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In order to get the extracted lung region from CT images more accurately, a model that contains lung region extraction and
edge boundary correction is proposed. Firstly, a new edge detection function is presented with the help of the classic structure
tensor theory. Secondly, the initial lung mask is automatically extracted by an improved active contour model which combines the
global intensity information, local intensity information, the new edge information, and an adaptive weight. It is worth noting
that the objective function of the improved model is converted to a convex model, which makes the proposed model get the
global minimum. Then, the central airway was excluded according to the spatial context messages and the position relationship
between every segmented region and the rib.Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds
the juxtapleural nodule. Finally, the geometric active contour model is employed to correct the detected boundary and reinclude
juxtapleural nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with
their popular counterparts. Efficient computing capability and robustness property prove that our model can correct the lung
boundary reliably and reproducibly.

1. Introduction

X-ray computed tomography (CT) is the most sensitive way
for lung nodules detection [1], and detecting lung nodules
using CT has become an increasingly important issue [2].
In this task, the lung region segmentation is a critical first
step which can minimize the analytical region and system
computation. Furthermore, the automated lung segmenta-
tion method is also needed due to the large number of axial
slices that are produced by themultidetector-rowCT scanner
[3]. In addition, because juxtapleural nodules are contiguous
with the chest wall and they have similar density to lung
region, those nodules are always incorrectly excluded from
the lung region.Thus the method, which can extract the lung
region without the loss of any juxtapleural nodules from CT
slices, should not only include the lung segmentation process,
but also correct the defective boundary that surrounds the
juxtapleural nodule.

Severalmethods have been proposed for segmenting lung
region from CT slice images. The most used techniques are
the intensity-based methods [4–7], which are based on the
intensity difference between the lung tissue and other tissues.
In this kind of models, to separate the whole region into
two parts, a fixed threshold value is selected. Although this
method is simple and fast to implement, it has an inherent
limit that there is not an ideal fixed threshold that works well
for all the images.Thus, the optimal threshold [8] is proposed,
which gives an adaptive threshold for every slice image. But
this model is also based on the theory of the fixed threshold
methodwhichmakes themodel lack the ability of segmenting
the CT images that contain inhomogeneous intensity.

As another type of segmentation technique, the active
contour model is also introduced to obtain a more accu-
rate segmented result in the chest CT images. In [9–12],
the proposed active contour models combine the gradient
information or the curvature information which makes
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the level set function stop on the boundarywith high gradient
or curvature values. However this kind of model does not
easily converge to boundary concavity, which leads to a rough
boundary [13]. As another type of information, the regional
information is also used in active contour models [14–19].
Chan-Vese [14] proposes the well-known CV model which
can segment the intensity homogeneous images quickly and
robustly. Li [15] presents a local binary fitting (LBF) model
which can segment the intensity inhomogeneous images
successfully. Yang [20] combines the CV model, the LBF
model, the global convex segmentation method, and the split
Bregman method together to construct a new active model
that is a global convex and can get the global minimum no
matter where the initial contour lies.

As for the edge correctionmethods, the existing methods
can be subdivided into two families: the morphology-based
methods [5, 7, 21–24] and the geometry-feature-basedmodels
[25, 26]. The commonly used rolling-ball methods [7, 21,
22], which drive a ball along the edge contour to rein-
clude juxtapleural nodules, belong to the morphology-based
methods. In [5, 23, 24], sequences of erosion and dilation
operations are combined to smooth the segmented lung
boundary; they belong to the morphology-based methods
too. Those morphology-based methods are easy and fast to
implement, but the correction accuracy hugely depends on
the radii of the morphology template. What is more, there
are no proper radii that work well all the time. On the
other side, the curvature information of the lung contour is
used to identify the juxtapleural nodules [25, 26], but the
curvature information is not a robust criterion for its sensitive
properties to the rapid curvature changes and the noise. Yim
and Hong [27] propose a contour tracing method to smooth
the 2D contour; Pu et al. [28] present an adaptive border
marching (ABM) method to reinclude all the juxtapleural
nodules; Yim et al. [2] correct the boundary by evolving the
initial identified boundary with a defined scope and finding
the optimal boundary.However, all thosemethods depend on
the initial identified boundary greatly. If the initial boundary
is recognized incorrectly, the correction method effect may
be worse.

In this paper, a new lung extract method without the
loss of the juxtapleural nodules is proposed by means of the
CV model, the LBF model, the innovative edge detection
function, the split Bregmanmethod, and the geometric active
contour model. First of all, a new edge detection function
is defined with the help of the classical structure tensor
theory. Then a new active contour model, which combines
the global information, the local information, and the new
edge information, is proposed. Besides, the proposed active
contour model is converted to a convex segmentation model
and is solved by the split Bregman method. After that, the
central airway is excluded automatically. In the next step,
the fractal theory is applied to detect the defective edge that
is caused by juxtapleural nodules and the blood vessel and
the airway. Finally, the geometric active contour model is
introduced to correct that detected defective boundary.

