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ABSTRACT Gemmatimonadota is a phylum-level lineage distributed widely but
rarely reported. Only six representatives of Gemmatimonadota have so far been iso-
lated and cultured in laboratory. The physiology, ecology, and evolutionary history
of this phylum remain unknown. The 16S rRNA gene survey of our salt lake and
deep-sea sediments, and Earth Microbiome Project (EMP) samples, reveals that
Gemmatimonadota exist in diverse environments globally. In this study, we retrieved
17 metagenome-assembled genomes (MAGs) from salt lake sediments (12 MAGs)
and deep-sea sediments (5 MAGs). Analysis of these MAGs and the nonredundant
MAGs or genomes from public databases reveals Gemmatimonadota can degrade
various complex organic substrates, and mainly employ heterotrophic pathways
(e.g., glycolysis and tricarboxylic acid [TCA] cycle) for growth via aerobic respiration.
And the processes of sufficient energy being stored in glucose through gluconeo-
genesis, followed by the synthesis of more complex compounds, are prevalent in
Gemmatimonadota. A highly expandable pangenome for Gemmatimonadota has
been observed, which presumably results from their adaptation to thriving in diverse
environments. The enrichment of the Na1/H1 antiporter in the SG8-23 order repre-
sents their adaptation to salty habitats. Notably, we identified a novel lineage of the
SG8-23 order, which is potentially anoxygenic phototrophic. This lineage is not
closely related to the phototrophs in the order of Gemmatimonadales. The two
orders differ distinctly in the gene organization and phylogenetic relationship of
their photosynthesis gene clusters, indicating photosystems in Gemmatimonadota
have evolved in two independent routes.

IMPORTANCE The phylum Gemmatimonadota is widely distributed in various environ-
ments. However, their physiology, ecology and evolutionary history remain unknown, pri-
mary due to the limited cultured isolates and available genomes. We were intrigued to
find out how widespread this phylum is, and how it can thrive under diverse conditions.
Our results here expand the knowledge of the genetic and metabolic diversity of
Gemmatimonadota, and shed light on the diverse energy conservation strategies (i.e., oxi-
dative phosphorylation, substrate phosphorylation, and photosynthetic phosphorylation)
responsible for their global distribution. Moreover, gene organization and phylogenetic
analysis of photosynthesis gene clusters in Gemmatimonadota provide a valuable insight
into the evolutionary history of photosynthesis.

KEYWORDS metagenome, Gemmatimonadota, anoxygenic phototrophs,
photosynthesis gene cluster, physiology, phylogeny

Bacteria of the phylum Gemmatimonadota (formerly Gemmatimonadetes [1], KS-B divi-
sion [2], or BD group [3]) are abundant (0.2 to 6.5% of the total bacterial population by

16S rRNA gene counts) in various habitats, such as waste water, agricultural soil, fresh water,
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and forest soil (4–9). The Gemmatimonadota phylum comprises five groups at the class level
(groups 1–5) according to 16S rRNA gene sequence surveys (10, 11). Only six strains belong-
ing to this phylum have been cultivated and characterized to date, and they are
Gemmatimonas aurantiaca T-27 (1), Gemmatirosa kalamazoonesis KBS708 (12), Gemmat-imo-
nas phototrophica AP64 (13), Longimicrobium terrae CB-286315 (14), Roseisolibacter agri
AW1220 (11), and Gemmatimonas groenlandica TET16 (15). All of these strains except L. ter-
rae CB-286315 belong to the class Gemmatimonadetes (group 1). L. terrae CB-286315 is affili-
ated with the class Longimicrobia (group 3). No isolates or metagenome-assembled
genomes (MAGs) belonging to the other three classes (groups 2, 4, and 5) have been
reported. Although Gemmatimonadota are generally believed to play significant roles in bio-
geochemical cycles (13, 16–20), very little is known about this group of organisms.

In this study, we obtained 12 and 5 high-quality Gemmatimonadota MAGs from the
Qinghai Lake sediments and the South Indian Ocean sediments, respectively, and examined
the genetic and metabolic diversity of these MAGs, along with the genomes and MAGs of
Gemmatimonadota from the public databases. Gemmatimonadota have evolved diverse
modes of energy conservation, including aerobic respiration, fermentation, and anoxygenic
photosynthesis, in agreement with their widespread presence. We identified a novel photo-
trophic lineage (SG8-23 order), which is closely related to neither G. groenlandica TET16 nor
G. phototrophica AP64, the only two known phototrophic Gemmatimonadota isolates in the
Gemmatimonadales order (13, 15, 21, 22). The two orders differ distinctly in the gene organi-
zation of their photosynthesis gene clusters (PGCs). Phylogenetic analysis based on bacterio-
chlorophyll biosynthesis genes (acsF and bchH) and photosynthetic reaction center subunits
(pufL and pufM), shed significant light on the two independent evolutionary routes of pho-
tosynthesis in Gemmatimonadota.

