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The coronavirus 2019 (COVID-19) pandemic has severely
affected human health and economic activity in countries around
the world [1,2]. To slow the spread of the COVID-19 outbreak, most
countries have implemented a number of epidemic control
interventions, including travel restrictions, business and industry
closures, and requests for people to stay at home [2]. In China,
the lockdown started in Wuhan City on 23 January 2020 and
vehicle movement was restricted there on 26 January 2020. These
measures quickly expanded to the entire nation and lasted for
>3 weeks. Due to the abrupt and unprecedented restrictions on
human activities, emissions of air pollutants were much reduced
at local and national scales in China and other regions in the world
during the lockdown [3–6]. Recent studies found overall decreases
in primary pollutants, but severe haze pollution still occurred [7,8].

The response of atmospheric ammonia (NH3) over this period,
which has a crucial role in secondary aerosol formation
contributing to PM2.5 (particles smaller than 2.5 lm) air pollu-
tion [9,10], is still unknown. Agriculture is conventionally viewed
as the dominant source of NH3 [11]. However, this has been
challenged by several recent studies that suggested fuel combus-
tion might exceed agriculture as a source of ambient NH3 in Chi-
nese urban atmospheres [12,13]. The unprecedented emission
controls on fossil fuel-based sources during the COVID-19 pan-
demic provide a unique opportunity to identify NH3 sources
and their potential contribution to PM2.5. Here we analyze sur-
face NH3 measurements from a Nationwide Nitrogen Deposition
Monitoring Network (NNDMN) from 2015 to 2020 (Table S1
online), combined with real-time in situ measurements, satellite
observations, and atmospheric chemistry model simulations for
the pre-COVID period (1–26 January 2020) and COVID-
lockdown period (27 January–26 February 2020). We investi-
gated changes in atmospheric NH3 concentrations as caused by
the lockdown measures in China, and the potential need for agri-
cultural emission mitigation in PM2.5 abatement when large
reductions in non-agricultural pollutant emissions are expected
in the future. The detailed information on surface NH3 measure-
ments, satellite NH3 observations, GEOS-Chem simulations, as
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well as statistical analyses is described in the Supplementary
materials (online).

Ambient mean NH3 concentrations at the 36 NNDMN monitor-
ing sites significantly (P < 0.01) increased (on average by 17%) dur-
ing the COVID-lockdown period (average 9.0 ± 6.1 lg m�3)
compared to those during the pre-COVID period (average
7.7 ± 5.7 lg m�3) (Fig. 1a and Table S1 online), but with consider-
able variation. Separating sites by land-use type, mean NH3 concen-
trations showed significant (P < 0.01) increases during the COVID-
lockdown period at rural (8.1 ± 6.2 vs. 9.9 ± 6.6 lg m�3) sites while
small increase and non-significant decrease were found at back-
ground (3.1 ± 1.8 vs. 3.4 ± 1.6 lg m�3) and urban (10.1 ± 3.0 vs.
9.8 ± 3.0 lg m�3) sites (Fig. 1b). During equivalent dates for
2015–2019, mean NH3 concentrations ranged from 5.2 ± 3.5 to
7.7 ± 5.7 lg m�3 in the ‘‘pre-COVID” period, and from 5.7 ± 4.3 to
9.0 ± 6.1 lg m�3 in the ‘‘COVID-lockdown” period (Fig. S1a online).
Compared to these levels, NH3 concentrations in 2020 were
38%–65% higher during the pre-COVID period and 53%–62% higher
during the COVID-lockdown (Fig. S1a online). The increases in NH3

concentrations during the COVID-lockdown were larger in 2020
(17%) than during the same periods in 2015–2019 (9%) (Fig. S1b
online).

Based on analysis of real-time measurements, a small increase
in daily mean NH3 concentrations was observed at the urban
Fig. 1. Ambient NH3 concentrations at 36 sites during the pre-COVID (1–26 January 20
concentrations for rural, urban, and background sites (b). Daily mean NH3 concentration
concentrations during the pre-COVID and COVID-lockdown period (d). Daily mean e(NH4

+

concentrations during the pre-COVID and COVID-lockdown period (f). The letters R, U, a
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Beijing site (8%, P > 0.05) during the COVID-lockdown period com-
pared to the pre-COVID period. Similarly, daily mean NH3 concen-
trations increased at urban (Pudong: 13%) and rural (Chongming:
35%, P < 0.01) sites in Shanghai (Fig. 1c, d). Mean concentrations
of secondary inorganic aerosols (NH4

+, NO3
�, SO4

2�, and Cl�, abbrevi-
ated as SIA) at the urban Beijing site increased from the pre-COVID
period (21.6 lg m�3) to the COVID-lockdown period (41.4 lg m�3)
(Fig. S2a online). Meanwhile, the ratio of aerosol NH4

+ to total NHx

(NH3 + NH4
+) concentrations denote as e(NH4

+) showed increases of
about 28% (P > 0.05) during the COVID-lockdown relative to pre-
COVID (Fig. 1e, f). By contrast, in Shanghai, the average SIA concen-
trations decreased from 33.3 (rural) and 30.6 (urban) lg m�3 dur-
ing the pre-COVID period to 22.2 (rural) and 21.6 lg m�3 (urban)
during the COVID-lockdown (Fig. S2b, c online), and e(NH4

+)
reduced by 9% and 7% at rural and urban sites, respectively, during
the COVID-lockdown (Fig. 1e, f). The similar increases in gaseous
NH3, but different changes in e(NH4

+) between Beijing and Shanghai
cities reflect different driving factors in northern and southern
China as discussed below.