The organization of the paper is as follows. The new edge
detection function, the segmentation active contour model,
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Figure 1: The schemes of the proposed lung correction method.

the correction geometric method, and other processes are
discussed in Section 2. Numeric experiments are given in
Section 3. The conclusion of the paper is offered in Section 4.

2. Methods

As shown in Figure 1, the proposed model consists of three
major steps. Firstly, the lung initial mask is extracted by an
active contourmodel. Secondly, according to the airway posi-
tion in the preslice CT image and the location relationship
between human organs and the rib tissue, the central airway
in every slice of the CT scan is excluded automatically. Then,
the lung region is divided into several smaller blocks using a
grid line. Thirdly the fractal theory is used to detect the lung
boundary that is contiguous to juxtapleural nodules. Finally,
the geometric active contour model is introduced to correct
the defective lung boundary that is caused by juxtapleural
nodules.

2.1. The New Edge Detection Function. As a traditional edge
detection function, 𝑔 is defined as follows:

𝑔 (I) = 1

1 +
∇ (𝐺𝜎 ∗ I)

2
, (1)

where 𝐺
𝜎
is a Gaussian kernel function with the standard

deviation of 𝜎. From (1), it is easy to find that 𝑔 is sensitive
to different noise sources and weak boundaries. So when 𝑔

is used, it may make the level set evolution unstable if the
detected edge is affected by different noise sources or weak
boundaries.

In order to overcome the disadvantage, the classical
structure tensor theory [29] is used to construct a new edge
detection function. For a scalar image I, the classical structure
tensor 𝐽

𝜎
is defined as follows:
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where 𝐾
𝜎
is a Gaussian kernel function of size 3 × 3 with

the standard deviation 𝜎 and 𝐼
𝑥
and 𝐼

𝑦
denote the partial

derivatives of the given image.
To be expressed simply, 𝐽

𝜎
is written as ( 𝐽𝑥𝑥 𝐽𝑥𝑦
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). Note
that the matrix 𝐽
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is positive semidefinite; its eigenvalues are
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Figure 2: The edge detection result of 𝑔∗. (a) The original image; (b) the detected edge.

labeled as 𝜌
1
, 𝜌
2
, 𝜌
1
≥ 𝜌
2
. What is more, it is easy to find that

𝜌
1
≈ 𝜌
2
≈ 0 in the flat region, 𝜌

1
≫ 𝜌
2
≈ 0 when the point is

on the straight line edge, and 𝜌
1
≫ 𝜌
2
≫ 0when it is a corner

point. That is, the difference Δ𝜌 between the two eigenvalues
gets a small value in the flat region and a big value on the edge
of the image, respectively.

Thus we can select a threshold to distinguish those two
regions from each other; let 𝑆

𝑇
= {𝑥 | 𝑥 ∈ 𝑇}, 𝑇 = 𝜌

1
− 𝜌
2
;

then the threshold is defined as follows:

𝑇
𝑐
= 𝑇 + 𝜅𝜎

𝑇
, (3)

where 𝑇 and 𝜎
𝑇
are the mean and the standard deviation of

𝑆
𝑇
, respectively, and 𝜅 is a constant-weight that controls the

difference between 𝑇
𝑐
and 𝑇.

By virtue of𝑇
𝑐
, a new edge detection function is calculated

as follows:

g∗ (𝑥, 𝑦) = {0, 𝑇 (𝑥, 𝑦) ≤ 𝑇
𝑐

1, 𝑇 (𝑥, 𝑦) > 𝑇
𝑐
.

(4)

In Figure 2(b), there is the detected edge of 𝑔∗, from
which it is easy to find that 𝑔∗ gives a perfect edge of the
image in Figure 2(a). Furthermore, this result is very similar
to the observation of human.What is important is that, except
for offering of the edge information to the proposed active
contour model, 𝑔∗ can also serve as an adaptive weight of the
proposed model, which is shown in the following subsection.

2.2. Initial Lung Mask Extraction. Due to the partial volume
effect (PVE) or the similar density between the juxtapleural
nodules and the chest wall, CT images often have inhomo-
geneous intensity around the lung boundary. However, the
most of existing methods cannot segment those CT images
accurately. So, we propose a new combinedmodel to segment
this kind of CT images. The new model is a combination of
the global-region-information and local-region-information
with an adaptive weight. Besides, we convert the new active
contour model to a convex minimization model which can
ensure the robustness and efficiency of segmentation result.