RESULTS AND DISCUSSION
Biogeography of Gemmatimonadota. A total of 0.7 billion paired-end (PE) raw

sequencing reads (;170 Gb) from the three Qinghai Lake sediment samples were obtained
(Data Set S1, Sheet 1 in the supplemental material). Initial assembly with SPAdes produced
contigs ($1,000 bp) of 1.86, 1.89, and 1.92 Gb in total length for N1, N4, and N5, respectively
(Data Set S1, Sheet 1). A total of 122,010 16S rRNA gene tags were extracted from these
metagenomes (16S mitags), and 15,924 operational taxonomic units (OTUs) were obtained
by clustering the 16S mitags against the SILVA database. By taxonomic assignment based on
the SILVA taxonomy, the obtained OTUs belong to at least 33 phyla. Bacteria dominated the
microbial community with a relative abundance of 92.15–93.58%, with Proteobacteria
(20.71–26.78%) and Chloroflexi (12.31–16.78%) being the top two most abundant phyla
(Fig. 1A and Data Set S2, Sheet 1). Notably, the relative abundance of phylum Gemmat-
imonadota was about 1.55–1.79%, and is similar to that in the deep-sea sediments (1.15–
4.39%) of the Southwest Indian Ocean (23).

To learn more about the global distribution of Gemmatimonadota, we retrieved 23,323
qualified samples from the Earth Microbiome Project (EMP). Over 64% (15,058) of these
samples contain species belonging to Gemmatimonadota, and they are distributed around
the globe in a variety of habitats, such as tundra, cropland, lakes, marine, and the human
gut (Fig. 1B and Data Set S2, Sheet 2). The abundance of Gemmatimonadota varies consid-
erably among the habitats and among samples from the same habitat. This phylum
appears more abundant in tundra and permafrost, with the highest abundance of ;1/3
detected in a tundra biome, than in fresh water and marine waters (Data Set S2, Sheet 2).
The median abundances of Gemmatimonadota are 1.85, 0.73, 0.61, 0.019, and 0.003% in
samples from terrestrial soil (mostly in the permafrost zone), freshwater sediment, marine
sediment, fresh water, and marine water, respectively (Fig. 1C). Gemmatimonadota has also
been detected in trace amounts in host-associated environments such as rhizosphere, bio-
film, sebum, saliva, mucus, and feces.

Genome-based taxonomic analysis of Gemmatimonadota.We assembled 12 Gemmat-
imonadota MAGs ($75% completeness and #5% contamination) from the metagenomic
DNA of Qinghai Lake sediments (Data Set S1, Sheet 2). Five additional MAGs were obtained
from the metagenomes of deep-sea sediment samples taken from the Southwest-
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ern Indian Ocean (23). To facilitate the phylogenetic analysis of phylum Gemmatimonadota,
we downloaded 504 medium- to high-quality Gemmatimonadota genomes and MAGs
($50% completeness and#5% contamination) from the NCBI, GTDB, and Figshare databases
(Table S1). After deduplication and quality control, 326 nonredundant genomes at strain levels
(.99% ANI) were retained. These genomes ranged from 1.52 to 7.47 Mb in size with a median
value of 3.57 Mb, and their GC contents were between 44.92% and 74.33% with a median of
67.37% (Fig. 2 and Table S1). The large variation in estimated genome size and GC content
may imply considerable diversity within phylum Gemmatimonadota. Based on genome simi-
larity and phylogenomic analysis, these nonredundant genomes are grouped into 265 poten-
tial species after dereplication using dRep v2.3.2 (24) at 95% ANI, all of which belong to class
Gemmatimonadetes (Fig. 2 and Table S1). By GTDB classification, the 326 genomes are divided
into three orders, i.e., Gemmatimonadales (199 genomes), SG8-23 (111 genomes), and an
unclassified order (16 genomes). We focused our comparative genomic analysis on genomes
from Gemmatimonadales and SG8-23, as the majority of Gemmatimonadota genomes used in
this study were affiliated with these two orders. Separation of the two orders was further dem-
onstrated by a genome-scale gene correlation analysis (Fig. S1).

Metabolic potential of Gemmatimonadota. Pangenome analysis (Fig. S2) reveals a
highly expandable pangenome for Gemmatimonadota, which has presumably resulted
from their adaptation to thriving in diverse environments. However, a hypergeometric
test infers no significant differences between Gemmatimonadales and SG8-23 in me-
tabolism based on KEGG functional categories (Data Set S3, Sheet 1). Therefore, we set
out to construct the metabolic potentials of the entire phylum of Gemmatimonadota
by examining functional annotations of the 326 nonredundant genomes or MAGs, to
illustrate an overview of energy releasing and storing processes in this phylum.

As shown in Data Set S4, Sheet 1, 129 carbohydrate-active enzyme families were observed,
and members of Gemmatimonadota are potentially able to utilize a wide range of complex
carbon sources, including chitin, starch, cellulose, and hemicellulose. The breakdown of glu-
cose to pyruvate can be achieved through EMP (Embden–Meyerhof–Parnas, usually called gly-
colysis) or ED (Entner–Doudoroff) pathway in Gemmatimonadota, as shown in Fig. 3. Genes

FIG 1 Distribution of Gemmatimonadota. Taxonomic composition of organisms from the sediment samples based on 16S mitags at the
phylum level (A). Distribution of Gemmatimonadota around the world (B). Relative abundance (%) of Gemmatimonadota in different habits
based on 16S rRNA genes (C). Red and blue circles represent samples from those locations that contain Gemmatimonadota or not,
respectively.
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encoding the three key rate-limiting enzymes in glycolysis, i.e., hexokinase (glk), 6-phospho-
fructokinase (pfk), and pyruvate kinase (pyk), are annotated in 77–83% of the 326 genomes,
and at least 184 genomes (56%) contain all three of these genes, showing glycolysis is a main
process for breaking down glucose to pyruvate (Fig. 3 and Data Set S4, Sheet 2). Those MAGs
without glycolysis may be due to the incompleteness of their genomes, and they may acquire
pyruvate via the ED pathway as an alternative. For example, N1_bin27 is identified as having

