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Collapsin response mediator proteins (CRMPs), which consist of five homologous
cytosolic proteins, are one of the major phosphoproteins in the developing nervous
system. The prominent feature of the CRMP family proteins is a new class of microtubule-
associated proteins that play important roles in the whole process of developing the
nervous system, such as axon guidance, synapse maturation, cell migration, and even
in adult brain function. The CRMP C-terminal region is subjected to posttranslational
modifications such as phosphorylation, which, in turn, regulates the interaction between
the CRMPs and various kinds of proteins including receptors, ion channels, cytoskeletal
proteins, and motor proteins. The gene-knockout of the CRMP family proteins produces
different phenotypes, thereby showing distinct roles of all CRMP family proteins. Also, the
phenotypic analysis of a non-phosphorylated form of CRMP2-knockin mouse model,
and studies of pharmacological responses to CRMP-related drugs suggest that the
phosphorylation/dephosphorylation process plays a pivotal role in pathophysiology in
neuronal development, regeneration, and neurodegenerative disorders, thus showing
CRMPs as promising target molecules for therapeutic intervention.

Keywords: CRMP, neuronal development, regeneration, structural biology, posttranslational modifications,
phosphorylation, neurological disorders, drug target

INTRODUCTION

Cell to cell interactions mediated by extracellular molecules drives numerous physiological
processes and helps enable coordinated functioning in neuronal development and regeneration.
Extracellular signals are often integrated into complex regulatory networks in which cytoskeletal
rearrangement and membrane reorganization are precisely regulated. The growth cone is a
characteristic structure at the distal tip of growing axons during development. Growth cones are
composed of an actin-rich peripheral domain and a microtubule-rich central domain. At the distal
tip of the growth cone, finger-like filopodia and sheet-like lamellipodia extend and retract rapidly
as they sense the environmental axon guidance cues around the growth cone.
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The first member of the Collapsin Response Mediator
Proteins (CRMPs) family, was originally identified as an
intracellular protein mediating the action of semaphorin-3A
(Sema3A)-signaling, a repulsive axon guidance molecule
(Goshima et al., 1995). The initial name of the protein was
CRMP-62 because collapsin is the former name of Sema3A
and 62 was the new molecule’s molecular weight. As CRMP-62
has significant homology with UNC-33, which is involved
in axon guidance in C. elegans through the regulation of
tubulin-cytoskeleton, CRMP-62 has been thought to mediate
the intracellular signaling involved in axon guidance via its
modulation of the cytoskeleton at various developmental
stages. After the identification of CRMP-62, an additional
four members of the CRMP family were identified by several
groups, such as TOAD-64, Ulip, DRP, DPYSL (Schmidt and
Strittmatter, 2007). Currently, the nomenclature has been unified
by calling the family members ‘‘CRMP1’’ through ‘‘CRMP5’’
(Supplementary Table S1); CRMP-62 has been renamed as
CRMP2. The CRMP family of proteins are now recognized as
multifunctional proteins, not only being involved in neuronal
development, regeneration and inflammation, but also in various
neurological and psychiatric disease states (Tobe et al., 2017;
Tsutiya et al., 2017).

In this review, we summarize the molecular aspects
of the CRMPs and discuss their possible involvement in
pathophysiological conditions of various disease states.
Comprehensive reviews on the implication of CRMPs in
Alzheimer’s disease (AD) and psychiatric disorders have been
described elsewhere (Gu and Ihara, 2000; Yamashita and
Goshima, 2012; Quach et al., 2015; Hensley and Kursula, 2016;
Nagai et al., 2017; Tobe et al., 2017; Nakashima et al., 2018).

STRUCTURE OF THE CRMPs

CRMP1, 2, and 4 have long and short alternate splicing isoforms
(Leung et al., 2002). Short isoforms of CRMP1, 2 and 4,
CRMP3, and CRMP5 are 565–572 amino acid lengths. The
apparent molecular size of these proteins on SDS-PAGE is
62–65 kDa. The long isoforms of CRMP1, 2, and 4 extend
approximately 100 amino acids at their N-termini and exhibit
72–75 kDa on SDS-PAGE. We hereafter describe long and short
isoforms as ‘‘L-CRMP’’ and ‘‘CRMP,’’ respectively. CRMP1 to
CRMP4 share 69–76% amino acid identity while these members
and CRMP5 share approximately 50% identity. The long
isoforms of CRMPs are minor components in most of the cells
and organs. The amino acid identity of the N-terminal regions
of L-CRMP1, 2, and 4 is 35% to 54%. The N-terminal extended
region has several unique functions such as distal localization of
L-CRMP2 (CRMP2A) in axons (Balastik et al., 2015), L-CRMP4
(CRMP4b) and RhoA interaction in Nogo signaling (Alabed
et al., 2007), and correlation of L-CRMP1 expression and cancer
cell migration (Pan et al., 2011).