As mentioned above, CV model and LBF model are
active contour models (ACM) that are based on global
intensity information and local region intensity information
correspondingly; thus those two models are integrated into
the new model dynamically to inherit their advantages. Its
energy function is as follows:

𝐸
GLg

= 𝛼𝐸
CV

+ 𝛽𝐸
LBF

+ 𝛾𝐸
𝐿

𝑔
∗ + ]𝐸𝑅, (5)

where 𝛼, 𝛽, 𝛾, and ] are four positive constants which control
the energy ratio of the CV model, the LBF model, the length
term, and the regularization term correspondingly in the
proposed energy function; 𝐸𝐿

𝑔
∗ and 𝐸

𝑅 are the length term
and the regularization term correspondingly; 𝐸CV and 𝐸LBF

are the energy function of CV model and LBF model, which
can be calculated by
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where 𝜂
1
, 𝜂
2
, 𝜉
1
, and 𝜉

2
are four positive constants that balance

the intensity-based energy in the inner and outer of the curve
𝐶 and 𝐾

𝜔
denotes a Gaussian kernel function with standard
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deviation of 𝜔 and window size of (4𝜔+1)×(4𝜔+1).The rest
of the terms are defined as follows:
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where 𝛼 and 𝛽
 are two positive constants that denote the

adaptive weights of the first two terms in (5).
It is worth noting that the proposed 𝑔∗ has two roles in

(5). One is the factor of the length term which can drive
the evolving level set function toward the detected 𝑔

∗. By
this term the computational efficiency will be improved. The
other role is the adaptiveweight, which can assign appropriate
combined energy to every point. With the help of this term,
the edge point will be given more local information which
helps to determine the precise boundary. It is the major
improvement of our proposed method which makes our
proposedmodel outperform their 𝑔-based counterparts [20].

The energy function (5) can be minimized by solving the
following gradient flow:
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As most active contour models, new model (5) is also

prone to the local minimum. As mentioned above, LCV
model is prone to the local minimum. To overcome this
defect, (5) is converted to a convex minimization problem;
then it is solved by the split Bregman method. First of all, in
general, let 𝜉

1
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2
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1
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2
= 1; then (8) is written as

follows:
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Note that (9) is nonconvex too; however, it can be
transformed into a convex one by the globally convex
segmentation (GCS) method [30]. To apply this method,
the third term in (9) should be dropped. In fact, according
to [20], the regularization term is used to eliminate the
reinitialization process and maintain the level set function as
an approximate signed distance function near the zero level
set. At the same time, this term is not contained in the classical
region-based models, such as the famous CV models. With
only the data fitting term and the arc length term, these
models work well. Actually, the reinitialization process is not
encouraged for most experiments since it may cause some
subtle side effects, such as preventing the detection of interior
boundaries within an object, as pointed out in CVmodel [14].
Furthermore, in split Bregman method, we restrict 𝜙 to the
interval [0, 1]. In this way, the level set function 𝜙 will not
blow up to very large values on both sides of the zero level
set and will not cause inaccurate computation or erroneous
segmentation results. Thus dropping this term is reasonable
and will not affect the segmentation results of the model.

Let 𝛾 = 1; then we get the new gradient flow as follows:

𝜕𝜙

𝜕𝑡
= 𝛿
𝜀
(𝜙) (div(𝑔∗ ∇𝜙∇𝜙
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1
+ 𝐹
2
)) . (11)

With the help of the GCS method, we drop 𝛿
𝜀
(𝜙) to get a

simplified gradient flow. It is worth noting that, through 𝛿
𝜀
(𝜙)

which is dropped, the optimality solution of the simplified
gradient flow is also equivalent to its original form [20]. The
simplified form is defined as follows:

𝜕𝜙

𝜕𝑡
= [div(𝑔∗ ∇𝜙∇𝜙



) + 𝜇 (𝐹
1
+ 𝐹
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Based on (12), a new energy function can be constructed
as follows:

𝐸
GLg

(𝜙) = ∫𝑔
∗ ∇𝜙 (x)

 𝑑x + ∫𝜇𝜙 (x) 𝑠 (x) 𝑑x, (13)

where 𝑠(x) = −(𝐹
1
(x) + 𝐹

2
(x)).

It is interesting to find that (13) has the same solution as
(11). Thus the purpose becomes finding the minimum of (13).