FIG 2 Phylogenomic tree of Gemmatimonadota inferred from 120 concatenated marker proteins. The tree was rooted with the genome of Gimesia
maris DSM 8797 (GenBank assembly no. GCA_000181475.1). Phototrophic Gemmatimonadota are mark by red circles, squares, and triangles on the tip
of branches. The red circles represent those genomes containing a photosynthesis gene cluster (PGC). Red and blue squares represent those MAGs we
retrieved in this study containing PGC or not, respectively. Red and green triangles represent those cultured isolates containing PGC or not in their
genomes, respectively. Gemmatimonadota clusters at family and orders are marked by different colors. The strength of support for internal nodes
(bootstrap) is shown through branch colors. Inner, middle, and outer circles around the tree represent GC content (%), genome size (Mb), and habitat
types of these 326 Gemmatimonadota genomes, respectively. Details about all the 326 Gemmatimonadota genomes can be found in Table S1.
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the key enzyme of 2-dehydro-3-deoxyphosphogluconate aldolase (eda) in ED pathway, indi-
cating this MAG may obtain pyruvate without having to go through glycolysis. However, the
predicted eda gene is found in only 50 Gemmatimonadales (15%) and 6 SG8-23 genomes
(2%) (Data Set S4, Sheet 2), implying that the ED pathway is not commonly used for acquiring
pyruvate by Gemmatimonadota. It was noticed that the pathway for the conversion of D-glu-
curonate and D-galacturonate into 2-Dehydro-3-deoxy-D-gluconate-6-phosphate exists in
10% of the 326 genomes (Data Set S4, Sheet 2). This process may play a role in replenishing
the ED pathway with intermediate substrates, especially for those Gemmatimonadota lacking
the edd gene, which encodes phosphogluconate dehydratase (Fig. 3). Genes encoding the
three key rate limiting enzymes of the TCA cycle, i.e., citrate synthase (cs), aconitate hydratase
(aco), and malate dehydrogenase (mdh), are annotated in most of the 326 genomes (83%,
73%, and 82% genomes, respectively), indicating that Gemmatimonadota acquire energy
mainly through the TCA pathway and most likely live a heterotrophic lifestyle. Besides,

FIG 3 Overview of potential metabolic capabilities of Gemmatimonadota. Genes involved in the EMP pathway (glycolysis), gluconeogenesis, PPP (pentose
phosphate pathway), ED (Entner–Doudoroff) pathway, pyruvate metabolism, TCA cycle, dichloroethane degradation, d-glucuronate and d-galacturonate
degradation, vitamin B6 biosynthesis, starch and trehalose metabolism, respiratory chain, acetate fermentation, and membrane transporters are shown. The
corresponding enzymes are represented by an ID in the figure and Data Set S4, Sheet 2. The color of the arrow represents the proportion of genomes
containing the corresponding enzyme or capable of performing the metabolic reaction.
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1,2-Dichlroroethane, a widely used chlorinated solvent with potential to harm the envi-
ronment and human health, could also be degraded by Gemmatimonadota into glyoxy-
late, which can be incorporated in the TCA cycle for subsequent energy conservation
(Fig. 3). This observation partially explains why some Gemmatimonadota, especially fam-
ily Gemmatimonadaceae, whose genomes are enriched with benzoate and styrene deg-
radation genes (Data Set S3, Sheet 5), are detected in contaminated environments, such
as bioreactor sludge and waste water (Table S1).

The pentose phosphate pathway (PPP) provides an alternative to glycolysis for glucose oxi-
dation (Fig. 3). Genes encoding glucose-6-phosphate dehydrogenase (G6PD, zwf) and 6-phos-
phogluconate dehydrogenase (PGD, gnd), two rate-limiting enzymes during the oxidative
phase of PPP, are annotated in 23% and 27% of the 326 genomes, respectively. Genes for
putative transketolase (tkt), transaldolase (tal), and ribulose-phosphate 3-epimerase (rpe), re-
sponsible for the conversion of phosphorylated carbohydrates in the nonoxidative phase, are
present in over 80% of the Gemmatimonadota genomes. Moreover, more than half (54%) of
the Gemmatimonadota genomes appear to encode ribose-5-phosphate isomerase (rpi), which
catalyzes the interconversion between D-ribose-5-phosphate and D-ribulose-5-phosphate.
These observations show that PPP may be a prevalent pathway in Gemmatimonadota, provid-
ing essential substrates (e.g., NADPH and pentose phosphate) for the synthesis of nucleotides,
amino acids, cofactors, and vitamins. For example, vitamin B6 could be synthesized using the
PPP product of the D-ribose-5-phosphate or D-erythrose-4-phosphate via two non-homolo-
gous routes (Fig. 3). The biologically active form of the vitamin B6 group (pyridoxal, pyridox-
amine, and pyridoxine), pyridoxal 59-phosphate (PLP), is known as an essential cofactor for
cellular function in all domains of life (25). PLP-dependent enzymes have been reported
as being involved in diverse cellular processes, such as the biosynthesis of amino acids,
sugars, lipids, and antibiotics (25–27). However, pyridoxal 59-phosphate synthase (pdxST),
which can catalyze D-ribose-5-phosphate, D-glyceraldehyde-3-phosphate, and L-gluta-
mine into PLP, has been found in only two genomes, suggesting it is not the main route
for vitamin B6 biosynthesis. The key enzyme of another route, pyridoxine 5-phosphate
synthase (pdxJ), which can convert 1-deoxy-D-xylulose 5-phosphate and 3-amino-2-oxo-
propyl phosphate to pyridoxine-5-phosphate, are identified in over 80% of 326 genomes,
showing that most of Gemmatimonadota may be capable of synthesizing PLP on their
own via this route. However, erythrose-4-phosphate dehydrogenase (epd) and erythro-
nate-4-phosphate dehydrogenase (pdxB), the first two enzymes of this route, are seldom
present in Gemmatimonadota genomes. Fortunately, their functions might be replaced
by other nonhomologous enzymes (28).