X-ray crystal structures of the short isoforms of CRMP1,
2, 4, and 5 have been reported (Deo et al., 2004; Stenmark
et al., 2007; Ponnusamy and Lohkamp, 2013; Ponnusamy
et al., 2014). Central regions of the CRMPs (8–490) forms
a tetramer (Figure 1). The folded CRMP structure resembles

dihydropyrimidinase (DHPase), which hydrolyzes the amide
bond of pyrimidine bases (Gojkovic et al., 2003). Each CRMP
monomer consists of an N-terminal β-sheet enriched region
(15–69) and central α/β barrel domain (70–490). The central
domain contains tetramer interfaces. The ternary structure
of the entire CRMP C-terminal region (490–572) has not
been determined possibly because the region stays flexible and
the structure is somewhat random, altering its conformation
upon posttranslational modification such as phosphorylation.
However, the partial ternary structure of the C-terminal proximal
region of CRMP2 has been reported (Niwa et al., 2017). The
C-terminal visible residues from the α-helix19 (480–487) further
extend in the same direction and several residues in (491–506)
interact with the neighboring monomer (Figure 1), contributing
to stabilizing the tetramer. It has been shown that CRMPs
form hetero-oligomerized complexed in the brain (Wang and
Strittmatter, 1996). In vitro reconstitution revealed that CRMP1,
CRMP2, and CRMP3 prefer hetero oligomerization. However,
the biological significance of the hetero-complexed CRMPs has
not yet been fully addressed (Makihara et al., 2016).

Although the CRMPs have 51–54% amino acid identity
with DHPase, they have no enzymatic activity toward
dihydropyrimidines (Wang and Strittmatter, 1996), as His69 and
His248 residues coordinating Zn ions in the catalytic center of
DHPase are not conserved in the CRMPs. Instead, CRMP3 has
histone H4 deacetylase activity, which is involved in neuronal
cell death after the translocation of CRMP3 to the nucleus
(Hou et al., 2013). Other enzymatic activities of the CRMPs are
currently unknown.

PHOSPHORYLATION OF CRMPs

Posttranslational modifications play a crucial role in regulating
the folding of proteins, their targeting to specific subcellular
compartments, their interaction with other proteins, and
their functional states, such as activation and inactivation in
signal transduction pathways. Protein phosphorylation is the
major molecular mechanism through which protein function
is regulated in response to extracellular stimuli both inside
and outside the nervous system. Many kinases phosphorylate
CRMPs (Figure 2, Supplementary Table S2). Most of the
phosphorylation sites are localized in their C-terminal regions.
As the primary structures of their C-termini are relatively not
conserved compared to their central domains, some kinases
specifically phosphorylate one of the CRMPs but not the others.
Such phosphorylation may contribute to the unique function of
each member of the CRMP family protein. Here we summarize
the phosphorylation by kinase-based classification.

Cyclin-dependent kinase 5 (Cdk5) and glycogen kinase 3β
(GSK3β)—the phosphorylation of CRMP2 by Cdk5 and GSK3β
is the most extensively studied among the CRMP members
(Figure 2). CRMP2 is primarily phosphorylated at Ser522 by
Cdk5 and subsequently phosphorylated at Ser518, Thr514,
and Thr509 by GSK3β (Cole et al., 2006; Brittain et al.,
2012; Yamashita and Goshima, 2012; Nagai et al., 2017). The
latter phosphorylation requires Cdk5-primed phosphorylation
of Ser522, therefore, the substitution of Ser522 with Ala
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FIGURE 1 | Ternary structure of Collapsin response mediator proteins 2 (CRMP2). (A) Crystal structure of human CRMP2 (1–525) homo-tetramer (5X1A; Niwa
et al., 2017). A secondary structure-based view was rendered using Cn3D (version 4.3). One monomer (Mol1) is shown in secondary structure-based color (α-helix,
green; β-sheet, gold; random coil, cyan). The structure is visible between 14 and 506 residues. Phosphorylation (Tyr32, Tyr479, and Tyr499), SUMOylation (Lys374),
and oxidation (Cys504) sites are indicated by red, blue, and yellow, respectively. Other monomers (Mol2–4) are shown in faded colors. The C-terminal domain of
Mol1 interacts with Mol2. (B) Rotate view. The interface of Mol1 to Mol3 is shown by omitting Mol3 and Mol4. Note that Lys374 and Tyr479 are present on
the interface.