To guaranteemodel (13) gets the unique globalminimum,
the range of 𝜙 is restricted within a bounded interval. In this
paper, the interval is [0, 1].Thus (13) can bewritten as follows:

min
𝜙∈[0,1]
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Generally, (14) can be expressed as
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[
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where

∇𝜙
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(I (x)) ∇𝜙 (x)
 𝑑x,

⟨𝜙, s⟩ = ∫𝜙 (x) 𝑠 (x) 𝑑x.
(16)

In order to apply the split Bregman method, we present a
new term d⃗ and a penalty term that can ensure d⃗ approximate
to |∇𝜙(x)| in the iteration. By those two terms, (14) is
reformatted into the following form:

min
𝜙∈[0,1]

𝐸
GLg

(𝜙) = min
𝜙∈[0,1]

[
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2


d⃗ − ∇𝜙

2

] ,

(17)

where 𝜆 is a positive constant parameter.
Then the Bregman iteration is used to meet the condition

d⃗ = |∇𝜙(x)| [31], so we get the following optimization
problem:

(𝜙
𝑘+1

, d⃗𝑘+1) = arg min
𝜙∈[0,1], ⃗d

(
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+
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d⃗ − ∇𝜙 − d⃗𝑘

2

) ,

(18)

where b⃗𝑘+1 is got by the Bregman iteration:

b⃗𝑘+1 = b⃗𝑘 + (∇𝜙𝑘+1 − d⃗𝑘+1) . (19)

The optimization solution of 𝜙𝑘+1 is obtained by the
optimization condition:

Δ𝜙 =
𝜇 ⋅ 𝑠

𝜆
+ ∇ (d⃗ − b⃗) , 𝜙 ∈ [0, 1] . (20)

For (20), we get the approximated solution of 𝜙 by means
of the Gauss-Seidel method [31], which is computed by
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, 1} , 0} .

(21)

Finally, the solution of d⃗𝑘+1 is acquired by the Shrink
process [31]:

d⃗𝑘+1 = shrink
𝑔
∗ (b⃗𝑘 + ∇𝜙𝑘+1, 1

𝜆
)

= shrink(b⃗𝑘 + ∇𝜙𝑘+1, 𝑔
∗

𝜆
) ,

(22)

where the Shrink process is defined as follows:

shrink (𝑥, 𝜃) =
{

{

{

𝑥

|𝑥|
max (|𝑥| − 𝜃, 0) , 𝑥 ̸= 0

0, 𝑥 = 0.

(23)

As shown in Figure 3, for the given images I, update
𝑠 in (21) by calculating the mean intensity in the regions
𝜙 > 0 and 𝜙 < 0. Then update 𝜙 according to (21) until its
convergence is achieved. By this way, the final segmentation
result is obtained by the boundary of the following set:

{𝑥 ∈ Ω | 𝜙
final

(𝑥) > 0.5} . (24)

The segmentation result of the given image in Figure 3(a)
is shown in Figure 3(b), and the binary image of the
segmentation result is displayed in Figure 3(c).

2.3. Airway Exclusion. Because the inner of airway has
the approximate intensity with the lung region, it is often
included in the final segmentation result of the intensity-
information-based image segmentationmodel.However, this
part of tissue, especially the central airway, is useless for lung
nodules detection; thus it needs to be excluded from the above
segmentation result.

In fact, it is easy to find that the trachea and bronchi out
of the lung region are faraway from the ribs and there is less
osseous tissue in its neighborhood, while the outer boundary
of the lung region is contiguous with the rib. Thus, for every
subregion of the segmentation result, a morphology dilation
process is applied to detect whether there is an osseous tissue
in the dilated region. If none of the osseous tissues exists, this
subregion is excluded from the lung region of the current CT
slice. Until all the slices in the CT scan are processed, the
majority of those regions are removed already.

However, the performance of the exclusion process is not
always perfect all the time. For some slices of some patients,
the tracheal cartilages around the trachea and bronchi out of
the lung region are very obvious; the dilated neighborhood
region contains some tracheal cartilage that is regarded as the
osseous tissue, so the inner parts of them are preserved.

In order to tackle this problem, a further process is
introduced. In theCT slice, it is seen that the tracheal cartilage
is obvious in some slice, but it does not always exist in
the previous or successive slices for its size limit in the
𝑧-axis. What is more, it is interesting to observe that the
inner parts of the trachea and bronchi are excluded in those
tracheal cartilage vanished slices. Besides, the locations of
organs are approximately similar to each other among the
adjacent slices. Therefore we can use these two properties to
exclude the inner region of the central airway. In thismethod,
from the second slice of the CT scan, each subregion in the
current slice is checked for whether the equivalent location
in the previous slice is excluded. If the same subregion is
removed, the current region will be excluded from lung
region too. Until all slices are handled, the major central
airway-surrounded regions have been excluded already. In
addition, the consequence of subsection is also given in
Figure 4.
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(a) (b) (c)

Figure 3: The segmentation result and the obtained initial mask. (a) The original image; (b) the segmentation result; (c) the obtained initial
lung mask.

(a) (b) (c)

Figure 4: The airway-free initial lung mask. (a) The original image; (b) the segmentation result; (c) the result after extracting central airway.