As for carbohydrate anabolism, almost 50% of 326 genomes (162) contain all three
genes likely encoding the key enzymes of gluconeogenesis, phosphoenol pyruvate carboxy-
kinase (pckA), fructose-1,6-bisphosphatase (fbp), and glucokinase (glk). And the proportion
of genomes containing at least one of these three rate-limiting enzymes is about 73%, 76%,
79%, respectively. Therefore, the process of gluconeogenesis storing sufficient energy in glu-
cose, followed by the synthesis of more complex compounds (e.g., glycogen and starch),
should be prevalent in Gemmatimonadota (Fig. 3). Trehalose, known as a protective agent
that helps cells adapting to cold and high-pressure habitats, may be synthesized by
Gemmatimonadota, as has been reported previously (21). However, we found that the bio-
synthesis of this compound does not seem prevalent in Gemmatimonadota (Fig. 3). This is
because the enzyme of 1-alpha-D-glucosylmutase (treY), responsible for the conversion of
maltodextrin to the precursor of trehalose (maltooligosyltrehalose) (28), is present in less
than 10% of Gemmatimonadota genomes (Data Set S4, Sheet 2). Trehalose could also be
synthesized in one step using trehalose synthase (treT) from the ubiquitous metabolic inter-
mediates of D-glucose and UDP- or ADP-glucose. Nevertheless, the treT gene is detected
only in 14 genomes (Data Set S4, Sheet 2).

In addition, genes for acetyl-CoA synthetase (acs), which synthesize acetyl-CoA for
energy metabolism and for the synthesis of carbohydrates, lipids, and proteins, is identi-
fied in 77% of the genomes. Therefore, heterotrophy via acetate fermentation appears to
occur in Gemmatimonadota. And 19 genomes are found to contain genes coding for both
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large and small subunits of RubisCO (rbcLS, ribulose-bisphosphate carboxylase), a key
enzyme for CO2 fixation in photosynthesis, indicating photoautotrophic potential in some
Gemmatimonadota. However, no photoautotrophs or chemoautotrophs have so far been
isolated in this phylum (15).

Characteristics of the electron transport chain in Gemmatimonadota. To gain a
better insight into its energy conservation, we further characterized the ETC (electron
transport chain) composition of Gemmatimonadota.

Complex I (NADH-quinone oxidoreductase) and complex II (succinate dehydrogen-
ase), encoded by nuo and sdh, respectively, feed electrons to membrane-bound respi-
ratory chains. Both enzymes are found in over 80% of the Gemmatimonadota genomes
(Fig. 3 and Data Set S4, Sheet 2). Other quinone reductases are present in over half of
the Gemmatimonadota genomes, such as proline dehydrogenase (putB), glycerol-3-
phosphate dehydrogenase (glpD), and quinoprotein glucose dehydrogenase (gcd),
which are involved in proline, glycerophospholipid, and carbohydrate metabolism,
respectively, and are also primary points for electrons entering the respiratory chain in
Gemmatimonadota. An Mrp (multiple resistance and pH) antiporter (Na1/H1 anti-
porter), which contains multiple subunits (MrpBCDEFG) and is responsible for the efflux
of intracellular sodium ions utilizing the proton motive force across membranes, is
enriched in SG8-23, as revealed by the hypergeometric test (Data Set S3, Sheets 2, 3,
and 4). Since the majority of the SG8-23 genomes are retrieved from marine and saline
soda habitats (Fig. 2 and Table S1), the enrichment of the Na1/H1 antiporter represents
the adaptation of this group to salty habitats. It has been reported that MrpC and
MrpD are homologous to membrane-embedded subunits of NuoK and NuoMN in the
respiratory chain complex I (29), implying the close kinship of Na1/H1 antiporter and
complex I in proton transport and energy production.