Increases of NH3 levels during the COVID-lockdown period were
also seen in satellite observations. IASI (Infrared Atmospheric
Sounding Interferometer) NH3 columns increased by 7% across
China from the pre-COVID period to the COVID-lockdown period
in 2020, with the largest increase (25%) observed in the North
20) and COVID-lockdown (27 January–26 February 2020) periods (a), and average
s at urban site in Beijing and urban and rural sites in Shanghai city (c), and average
) at urban site in Beijing and urban and rural sites in Shanghai city (e), and average
nd B denote, respectively, rural, urban and background sites.
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China Plain (Fig. 2). Extracting IASI column values above NNDMN
monitoring sites, mean NH3 columns increased by 33.7% from the
2020 pre-COVID to the COVID-lockdown periods (Fig. S3 online).

We designed a series of GEOS-Chem atmospheric chemistry
model simulations as shown in Table S2 (online) to investigate dri-
vers of changes in observed NH3 concentrations between the pre-
COVID and COVID-lockdown periods. The impact of meteorological
conditions was assessed by analyzing the GEOS-FP assimilated
meteorological fields. The surface variables of the GEOS-FP data,
analyzed during the pre-COVID and COVID-lockdown periods,
show good agreements with observations (Fig. S4 online). In the
GEOS-Chem standard simulation, we applied the latest estimates
of anthropogenic emissions in China. The national mean anthro-
pogenic NOx and SO2 emissions decreased by 44% (8 Gg N d�1)
and 31% (4 Gg S d�1), respectively, between the pre-COVID and
COVID-lockdown period (Fig. S5 online) [7,14]. The GEOS-Chem
simulations are able to capture the changes in concentrations of
secondary inorganic ions (NH4

+, SO4
2�, and NO3

�) and major air pol-
lutants (NO2, SO2, PM2.5, O3, and CO) between the pre-COVID and
COVID-lockdown periods (Figs. S6 and S7 online). The non-
agricultural NH3 emissions were assumed to have the same per-
centage changes as anthropogenic NOx emissions and decreased
by 1 Gg N d�1 between the two periods. In the standard simulation
we assumed that agricultural NH3 emissions were unchanged
between the pre-COVID and the COVID lockdown period. The influ-
ence of meteorological-driven NH3 emission changes (e.g., warmer
during COVID lockdown than pre-COVID) was also analyzed in a
sensitivity simulation (EF_metf in Table S2 online).

As estimated by the standard simulation (with agricultural NH3

emissions unchanged), the model results showed near zero
changes (light purple, Fig. S8a online) in the mean NH3 concentra-
tion averaged over the 36 NNDMN monitoring sites between the
pre-COVID and COVID-lockdown periods. Using sensitivity simula-
tions with fixed non-agricultural NH3 emissions (i.e., emissions
fixed to the pre-COVID condition; Pre-COVID_NH3 in Table S2
online), fixed anthropogenic emissions of other species (mainly
SO2 and NOx; Pre-COVID_other in Table S2 online), and fixed mete-
orology (Pre-COVID_metf in Table S2 online), we could separate
their contributions to the NH3 concentration changes (Methods;
Fig. S9 online). Decreased anthropogenic emissions of air pollu-
Fig. 2. IASI (Infrared Atmospheric Sounding Interferometer) satellite observed NH3 colum
period, the COVID-lockdown period, and the COVID-lockdown minus pre-COVID differen
Southeast (Jiangsu, Anhui, Hubei, Shanghai, Zhejiang, Hunan, Jiangxi, Fujian, Guangxi, Hai
Qinghai, and Tibet), Southwest (Sichuan, Chongqing, Yunnan, and Guizhou), North Chin
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tants other than NH3 during the lockdown period increased the
mean NH3 concentration by 0.8 lg m�3 (yellow, Fig. S8a online)
of which 85% (0.6 lg m�3) were shown to be caused by reduced
NOx and VOCs emissions. The reduction in anthropogenic emis-
sions largely suppressed conversion of NH3 to NH4

+ aerosol
(Figs. S9 and S10 online), but this increase in NH3 concentrations
was largely offset by a 0.7 lg m�3 reduction due to the decreases
in non-agricultural NH3 source emissions (mainly from vehicle
emissions in the model, yellow, Fig. S8a online).