2.4. Defective Boundary Detection. For juxtapleural nodules,
they have the approximate intensity with the surrounding
area, so they are often incorrectly excluded from the lung
region. But those nodules hold a higher rate of being malig-
nant tumors than other inner nodules, so the performance
of the CAD system will be affected if those nodules are not
reincluded into the lung region.

Hence, according to the fact that the contour of the lung
region is smooth and the smoothness of the boundary on the
segmented image is damaged by the juxtapleural nodule, a
new boundary detection method is proposed to detect the
defective boundary by means of the fractal theory.

First of all, the minimum enclosing rectangle (MER) of
the lung region on 2D slice is acquired; then it is uniformly
divided into 10 × 10 blocks by a gird line. The number of
the blocks is chosen according to the actual size of the lung
region and the size of lung nodules. Then the blocks that
contain the boundary of the segmentation result, which is
called the boundary block, are detected. In order to visualize
the detection process, the result of this subsection is shown in
Figure 6. Note that when there is only one lung subregion, the
blocks should be set to 2 × 2 to avoid the phenomenon that
the size of the block is too small to carry the operation on it.

For every boundary block, the fractal theory is adopted
to account the fractal dimension of the inner boundary

line. Furthermore, for easy and automatic implementation,
the box-counting method is selected to compute the fractal
dimension among so many techniques [32]. By this method,
every boundary block is covered by a series of grids, whose
sizes have a progressive decrease. For each of the girds, the
following two values are recorded: the number of square
boxes intersected by the image, 𝑁(𝑠), and the side length
of the squares, 𝑠. The regression slope 𝐷 of the straight line
formed by plotting log(𝑁(𝑠)) against log(1/𝑠) is the fractal
dimension of the current block which can be evaluated as
follows [32]:

log (𝑁 (𝑠)) = log (𝐾) + 𝐷 log(1
𝑠
) , (25)

where𝐾 is a constant and𝑁(𝑠) is proportional to (1/𝑠)−𝐷.
As mentioned above, the normal boundary of the lung

region on 2D slice is smooth, so the fractal dimension of
the block that contains those kinds of boundary is smaller
than that of the boundary block that contains the defective
boundary. Until all the boundaries are calculated by the box-
counting method, all the boundary blocks can be categorized
into two classes: the blockswith a small fractal dimension that
contain the normal smooth boundary and the blocks with a
big value that contain the defective boundary that is caused
by the juxtapleural nodule, which can be seen clearly from
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Figure 5: The histogram of all the fractal dimension values in all
edge blocks.

the histogram in Figure 5. Thus we can select an appropriate
threshold to distinguish those blocks into classes.

Let 𝑑
𝑖
denote the fractal dimension of the 𝑖th boundary

block;𝑁
𝑏
indicates the overall number of the boundary block,

𝑆
𝑓
= {𝑑
𝑖
| 𝑖 = 1, 2, . . . , 𝑁

𝑏
}; the threshold 𝑇

𝑓
can be defined

as follows:

𝑇
𝑓
= 𝑑 + 𝑠

𝑑
, (26)

where 𝑑 and 𝑠
𝑑
are themean value and the standard deviation

of 𝑆
𝑓
, respectively. Furthermore, the threshold in (26) is

given by the strategy of trial-and-error empirically. In our
experiments, both the mean and the valley value of the
histogram are not suitable; thus we select an optimal value
after many experiments.

With the help of 𝑇
𝑓
, the block is regarded as the block

that contains the defective boundary if its fractal dimension
is bigger than𝑇

𝑓
.Then those detected blockswill be corrected

in the following subsection. As shown in Figure 6(c), the
detected defective boundary by 𝑇

𝑓
is very accurate, and it is

nearly similar to the observation of human. Note that it is the
first time that the fractal theory is used to identify the defec-
tive lung boundary that surrounds juxtapleural nodules inCT
slices. Besides, the lung-inner blood vessel is also excluded
by the segmentation method for their higher density. In fact,
those regions should reinclude the lung region to get an
accurate nodule-detection result. It is interesting that, except
the defective boundary that is caused by juxtapleural nodules,
our model can detect those boundaries that are caused by
those blood vessels too and regard them as the defective
boundary. Furthermore, previous methods only take local
properties of the boundary into account, which makes the
model sensitive to the robustness of those local properties.
But the proposed model integrated the global boundary
properties with the local boundary properties together by
the statistical method. Thus the detected result will be more
robust to different shapes of the lung boundary.

2.5. Boundary Correction Based on Geometric Deformable
Models. As shown in Figure 7(a), the whole image is divided
into four parts: Ω

1
, Ω
2
, Ω
3
, and Ω

4
. Ω
1
is the outside of the

lung region except for those points in the defective boundary
blocks,Ω

2
denotes inner parts of the lung region,Ω

3
indicates

the set of boundary points in the correct boundary block, and
the detected defective boundary block region is labeled asΩ

4
.