Complex III (cytochrome c reductase), also known as the bc1 complex (or b6f in
photosynthetic organisms), is a key component of both the respiratory and the photo-
synthetic electron transport chains. Surprisingly, the cytochrome b subunit (petB) of
bc1 is only found in 23% of the genomes, indicating that the bc1 complex is probably
not widely used in Gemmatimonadota. Alternative complex III (ACIII), structurally unre-
lated to bc1, could serve the function of bc1 (30). This complex is found in various bac-
teria, including Gemmatimonadota (30), but is identified in fewer than 10% of the
genomes in this study (Data Set S4, Sheet 2). It is possible that low similarity to known
ACIII proteins in the KEGG database prevents function annotation or novel complex III
subunits (or modules) exist in Gemmatimonadota (31). It is also worth noting that com-
plex III is not essential in respiratory chains. For instance, cytochrome bd oxidase,
which reduces of oxygen to water, obtains electrons directly from quinol without the
aid of complex III but does not pump protons across the membrane (32, 33), thus
reducing the efficiency of energy conversion into ATP.

Three types of complex IV, the last enzymatic complex for electron transfer in an
aerobic respiratory chain, have been detected. They are caa3-type heme–copper oxy-
gen reductase (HCO), cbb3-type HCO, and cytochrome bd oxidase, which exist in 74%,
50%, and 53% of the 326 genomes, respectively, indicating that Gemmatimonadota
mainly use O2 as the terminal electron acceptor. Five genomes, including that of the
cultured strain G. aurantiaca T-27, are found to contain all three types of complex IV.
Because of the much higher affinity of cbb3-type HCOs and cytochrome bd oxidase for
O2 than caa3-type HCOs (34–36), these strains may respond efficiently to variation in
O2 level. On the other hand, since oxygen reductase is also found in strictly anaerobic
organisms, such as Desulfovibrio desulfuricans ATCC 27774 (37), the presence of the ter-
minal oxidases may also serve to protect oxygen-sensitive enzymes when anaerobi-
cally respiring Gemmatimonadota are exposed to oxic conditions. Moreover, genes
encoding putative nitrous oxide reductase (NosZ) and nitric oxide reductase (NorBC)
are present in at least 23% and 9% of the genomes (Data Set S4, Sheet 2), respectively,
suggesting they may use N2O and NO as terminal electron acceptors. Nitrate and nitrite
are seldom used as terminal electron acceptors in Gemmatimonadota, as nitrate
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reductase (NarGHI) and nitrite reductase (NrfAH) are only identified in 2–10% of the
326 genomes. Notably, at least 30% of Gemmatimonadota that may be capable of per-
forming anaerobic respiration also possess cytochrome c oxidase or cytochrome bd ox-
idase (Data Set S4, Sheet 3), further demonstrating their diverse energy conservation
strategies for coping with oxygen varies.

In addition, Gemmatimonadota possess a complete set of men-like genes for the syn-
thesis of menaquinone (MK, or vitamin K2), whereas genes encoding ubiquinone (UQ, or
coenzyme Q) synthesis are incomplete (Data Set S4, Sheet 2), in agreement with the find-
ing that the major respiratory quinone of the six cultured isolates is MK-8 or MK-9 (1, 11,
12, 14, 15, 22). It is speculated that UQ, usually used by aerobic organisms, appeared about
2.5 billion years ago as a strategy of life to adapt to rising oxygen levels (38, 39). On the
other hand, MK exists in microorganisms living under low O2 or anoxic conditions (32).
There are two known pathways for MK synthesis in bacteria, i.e., the “classical” (Men) path-
way and the “futalosine” (Mqn) pathway (40, 41). It appears that SG8-23 preferentially
employs the classical pathway, as menA, menB, and menD are enriched in this order, as
opposed to Gemmatimonadales (Data Set S3, Sheet 2), which prefers the futalosine path-
way. It is unclear why one pathway is preferred over the other as both pathways utilize the
same precursors and function under both aerobic and anaerobic conditions (41).

Organization of PGCs in Gemmatimonadota. Several members of Gemmatimonadota,
including novel lineages described below, are potentially able to capture light energy
through photosynthetic phosphorylation for their growth (Fig. 3). Of the 326 nonredundant
genomes, 43 are found to contain a ;40-kb-long photosynthesis gene cluster (PGC) (Table
S1). These include genomes of Gemmatimonadota AP64 and TET16, the only two cultured
phototrophic strains of this group (13, 15). Of the remaining 41 genomes, 22 are assembled
from metagenomes obtained from fresh water, 13 from soda lakes, and 6 from other habi-
tats. No phototrophic Gemmatimonadota have been detected in marine habitats. Taxo-
nomically, 33 of the 43 genomes belong to the order of Gemmatimonadales, and the other
10 genomes to the UBA6960 family of the SG8-23 order (Table S1 and Fig. 2). To our knowl-
edge, there have been no reports illustrating the structures of PGCs in SG8-23 or UBA6960.
In this study, we assembled from the metagenomes of Qinghai Lake sediments three PGC-
containing genomes of the UBA6960 family (N1_bin156, N4_bin48, and N5_bin42) and a
PGC-containing genome of Gemmatimonadaceae (N4_bin22).

PGC genes in several genomes are located in different contigs or scaffolds, presum-
ably as a result of the fragmented nature of metagenome assemblies. We chose nine
PGCs, which are located in the same contig or scaffold, for further analysis. Although
the PGCs of N5_bin42 are on a single contig and the PGCs of N1_bin156 and N4_bin48
are obtained by joining two contigs, the former is 100% identical to the latter two
when the homologous sequences are compared (Fig. S3). Therefore, the PGCs from
N4_bin48, the longest among the three genomes, was used in gene arrangement com-
parison with those from genomes in public databases (Fig. 4). PGCs from the genomes
of two betaproteobacteria, Methyloversatilis universalis Fam500 and Rubrivivax gelatino-
sus IL-144, were used as references (13, 21).

