the root stem cell niche. Similarly,
Inagaki and collaborators [68] reported the TECHBI
(TEB) mutants also affecting SCR expression. Again,
when TEB is mutated, SCR may or may not be
expressed through the endodermal layer, the cortex-
endodermis initial cells, and the quiescent center.
We incorporated FAS by adding a variable FAS to the

truth table for SCR. For FAS = 1, the truth table
obtained in the “Experimental gap” subsection was used.
For FAS = 0, by contrast, all the right-hand sides of the
new truth table had indeterminations. In the case of
TEB, we only used indeterminations for the right-hand
side of the SCR table where the output was 1 for the teb
mutant. We found that under these conditions the origi-
nal four attractors were preserved in both cases. We
also found that in the fas mutant, SCR could be
expressed in any of the four original attractors, while in
the teb mutant SCR could or could not be expressed
either in the quiescent center or in the cortex-endoder-
mis attractor. It is worth noting that in both cases the
basins of attraction changed. For instance, consider the
states that without any indetermination originally led to
the cortex-endodermis attractor. Such states could now
lead to vascular initials due to SCR indeterminations, as
expected given the experimental evidence. It is also
important to note that even though SCR expression is
clearly affected in real roots, cells may not switch
among cell types. However, the results derived from
modeling the GRN using Antelope are consistent with
data currently available and demonstrate the utility of
this tool when we deal with networks in which the truth
tables for some genes are not completely known. Figures
4 and 5 show screenshots of this analysis.

Other properties
These two analyses were based on indeterminations,
stable and unstable steady states, and basins of attrac-
tion of such states. When designing and analyzing larger
GRNs, more complex state attributes, such as global
properties or conditional reachability may be useful.
For example, all the states occurring in either one-

state or two-state attractors (which may be either stable
or unstable) satisfy the formula “↓s.EX EX s“. The for-
mula “EF(↓s.EX EX s)”, in turn, can be used to calcu-
late the basins of attraction of all such attractors. Hence,
the formula “not(EF (↓s.EX EX s))” would characterize
the complement of all such basins of attraction. This is
equivalent to the set of all states in the basins of attrac-
tion of attractors with more than two states. Similarly,

Table 3 Truth table for SCR

SHR SCR JKD MGP SCR’

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 *

1 1 1 0 1

1 1 1 1 1
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the set of states occurring in exactly two-state attractors
can be calculated with the formula “↓s.EX ((not s) and
EX s)”. These global properties cannot be expressed by
CTL formulas.
Conditional reachability can be expressed with the EU

operator (for “Exists Until”), a generalization of EF.
Whereas “EFs2“ holds at all states from which it is pos-
sible to reach state s2, “E[� U s2]” holds at all states
from which it is possible to reach s2 by going only
through states at which the formula � holds. For
instance, the set of states from which it is possible to
reach s2 without going through s1 corresponds to the
formula “E[(not s1) U s2]”. By contrast, the set of states
from which it is possible to reach s2 only by going
through s1 at least once is the complement of the pre-
vious set of states with respect to the basin of attraction
of s2: “not(E[(not s1) U s2]) and EF s2“. In formulas hav-
ing such schemata, we would need to name states. Such
a naming is possible in CTL by identifying a state with
the conjunction of its nonnegated active genes and its
negated inactive genes. Antelope, by contrast, provides
more concise ways of referring to a state, with a number

which, if written in binary, follows the lexicographic
order of the names of the genes. We refer the reader to
the Antelope user’s manual and site.

Discussion
Other related systems
We now describe other systems relevant for us. For
brevity, we have to exclude certain works: First, we leave
out Boolean GRN simulators, such as Atalia [9], Boo-
leanNet [16], and BoolNet [17]. Second, we omit
research based on structures other than Kripke struc-
tures; examples are: a work utilizing the LTL (Linear-
time Temporal Logic) model checker of the Maude sys-
tem [34], works using reactive modules with the Mocha
model checker [42,43], and those employing probabilis-
tic model checking with PRISM [35,37,38]. We start
with systems based on Thomas’ formalism and proceed
with systems using continuous approaches.
GNBox
GNBox [21,22] applies constraint logic programming
techniques [30] to Thomas ’ formalism [13]. Such a
formalism establishes a search space resulting from