Besides, according to the purpose of the correction
process and the boundary information, we also give the
different curve evolving strategies for all four kinds of regions.
InΩ
1
, if the evolving curve passes through the real boundary,

the curve should be shrunk. Conversely, in Ω
2
, the curve

will be expanded if the curve converges into the inner of
the lung. For Ω

3
, due to those edge points on the accurate

boundary already, there is no need to correct them.Therefore,
if the curve is on those points, it should be kept still to avoid
useless computation. Finally, forΩ

4
, because they contain the

defective boundary, the hole should be filled while keeping
the boundary smooth. Thus the curve evolution is proposed
to expand the defective boundary in the hole by a balloon-
force-like technique. As shown in Figure 7(b), by this way,
the defective inner boundary will be expanded to the ideal
position all the time.

From Figure 7, what needs to be done is expanding the
whole lung region from the inner part of the lung region by
a balloon-force-like power until we get an optimal smooth
boundary while keeping the correct boundary still in current
position. As a result, the defective boundary is corrected; the
other boundary performs the same state as before.

First of all, we propose the simplified geometric active
contour which is written as follows:

𝜕𝜙

𝜕𝑡
= k ∇𝜙

 , 𝜙 (𝑥, 0) = 𝜙
0
, (27)

where k is a speed parameter which controls the speed and
orientation of the evolution curve. In order to make the
evolution stop on the correct boundary, k is defined by

k (𝑥) =
{{

{{

{

1, 𝑥 ∈ Ω
1

0, 𝑥 ∈ Ω
3

−1, 𝑥 ∈ {Ω
2
, Ω
4
} .

(28)

The motivation of (28) is that 𝑘 = −1 can make the balloon
force outward to expand the boundary curve, while 𝑘 =

1 can let the force inward to shrink the boundary curve.
Furthermore, 𝑘 = 0 can keep the right boundary still
and protect those points from impact and ensure the final
correction result is precise.

However, without any restrictive conditions, the curve
will keep expanding itself on the defective boundary all the
time. And it may overpass the real lung boundary and arrives
at an inappropriate position at last. Thus the curve length
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(a) (b) (c)

Figure 6: The process of detecting defective boundary block. (a) The whole block setting; (b) the boundary block; (c) the detected defective
boundary block.
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Figure 7: The figure of the geometric active contour model and the purpose of the proposed correction method. (a) The general description
of the geometric active contour model; (b) the purpose of our method.

term and the area term are introduced by the assumption that
the final evolution curve should be as smooth as possible.The
introduced terms are defined by

𝐸
𝐿

= ∫
Ω

𝛿
𝜀
1

(𝜙)
∇𝜙

 𝑑𝑥, 𝑥 ∈ Ω.

𝐸
𝐴

= ∫
Ω

𝐻
𝜀
1

(𝜙 (𝑥)) 𝑑𝑥, 𝑥 ∈ Ω,

(29)

where 𝜀 is a parameter that controls the nonzero interval
in the delta Dirac function 𝛿

𝜀
1

(𝑥). Their gradient flows are
calculated by

𝜕𝜙

𝜕𝑡 𝐿
= 𝛿
𝜀
1

(𝜙) div( ∇𝜙
∇𝜙



) ,

𝜕𝜙

𝜕𝑡 𝐴
= 𝛿
𝜀
1

(𝜙) .

(30)

To maintain the smoothness of the evolution curve, the
curve length term is embedded into the geometric active
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contour model; thus the new geometric active contour model
is defined by

𝜕𝜙

𝜕𝑡
= k ∇𝜙

 + 𝜅1

𝜕𝜙

𝜕𝑡 𝐿
+ 𝜅
2

𝜕𝜙

𝜕𝑡 𝐴

𝜙 (𝑥, 0) = 𝜙
0
,

(31)

where 𝜙
0
denotes the final lung mask of Section 2.3 and 𝜅

1

and 𝜅
2
denote the gradient flow distribution in the proposed

geometric active contour model.
In order tomaintain the evolution of the level set function

stable, the Gaussian convolution method which is proposed
by Zhang et al. [17] is introduced into this model.The level set
update function by the Gaussian kernel function is as follows:

𝜙


𝑛
= 𝜙
𝑛−1

+ Δ𝑡Δ𝜙, 𝜙
𝑛
= 𝐺
𝜎
1

∗ 𝜙


𝑛
, (32)

where 𝐺
𝜎
1

is a Gaussian kernel function with the standard
deviation of 𝜎

1
, Δ𝑡 is the time step, and Δ𝜙 denote the result

which is obtained by the first equation of (31). Besides, 𝜙
𝑛

serves as the initial contour for the next iteration. To the best
of our knowledge, it is the first time that the geometric active
model is proposed to correct the lung edge in computer-aided
diagnosis technique.