All of the 11 selected PGCs contain three conserved gene clusters, i.e., bchFNBHLM,
pufBALMC, and crtF-bchCXYZ, and belong to type II PGCs since bchFNBHLM and crtF-
bchCXYZ are transcribed in opposite orientations (Fig. 4) (42). Based on the relative
locations of acsF (encoding magnesium-protoporphyrin IX monomethyl ester [oxida-
tive] cyclase) and IhaA (encoding reaction center assembly proteins), they can be fur-
ther divided into two subgroups, i.e., subtype I, in which acsF is located downstream of
IhaA and the two genes are separated by puh (encoding reaction center assembly pro-
teins) as well as unannotated genes, and subtype II, in which acsF is upstream of and
adjacent to IhaA. All of the 10 PGCs from the SG8-23 genomes belong to subtype I,
and all of the remaining 32 PGCs, except for one (S09.Bin022, GCA_011390645.1), are
of subtype II (Table S2).

Among the bch genes encoding the biosynthesis of bacteriochlorophyll a (BChl a),
bchIDO (genes coding for magnesium chelatase ATPase subunits I and D and putative
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accessory protein O) are arranged in distinctly different manners in the PGCs (Fig. 4). The
bchID genes, which are upstream of crtF in PGCs from SG8-23, are normally transcribed in
the same direction as the carotenoid synthesis gene (crtF). In comparison, the direction of
transcription of bchID is reversed in PGCs from some Gemmatimonadales, such as AP64
and TET16. bchO from both SG8-23 and Gemmatimonadales, generally located between
bchCXYZ and pufABLMC (encoding reaction center proteins), is transcribed in a direction
opposite to that of the conserved bchCXYZ operon. Notably, bchO appears to be absent
from some PGCs from both SG8-23 and Gemmatimonadales genomes (Fig. 4). Since frhB,
which encodes the coenzyme F420-reducing hydrogenase beta subunit (EC:1.12.98.1), is
found in both SG8-23 and Gemmatimonadales PGCs (e.g., GCA_007121925.1, GCA_
007121555.1, GCA_016713435.1, and RH-20apr16-187), it could potentially replace bch2 (a
4.5-kDa chain of bacteriochlorophyll synthase) and form a unique bchP-frhB-bchG operon
for BChla biosynthesis (Fig. 4) (4). Furthermore, a region highly variable with respect to the
number of hypothetical genes or genes unrelated to photosynthesis as well as the direc-
tion of transcription of the genes exists between the puh and pufBALMC operons (Fig. 4).
These observations suggest that PGCs have undergone a complex process of recombina-
tion following their divergence from a common ancestor, and two evolutionary pathways
for photosynthesis have occurred within Gemmatimonadota.

Evolution of photosynthesis genes in Gemmatimonadota. Phototrophs include
both retinalophototrophs and chlorophototrophs, which employ retinalrhodopsin and
chlorophyll, respectively, to harvest light energy (43–45). Chlorophototrophs are cur-
rently found in seven bacterial phyla: Cyanobacteria, Proteobacteria (purple anoxygenic

FIG 4 The PGC organization in Gemmatimonadota. bch, bacteriochlorophyll biosynthesis genes; acsF, encoding magnesium-protoporphyrin IX
monomethyl ester (oxidative) cyclase; puh, genes encoding reaction center assembly proteins; IhaA, encoding reaction center assembly proteins;
puf, genes encoding reaction center proteins; crt, carotenoid biosynthesis genes; frhB, encoding coenzyme F420-reducing hydrogenase beta
subunit. PGC (photosynthesis gene cluster) in MAG of GCA_007125795.1 (CSSed162cmB_505) was actually joined from three contigs; however, it
was almost 100% similar with the PGC in only one contig from the MAG of GCA_007120305.1 (CSSed162cmA_30R1). The ANI value of these two
MAGs was almost 100%, indicating they belong to the same species. Given a higher completeness and lower contamination of the MAG of
GCA_007125795.1, we removed the redundant MAG of GCA_007120305.1.
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phototrophs), Chlorobi (green sulfur bacteria), Chloroflexi (green nonsulfur bacteria),
Firmicutes (heliobacteria), Acidobacteria, and Gemmatimonadota (45). Aside from Cyano-
bacteria, chlorophototrophs from the remaining six phyla are anoxygenic phototrophic
bacteria (APB) that harvest light using various forms of bacteriochlorophyll (bch) without
oxygen production through water oxidation. Most APBs are found in restricted habitats.
For example, Chlorobi species exist mainly in anoxic aquatic habitats (46), Chloroflexi spe-
cies in low-oxygen hot springs (47–49), and the only Gram-positive APB (heliobacteria) in
soil (50). In contrast, the APB of Gemmatimonadota appear to have a more cosmopolitan
distribution (4, 16, 51).