Figure 4 Screenshot of Antelope showing the stable steady states for the stem cell niche GRN without indeterminations. The upper
frame displays the name of the file being analyzed, the analysis performed (with the Hybrid CTL formula), and the mode by which the property
was checked (synchronous or asynchronous). The middle frame displays the analysis results. The bottom frame displays new actions that can be
done. The stable steady states correspond to the root SCN cellular types.
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states possibly having more than one successor. A
straightforward implementation of a logic programming
language (without constraints) typically traverses a
search space following a depth-first, top-down discipline
in the same way as an ordinary simulator. Unlike a
simulator employing a random device, however, such an
implementation utilizes backtracking. Observe that a
depth-first, top-down discipline together with backtrack-
ing can take an exponential amount of time in the size
of the model [[29], p. 82]. Constraint logic programming
languages, nevertheless, use constraints to efficiently tra-
verse the search space. In particular, GNBox expresses
constraints as a Boolean satisfiability (SAT) problem
that is turned over to a dedicated SAT solver. This
approach is able to model many possible GRNs, thereby
pruning the search space and eliminating the need for
performing numerous simulations. By expressing desired

properties as constraints, GNBox can find parameter
values of GRNs represented in Thomas’ framework.
GINsim
GINsim [18-20] also uses a variant of Thomas’ formal-
ism. As in such a formalism, networks in GINsim have
indeterminations representing asynchrony. GINsim
computes the state transition graph of the GRN (pre-
sumably with forward traversal together with backtrack-
ing because of the indeterminations) before proceeding
to analyze a trajectory selected by the user. GINsim can
also classify circuits in the interaction diagram (i.e., can
identify “functional” circuits) and can compute the set
of all (stable) steady states of GRNs which do not have
indeterminations using MDDs, a multi-value generaliza-
tion of BDDs. Finally, GINsim can find the strongly con-
nected components of the state-transition graph or the
interaction graph.

Figure 5 Screenshot of Antelope showing the results for unstable steady state search for the stem cell niche GRN with an
indetermination in the SCR logical rule. This indetermination represents a mutation in FAS. As observed, SCR activity is present even in the
absence of SHR, which is indispensable for SCR activity. It is important to note that some of the changes can only be observed analyzing the
basins of attraction. For instance, the steady states for QC and CEI (two different cell types) are not possible without SCR presence; hence, a
change of one steady state for another is only observable through their basins of attraction.
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SMBioNet and Mateus et al.’s system
SMBioNet [23,24] employs a variant of Thomas’ formal-
ism as well. The input is an interaction diagram of the
GRN under study, together with desired properties
expressed as CTL formulas. The output is a set of all
the models conforming to the given interaction diagram
and which also satisfy the given formulas. Candidate
models are generated by instantiating parameters and
then tested with a model checker.
Another system also using both Thomas’ formalism

and temporal logic is that by Mateus et al. [39]. Inequal-
ities over the parameters of the model are obtained from
the interaction diagram. These inequalities are augmen-
ted with LTL formulas specifying desirable properties of
the model. The model is traversed forward and paths
that do not satisfy the constraints are eliminated, so that
only paths satisfying the constraints are retained.
SQUAD
SQUAD [25-27] combines a continuous model, employ-
ing ordinary differential equations, with a Boolean
model of the network. The user provides the interaction
diagram of the network, from which SQUAD obtains a
continuous model. To find steady states of the continu-
ous model, SQUAD first converts such a model into an
approximate Boolean asynchronous model. (Thomas’
formalism is not used because such a formalism has
“proved to scale badly for large networks” [26].) In the
Boolean model, SQUAD then computes, using BDDs
and a random device, the set of states probably belong-
ing to attractors of any size and occurring in attractors
without indeterminations (called “steady” states in
[26,27]). Next, SQUAD repetitively uses such states as
initial states in a continuous simulator to search for
steady states in the continuous model. Perturbations
may be introduced to confirm that such steady states
are stable and to identify the effect of specific genes.
GNA
GNA [40,69-72] is based on piecewise-linear differential
equations. Unlike other systems using this formalism,
the user need not specify precise values of parameters.
Instead, less precise intervals are employed. States are
qualitative and represent ranges of concentrations of
proteins, so that simulations are also qualitative. In addi-
tion, GNA computes a discrete abstraction [73] of the
continuous model, that can be verified with standard
model checkers (NuSMV and CADP). The user in this
case can express simple properties in CTL. For more
complex properties, the GNA group has developed its
own logic, called Computation Tree Regular Logic [74].
This logic extends CTL with regular expressions and
fairness operators, allowing the expression of properties
such as multistability and oscillations. Finally, GNA has
a formula editor, guiding the user in writing new
formulas.

BIOCHAM
BIOCHAM [41] can analyze and simulate biochemical
networks using Boolean, kinetic, and stochastic models.
In addition, properties can be formalized in temporal
logic (CTL or LTL with numerical constraints), so that
a model checker can be used to validate such properties.
BIOCHAM models a network of protein interactions as
a set of biochemical reaction rules, such as A+B = > C.
Indeterminations appear because such a rule, for
instance, is translated into four transitions going out of
the same state, resulting from the four combinations of
either reactant A or reactant B being completely or
incompletely consumed. In addition, BIOCHAM has a
model-update module, repairing models that do not
satisfy the formalized properties.