In the correction process, the initial contour for the
geometric active contour model is set as the result of the
initial lung region mask without the airway and background.
Then update the level set function 𝜙 according to (32) until
it arrives at a stable state. Finally, the corrected boundary,
which is shown in Figure 8, is given as the zero level set of
𝜙. In the figure, both the result of the correction method
and the evolving active contour are provided. Particularly in
Figure 8(c), there are all the curves in the entire correction
process, which also implies the perfect effect of the proposed
correction method.

3. Experiments

In this section, the experiments are performed on the pro-
posedmodel.The experiments focus on the following aspects:
(1) the superior effect of 𝑔∗ over 𝑔; (2) the global minimum
detecting ability of the proposedmodel; (3) the advantages of
GLg over the state-of-the-art active contour model; (4) the
correction effect analysis. The experiments are finished on
a notebook computer with Intel 2.10GHz CPU and Matlab
8.0. The parameters in the proposed model are set as follows:
𝛼


= 0.9, 𝛽 = 0.1, 𝜆 = 1 × 10
3, 𝜇 = 3𝜆, 𝜎 = 3, 𝜅 = −0.05,

𝜔 = 1, 𝜀 = 1, 𝜀
1
= 0.5, 𝜅

1
= 5𝑛, 𝜅

2
= 0.1, and 𝑛 denotes the

iteration times.The used 3 CT data sets are obtained from the
hospital in Guangzhou, China; the rest of 25 sets are selected
from the Lung Image Database Consortium (LIDC).

First of all, we test the boundary detecting capability of
𝑔
∗ in the given image. In order to display the advantages of
𝑔
∗, the traditional edge detection function 𝑔 is introduced

too. The detected edges are shown in Figure 9, from which
it is easy to find that 𝑔 is affected by noise and additional
background. However, due to the usage of the statistical
information, 𝑔∗ is insensitive to the noise and background
and gets a clear edge-information-contained image. It is

worth noting that 𝑔∗ gets all the edges of our interesting
structures except for some ribs and the spine.

In order to demonstrate the global minimum detection
capability of the proposed model, we select two different
rectangle initial contours which are shown in Figures 10(a)
and 10(c) correspondingly. The segmentation results are
shown in Figures 10(b) and 10(d). From this experiment, it
is easy to find that the proposed model gets the uniform
segmentation results under two different initial contours,
from which we can know that the proposed model can get
the global minimum no matter what kinds of initial contour
we select.

In the following experiment, we verify the advantages
of GLg model over the popular optimal threshold method.
The segmentation results are given in Figure 11, in which
Figure 11(a) shows the segmentation result of the optimal
threshold method and Figure 11(b) displays the segmentation
result of the proposed model. From the results, it is clearly
seen that the optimal threshold method fails to segment this
image for there is intensity inhomogeneity in the box region.
However, with the help of 𝑔∗, GLg model detects the true
boundary in the box region. Although a circular region in
the box region is identified as the outer part of the lung,
this region can be corrected by filling the inner hole by the
morphology method; thus this part of region is not affected
by the final segmentation result. Note that the hole-filling
method is a common process in the previousmodels, and it is
not our special process to deal with the segmentation result.

To verify the segmentation ability of the proposed
model, we compare the proposed model with some other
models. The segmentation results are listed in Figure 12.
Figure 12(a) gives the initial contour and the original image,
and Figure 12(b) shows the segmentation result by an expert.
Figures 12(c)–12(f) provide the segmentation results of LBF
model [15], LIF model [17], GCLGIF [20] model, and the
proposed model correspondingly. From those figures, it is
easy to find that LBF model and LIF model are sensitive
to the initial contour. As combined models, GCLGIF model
and the proposed model can achieve a satisfactory seg-
mentation result. The segmentation results of the last two
models approximate the segmentation result of the expert.
Particularly, it is seen that the proposed model overcomes
GCLGIF model in the following experiment.

For evaluating the proposed model quantitatively,
another globally convex local and global intensity fitting
energy (GCLGIF) model, which is also a global-and-local-
combined active contour model, is introduced in this
experiment. The major difference between those two models
is the different edge information and different adaptive
weight function. In GCLGIF model, the edge information
is given by 𝑔; the weight function is 𝜔. In GLg method,
the edge information and the weight are obtained from 𝑔

∗

simultaneously which can give more useful edge information
for evolving the level set function. The experiment is
performed on a CT set which contains 141 CT slices; the
initial active contour for both kinds of models is obtained by
the threshold of −500 Hounsfield units (HUs) [5]. It is worth
noting that although the proposed segmentation model can
segment images accurately in every kind of initial contour
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(a) (b) (c)

Figure 8:The corrected results. (a)The evolved active contour; (b) the final correction result; (c) the corrected part by the proposed method.