To explore the evolutionary relationships of phototrophic Gemmatimonadota, pro-
teins encoded by acsF, bchH, and pufLM in 73 genomes (Table S2) and selected ho-
mologous sequences from other phyla were used to construct phylogenetic trees
(Fig. 5 and Fig. S4). AcsF, the aerobic magnesium-protoporphyrin IX monomethyl
ester (oxidative) cyclase, is an essential protein for BChla biosynthesis in all photo-
trophs and thus widely used in the phylogenetic analysis of phototrophs (13, 15–17,
52). BchH is the largest protein (;1,271 amino acids) encoded in the relatively con-
served region (bchFNBHLM), whereas PufLM are the subunits of the photosynthetic
reaction center. Gemmatimonadales and SG8-23 form two separate clusters, and they
are clearly separated from the main chlorophototrophic groups, i.e., Cyanobacteria,
Chloroflexi, Acidobacteria, Firmicutes, Chlorobi, and Proteobacteria, as revealed by the
AcsF and BchH trees (Fig. 5 and Fig. S4). However, not all Gemmatimonadales cluster
together in the PufL or PufM tree (Fig. S4), presumably due to frequent genetic
exchanges as observed in the PGC structures. In all of the four phylogenetic trees
(Fig. 5 and Fig. S4), Gemmatimonadota and Proteobacteria cluster in the same clade,
demonstrating a common evolutionary origin of their photosystem. This supports the
hypothesis that Gemmatimonadota acquired PGC via horizontal gene transfer (HGT)
from Proteobacteria (13). However, it is still unclear what kind of HGT, e.g., transforma-
tion, transduction, or conjugation, is responsible for acquiring foreign PGCs across
phyla. It has been reported that extrachromosomal replicons may play an important
role in the transfer of PGCs in bacteria (53). Further, SG8-23 is more closely related to
Proteobacteria than to Gemmatimonadales in the AcsF tree (Fig. 5), whereas
Gemmatimonadales, and not SG8-23, is clustered with Proteobacteria in the same
clade in the BchH tree (Fig. S4), suggesting PGC genes may have evolved at different
rates in the two orders.

Taken together, our results suggest that the photosystem was acquired by the ancestor
of Gemmatimonadota before it diverged into Gemmatimonadales, SG8-23, and other pho-
totrophic orders. This suggestion is supported by high topological congruence between
the organismal and PGC genes-based phylogenies of Gemmatimonadota. The acquired
PGC genes are passed on in at least two independent routes, leading to subtypes I and II
PGCs in Gemmatimonadota. Nonphototrophic Gemmatimonadota may have lost their PGC
genes during the course of evolution.

Conclusions. Gemmatimonadota are globally distributed in various habitats, and both
chemotrophic and phototrophic growth types are widely adopted by its members. Our
genomic analysis suggests that Gemmatimonadota are capable of degrading various com-
plex organic substrates and pursuing a heterotrophic pathway (e.g., glycolysis and TCA
cycle) for their growth. Diverse strategies for energy conservation, including oxidative phos-
phorylation, substrate phosphorylation, and photosynthetic phosphorylation, are employed
by Gemmatimonadota. And the processes of sufficient energy being stored in glucose
through gluconeogenesis, followed by the synthesis of more complex compounds (e.g., gly-
cogen and starch), are also prevalent in this phylum. Most members of the phylum are able
to perform aerobic respiration. After diverging from the ancestor of Gemmatimonadota, the
SG8-23 branch has become more suited to growth in saline environments, in agreement
with the fact that most of the assembled genomes in this branch were originally from ma-
rine and saline soda habitats, than Gemmatimonadales. Moreover, the photosystem in
Gemmatimonadota has evolved in two independent routes.
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MATERIALS ANDMETHODS
Sample collection, DNA extraction, and high-throughput sequencing. Three sediment samples,

denoted N1, N4, and N5, were collected from Qinghai Lake, a perennial salt lake located in a structural
intermontane depression at the northeastern corner of the Qinghai–Tibetan Plateau (54, 55), China, in
June 2018. Each sample was placed in a sterile plastic bag using a sterile scoop and immediately stored
at 4°C. The GPS coordinates of the sampling sites are listed in Data Set S1, Sheet 1. A fraction (10 g by

FIG 5 Phylogenetic analysis of Gemmatimonadota acsF-like proteins in relation to other phototrophic bacterial phyla.
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wet weight) of each sample was subjected to DNA extraction as described previously (23, 56). DNA was
purified by using a PowerClean Pro DNA Clean-Up Kit (MO BIO Laboratories), sheared to 400;500 bp in
size with the Covaris M220 Focused-Ultrasonicator and quantified by the Agilent 2100 bioanalyzer
(Agilent Technologies Inc., USA). The sequencing libraries were constructed using the KAPA Hyper Prep
Kit (Kapa Biosystems). Paired-end (PE) sequencing (2 � 250 bp) was conducted on an Illumina Hiseq-
2500 platform at Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing, China.
Deep-sea sediments (TVG05 and TVG06), from the Southwest Indian Ocean during the DY125-39 cruise
with R/V Dayang No.1, have been previously described by Zheng et al. (23).