The standardmodel simulation showed different changes in sur-
face NH3 concentrations during the COVID lockdown in northern
China vs. southern China (Fig. S8c, d online). The model captured
the observed NH3 increase in Southeast China (1.5 lg m�3 in the
model versus 1.6 lg m�3 in observations), but underestimated
changes over the North China Plain (1–2 lg m�3 decreases in the
model vs. up to 6 lg m�3 increases in the observations) (Fig. S8b
online). The differences between the two regions were largely
attributed to the different changes associated with reductions in
anthropogenic emissions during the COVID lockdown (Fig. S9a, b
online). Reductions of SO2 and NOx emissions tended to reduce
the formation of sulfate and nitrate aerosols, which allowmore gas-
eous NH3 to stay in the atmosphere. Such effects were distinct in
central and Southeast China (Fig. S9b online), while insignificant
or even led to slight NH3 decreases over northern China, including
Beijing and the northern part of North China Plain (Fig. S9a online).
This model simulated spatial features were consistent with the syn-
chronous measurements of NH3 and NH4

+ as reported above:
decreases in e(NH4

+) in Shanghai (Southeast China) and increases
in e(NH4

+) in Beijing (Northern China) during the COVID lockdown.
Changes in non-agricultural NH3 emissions and meteorological

conditions led to additional decreases in NH3 concentrations over
North China Plain (Fig. S9a online). This analysis provided a strong
hint that the agricultural NH3 emissions should have increased
during the COVID-lockdown period. Here we tested two possible
factors driving the predicted increases in agricultural NH3 emis-
sions. First, we found that accounting for meteorological influences
on NH3 volatilization following Paulot et al. [15] could result in
1 Gg d�1 increases in agricultural emissions during the COVID lock-
down. Second, official reports from the Ministry of Agriculture and
Rural Affairs of the People’s Republic of China (http://www.moa.-
ns (in unit of molecule cm�2) over the five regions of China during the pre-COVID
ces in 2020. The five regions included Northeast (Heilongjiang, Jilin, and Liaoning),
nan, and Guangdong), Northwest (Inner Mongolia, Xinjiang, Gansu, Shaanxi, Ningxia,
a Plain (Hebei, Henan, Beijing, Shanxi, Shandong, and Tianjin).

http://www.moa.gov.cn/
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gov.cn/) showed that the COVID lockdown partly inhibited the
movement and sale of agricultural products, with the breeding
stock of hogs and chickens increased by 2.8% and 3.6%, respec-
tively. The model sensitivity simulations considering these NH3

emission changes (EF_metf and +5%_manure in Table S2 online)
estimated increases of �20%–50% in surface NH3 concentrations
(light blue, Fig. S8a online) allowing the model to better capture
the observed increases. The analyses above concluded that
increased NH3 concentrations during the COVID-lockdown period
could be explained by the reduced conversion of gaseous NH3 to
NH4

+ aerosols in the southern China and increases in agricultural
NH3 emissions in northern China. We estimated that a 20% reduc-
tion in agricultural NH3 emissions would be needed to offset the
increases in national mean surface NH3 concentrations during
the COVID-lockdown period (dark blue, Fig. S8a online).

The large reductions of NOx emissions during the COVID lock-
downhave led to increases in surface ozone and atmospheric oxidiz-
ing capacity facilitating secondary aerosol formation [7]. This was
also shown in the GEOS-Chem standard simulation using the
SO4

2�/SO2 and NO3
�/NOx ratios as proxies for secondary inorganic

aerosol formation efficiency that showed higher values during the
COVID lockdown than the pre-COVID period over both the North
China Plain and the Yangtze River Delta (in the Southeast China)
(Fig. S8c, d online). The sensitivity simulations that applied emis-
sions fixed to the pre-COVID conditions (pre-COVID_all, yellow)
confirmed that decreases in other anthropogenic emissions (e.g.,
NOx emissions) resulted in the enhancement of SO4

2� and NO3
� for-

mation in both regions (Fig. S8c, d online), consistent with Huang
et al. [7]. We found that a 50% reduction of this source would fully
offset the enhanced secondary inorganic aerosol formation during
the COVID lockdown (blue bars in Fig. S8c, d online). This 50% reduc-
tion was larger than the 31% reduction in NOx and 27% reduction in
SO2 emissions over this period [7], suggesting that strict agricultural
NH3 emission control strategies are needed to suppress winter haze
formation in addition to NOx and SO2 emission controls.

In summary, we reported significant and large-scale increases
in atmospheric NH3 concentrations over China during the COVID-
19 lockdown. The increases in NH3 concentrations were most dis-
tinct at rural sites (22% enhancement), less notable at urban and
background sites, and were stronger during COVID-19 in 2020 than
the equivalent periods in earlier years. In northern (southern)
China the NH3 enhancements were largely driven by increased
agricultural NH3 emissions (lowered aerosol partitioning). Such
adverse effects on inorganic aerosol formation can be offset by a
50% reduction of agricultural NH3 emissions.
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