Comparison and planned features
On the one hand, compared with systems employing
constraints, Antelope, by using BDDs, can compute large
sets of states having a certain CTL property (e.g., a
basin of attraction). On the other hand, compared with
simulators, in addition to this benefit, Antelope can
prove assertions about infinitely many paths, as opposed
to only drawing statistical conclusions. It is interesting
to observe, though, that some systems built around a
simulator (e.g., GINsim and SQUAD) leave the simula-
tion technique for BDDs when calculating steady states
(or approximations to such states).
We also find differences between Antelope and other

systems using model checking. For instance, SMBioNet,
Mateus et al.’s system, GNA, and BIOCHAM perform
model checking for verification, using a model checker
to confirm or deny that a certain formula is satisfied.
Antelope, by comparison, employs model checking for
calculating sets of states.
A first clear limitation of Antelope when compared

with systems based on Thomas’ formalism (GNBox,
GINsim, SMBioNet, and Mateus et al.’s system) is its
being restricted to Boolean genes. We thus plan to
extend Antelope with multi-valued genes. In this case, it
would be interesting to try to incorporate into Antelope
techniques using constraints, like those of GNBox, for
determining parameter values.
Currently, Antelope’s GRNs are only either completely

synchronous or completely asynchronous. Another
improvement would then be the possibility of represent-
ing partially asynchronous GRNs, as employed in [10].
Many of the systems we reviewed allow the user to
draw the GRN, whereas currently Antelope only accepts
textual formats for describing the GRN. Clearly, future
versions of Antelope should also have such drawing cap-
abilities. In addition, GNA, for instance, has a formula
editor, which would be desirable in Antelope as well. By
contrast, Antelope is a web application, requiring no
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installation of any local software from the user other
than a standard web browser. Moreover, Antelope can
also run locally, exhibiting advantages of both web and
local applications.
We can mention two further additions requiring more

substantial work. BIOCHAM has an update module,
repairing faulty models. A similar update module would
also enhance Antelope’s features.
Another improvement, as with any model checker,

would be the addition of more powerful methods for
approaching the state-explosion problem. Currently,
Antelope only has BDDs for representing large sets of
states, but new techniques, such as CEGAR (Counterex-
ample-guided abstraction refinement) [75] would enable
Antelope to deal with larger GRNs.

Conclusions
Systems for analyzing and building Boolean GRNs
employ branching time almost exclusively for represent-
ing asynchronous transitions. Thomas’ work, however,
represents two other important phenomena with
branching time, namely incomplete specifications and
environment interaction. A consequence of including
these two other kinds of indetermination is that
unstable steady states may appear. We have shown how
having both stable and unstable steady states is useful
for developing Boolean GRNs.
In addition, we reviewed and extended the advan-

tages of model checking, as compared with simulation,
in the presence of indeterminations. In particular, we
observed that model checkers, unlike simulators ran-
domly selecting a successor, can prove properties of a
set of infinitely many paths. Another advantage we
reviewed is that of handling new, unforeseen proper-
ties: While model checkers can often represent new
properties with additional temporal-logic formulas,
simulators require the incorporation of such properties
in their program code.
We illustrated the advantages of two extensions to

ordinary model checking. First, we noted that ordinary
model checkers would only confirm or deny that all the
states in a given set of states have a certain property. By
contrast, we claimed that model checkers are more use-
ful for reasoning about Boolean GRN when exhibiting
the set of states that have a property of interest. Second,
we observed that the logics (e.g., CTL and LTL) under-
lying many model checkers are not expressive enough
for representing many interesting properties of Boolean
GRNs. Antelope tries to overcome these two limitations
by showing the set of states satisfying a given formula,
and by employing a hybrid extension of CTL.
It is important to remark that model checkers for

hybrid logics are both relevant and neglected. As
pointed out in [76], “The implementation of model

checkers for hybrid logics still remains a quite unex-
plored field of research”. Other than Antelope, we only
know of two hybrid model checkers [52,76]. These,
however, employ a basic modal logic instead of CTL,
and their implementations do not use BDDs. This
makes Antelope the first symbolic model checker for
Hybrid CTL (as far as we know) with which to experi-
ment in the development of Boolean GRNs.

Availability and requirements
•Project name: Antelope
•Project home page: http://turing.iimas.unam.
mx:8080/AntelopeWEB/
•Operating system(s): Platform independent
•Programming language: Java
•Other requirements: Any standard web browser
•License: GPL
•Any restrictions to use by non-academics: none
other than those in GPL

Additional material

Additional file 1: A gentle introduction to (Hybrid) Computation-
Tree Logic. This additional file has gentle introductions to Computation-
Tree Logic and Hybrid Computation-Tree Logic.

Additional file 2: (Hybrid) Computation-Tree Logic. This additional file
has formal definitions of Computation-Tree Logic and Hybrid
Computation-Tree Logic.

Additional file 3: Benchmarks. This additional file shows the execution
time for several examples.

Additional file 4: Antelope User’s Manual. This additional file has the
Antelope user’s manual.
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