Metagenome assembly and genome binning. Raw reads from each sample were adapter trimmed,
and low-quality reads were removed using fastp (v0.19.4) with default parameters (57). The clean PE
reads from each sample were first merged using BBMerge (58) and separately assembled by SPAdes
(v3.13.0, --meta --only-assembler) with a series of k-mers (i.e., 21, 31, 55, 77, 99, 121) (59). Contigs over
5 kb in length from each sample were selected for binning analysis using MetaBAT2 (v2.12.1) (60, 61)
and MaxBin2 (v2.2.5) (62, 63) modules in MetaWRAP pipeline (v1.0.3) with default parameters (64). The
resulting MAGs were refined by the bin_refinement module in the Binning_refiner (v1.2) (65) to filter out
duplicate contigs and merge similar MAGs. The completeness, potential contamination, and strain heter-
ogeneity of MAGs were evaluated via CheckM (v1.0.9) with lineage-specific marker genes (66).
Taxonomic assignments of the MAGs were verified with GTDB-Tk (v0.3.3) (67, 68). Only medium- to high-
quality (completeness $50% and contamination #5%) MAGs belonging to phylum Gemmatimonadota
were retained for further analysis. The genome size of each MAG was estimated as described by Chen et
al. (69). 16S rRNA gene tags were identified from merged reads and clustered against the SILVA database
as described previously (23). Briefly, 16S rRNA gene tags were identified using the script “rna_hmm.py”
(70, 71). And the resulting sequences were assigned (97% identity) to SILVA reference OTUs (release 138:
SSU Ref NR 99) using UCLUST (71–73).

Phylogenetic analysis. Published genomes and MAGs of Gemmatimonadota (1, 12–15, 74), verified
by GTDB-Tk (68), were retrieved from the NCBI Assembly database (https://ftp.ncbi.nlm.nih.gov/genomes/
all/GCA/, July 2021) and Genome Taxonomy Database (GTDB, https://gtdb.ecogenomic.org/). Forty-five
Gemmatimonadota MAGs of the freshwater origin, as reported by Mujakic et al. (4), were downloaded
from Figshare (https://figshare.com/). To reduce redundancy, all above genomes were aggregated and
dereplicated at 99% average nucleotide identity (ANI) using dRep v2.3.2 (parameters: -comp 50 -con 5 -sa
0.99) (24), resulting in a total of 326 strain-level genomes. These genomes were also dereplicated at 95%
ANI to calculate the number of species represented. Values of orthologous average nucleotide identity
(OrthoANI) and average amino acid identity (AAI) were calculated by using OrthoANIu (75) and EzAAI (76),
respectively. Phylogenetic analysis of the above nonredundant genomes based on 120 bacterial marker
proteins were conducted using the “identify” and “align” steps in GTDB-Tk (68). Maximum likelihood (ML)
phylogeny was inferred with FastTree v.2.1.10 in the WAG1GAMMA model (77). The phylogenetic tree
was visualized on the iTOL (78).

Functional annotation and metabolic reconstruction. Open reading frames (ORFs) in the above non-
redundant genomes were predicted using Prokka (79) with default parameters. All ORFs were annotated using
the KEGG database with GhostKOALA (80), eggNOG 5.0 using eggNOG-mapper 2 (80, 81), and Pfam 31.0 (82)
using hmmsearch with a bit score of 30 (83). The MAGs and downloaded genomes were also submitted to the
METABOLIC v2.0 annotation pipeline for functional annotation (84). Potential metabolic pathways were recon-
structed based on these annotations. A hypergeometric test through the R package phytools (85) was applied
to infer the metabolic differences among various Gemmatimonadota groups. ORFs encoding bacteriochloro-
phyll biosynthesis (acsF and bchH) and subunits of the photosynthetic reaction center complex (pufL and
pufM) were aligned individually against proteins downloaded from the NCBI RefSeq genome database
(https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/, July, 2021) using Diamond (v0.9.10.111) with default parameter
(86). Target proteins with the highest BLASTp scores at class level were selected for phylogeny analysis.

Pangenome and core genome analysis of Gemmatimonadota. A Gemmatimonadota pangenome is
defined as the total number of protein-coding gene families found in all of the Gemmatimonadota genomes
and MAGs. Since unknown portions of genes are missing from those incomplete genomes, a core genome of
Gemmatimonadota is defined as all of the protein-coding gene families found in 95% of the genomes and
high-quality MAGs (completeness $90% and contamination #5%). Gene families of the above ORFs were
clustered using the get_homologues package (v3.4.3) (87) based on “diamond blastp” and “OMCL” algo-
rithms with default parameters. Gene accumulation curves, which describe the sizes of the pan-genome and
the core genome, were plotted using R package ggplot2 after adding new genome data during 100 random
duplications (88). A gene content matrix consisting of the number of pan-genome orthologs in each genome
was used to determine the relationship between each pair of genomes by deriving a correlation coefficient
value (Pearson’s coefficient) using the “cor” function in the R program, and was further visualized using the
“pheatmap” function for genomic similarity comparison (89).

Data availability. Metagenomic raw reads are accessible in NODE (https://www.biosino.org/node/)
with accession number OEP001438, and in NCBI (https://www.ncbi.nlm.nih.gov/bioproject) under the
BioProject numbers PRJNA776043 and PRJNA573810. The genome sequences of 17 MAGs retrieved in
this study have been deposited in eLMSG (an eLibrary of Microbial Systematics and Genomics, https://
www.biosino.org/elmsg/index) under accession numbers LMSG_G000003454.1–LMSG_G000003470.1.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, XLSX file, 0.01 MB.
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