(a) (b)

Figure 9: The edge detection capability of 𝑔 and 𝑔∗. (a) The detected edge by 𝑔; (b) the detected edge by 𝑔∗.

which can be found in Figure 10, the above initial contour
is used for reducing computational time; it does not give
a better initial contour to the segmentation model. In the
experiment, if we take the GCLGIF segmentation result as
the golden standard, themean segmentation accuracy of GLg
method in those 141 slices achieves 99.97%. Additionally,
due to the different edge information and weight function,
GLg needs less time to segment all slices than GCLGIF
model. Besides, the standard deviation and the coefficient of
variation of all the 141 time data are also compared which are
shown in Table 1. Besides, we also offer the time improved
rate (TIR) in Table 1, which is defined by

TIR =
𝑡
1
− 𝑡
2

𝑡
1

×%, (33)

where 𝑡
1
denotes the time of the GCLGIF model and 𝑡

2

denotes the time of the GLg model.
It should be noted that not only the mean time but also

the standard deviation and the coefficient of variation are
smaller than those of the GCLGIF model. Besides, from

Table 1: The computational effect comparison between 𝑔- and 𝑔∗-
based models.

Model 𝑡 Std CoV TIR
GCLGIF 0.37799 1.1139 2.9468 —
GLg 0.3543 0.80846 2.2818 6%

the TIR value, it is known that, under the nearly same
accuracy, GLg model is more efficient than GCLGIF model.

In order to display the correction effect intuitively, the 3D
model of the segmented lung and the edge corrected lung is
reconstructed in Figure 13. From Figure 13(a), it is easy to find
that there is a hole that surrounds the juxtapleural nodule
in the signed circle region. After edge correction, the hole is
almost filled by the geometric active contour model, which
can be seen in Figure 13(b). It is interesting to observe that
below the circular region of Figure 13(b) the rib profile is
more obvious after edge correction. Unfortunately, the hole
is not filled perfectly; there is a tiny defect in the circular
region of Figure 13(b).The leading reason is that the evolving
level set function should be regularized as a signed distance
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(a) (b)

(c) (d)

Figure 10:The segmentation results under two different initial contours. (a) and (c) are two initial contours; (b) and (d) are the segmentation
results.

(a) (b)

Figure 11: The comparison between the optimal threshold method and GLg model. (a) The segmentation result of the optimal threshold
method. (b) The segmentation result of GLg model.
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(a) (b) (c)

(d) (e) (f)

Figure 12: The comparison between the proposed method and other models. (a) The initial contour and the original image. (b) The
segmentation result by expert. (c) The segmentation of LBF model. (d) The segmentation of LIF model. (e) The segmentation of GCLGIF
model. (f) The segmentation of the proposed model.

(a) (b)

Figure 13: The 3D model of the corrected lung. (a) The 3D lung model before correction; (b) the 3D model after correction.

function by the Gaussian convolution, whichmakes the zeros
level set not match the real edge absolutely which can be seen
in Figure 8(c). However, if we observe the tiny sag region
between two ribs in Figure 13(b), the size of the unfilled hole is
very small too; that is, the loss of the imperfect filling process
is very slight which can be verified by Figure 8(c) too.

Finally, in order to examine the correction accuracy of
the proposed model, the correction results of GLg model
are compared with the correction results by hand which
are obtained under the guidance of the expert. We select
28 CT slice sets from the LIDC Database; the correction
results by hand are selected as the golden standard; the mean
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Figure 14: The mean correction accuracy of our method and the
morphology method under 28 different CT slice sets.

correction accuracy of every set is shown in Figure 14. From
those accuracy data, it is easy to find that the minimum
of the proposed correction accuracy is above 99%; that
is, they outperform their morphology-based counterparts,
which implies the proposed model is a feasible model.

4. Conclusion

A new automated lung extraction and the edge correction
method combines CVmodel, LBFmodel, the globally convex
segmentation method, the split Bregman method, the fractal
theory, and the geometric active contour model. The detec-
tion accuracy of the proposed new edge detection function is
more accurate than the traditional edge detection function.
With the help of the split Bregman method, the useful
information of the new adaptive weight function, and the
new edge information, the proposed segmentation model
that combines the CVmodel and LBFmodel can segment the
given image quickly and get the global minimum no matter
where the initial contour lies. Furthermore, with the help of
the fractal theory and the statistical threshold, the proposed
method can detect the defective edge block successfully. In
addition, the geometric active contour model can fill the hole
that surrounds juxtapleural nodules automatically. Several
experiments demonstrate the accuracy and efficiency of our
correction model.
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