eliminates the phosphorylation of Ser518, Thr514, and Thr509 in
CRMP2. CRMP’s phosphorylation state determines its biological
function. Non-phosphorylated CRMP2 binds tubulin dimers to
facilitate the axonal elongation; the phosphorylation eliminates
that function. Instead, the phosphorylated CRMP2 acts as
an intracellular signaling mediator for inhibition of axonal
guidance such as via Sema3A. Recent crystal structural analysis
of CRMP2 revealed that non-phosphorylated CRMP2 monomer
forms hetero-trimer between CRMP2 monomer and the
GTP-tubulin hetero-dimer (Sumi et al., 2018). Using the
phosphorylation-mimicking form of CRMP2, Sumi et al.
(2018) revealed that the increased negative charge of the
C-terminal region alters CRMP2 homo-tetramer conformation
and reduces the interaction of CRMP2 and tubulin-dimers.
Ser522 phosphorylation of CRMP2 augments the interaction
with CaV2.2 to enhance Ca2+ influx (Brittain et al., 2012).

Phosphorylation state is not only regulated by kinase but also
by phosphatases that dephosphorylate. PP2A dephosphorylates
CRMP2 Thr514 and facilitates the non-phospho CRMP2 effect
on neurite outgrowth (Zhu et al., 2010). L-CRMP2 is
phosphorylated by Cdk5 at Ser27 in N-terminal extended
region as well as at Ser623, an equivalent residue of Ser522 in the
short form (Balastik et al., 2015). Prolyl Isomerase Pin1 catalyzes
and stabilizes phosho-Ser32-Pro33 in L-CRMP2. This brings
distal localization of L-CRMP2 in axons and attenuates Sema3A-
repulsive response despite Cdk5-dependent phosphorylation.

The C-terminal phosphorylation sites, Thr509, Thr514,
Ser518, and Ser522, are conserved in human CRMP1 and

CRMP4. Different priming kinases, Cdk5 and dual-specificity
tyrosine phosphorylation-regulated kinase 2 (DYRK2)
phosphorylate Ser522 of CRMP1 and CRMP4, respectively
(Cole et al., 2006). GSK3β secondarily phosphorylates human
CRMP1 and CRMP4 like CRMP2. However, Cdk5 directly
phosphorylates Thr509 of mouse/rat CRMP1 because Thr514 is
replaced with Ala. CRMP5 is phosphorylated by GSK3β at
Thr516 and this phosphorylation is essential for tubulin-binding
of CRMP5 but inhibits neurite outgrowth (Brot et al., 2014).

Rho-kinase—Rho-kinase phosphorylation of
Thr555 CRMP2 was initially identified by in vitro kinase
assays (Arimura et al., 2000). As Rho-kinase acts as the
downstream molecule of lysophosphatidic acid (LPA),
the primary cultured dorsal root ganglion (DRG) neurons
stimulated with LPA induced CRMP2-Thr555 phosphorylation
(Figure 2). Overexpression of CRMP2-Thr555Ala in DRG
neurons suppressed the LPA-induced growth cone collapse
response but not the Sema3A-response. A similar mechanism is
utilized in Ephrin-A5 signaling. Ephrin-A5-stimulation induced
growth cone collapse response and the Thr555 phosphorylation
in cultured DRG neurons. This response was abrogated
by a Rho-kinase inhibitor or by the overexpression of
CRMP2 Thr555Ala (Arimura et al., 2005).

Other Ser/Thr kinases—it has been shown that Protein
kinase A (PKA), Protein kinase C (PKC), and Calmodulin
kinase II (CaMKII) phosphorylate CRMP2 in pathological
conditions. PKA-dependent phosphorylation of CRMP2 was
observed in the nucleus accumbens neurons of cocaine-sensitized
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rats (Boudreau et al., 2009). The PKA-phosphorylation site
has not been determined. PKC-βII phosphorylates CRMP2 at
the Thr514 residue. This phosphorylation prevents calpain-
mediated CRMP2 proteolysis during ischemic injury (Yang
et al., 2016). CaMKII phosphorylates CRMP2 at Thr555,
which, in turn, attenuates glutamate toxicity in ischemic brains
(Hou et al., 2009).

Tyrosine kinases—it has been shown that the constitutive
active form of Fyn phosphorylates all members of CRMPs
(Uchida et al., 2009). The constitutive active form phosphorylates
Tyr32 of CRMP2; this phosphorylation is involved in Sema3A-
signaling in mouse DRG neurons (Figure 2). In contrast,
wild-type Fyn selectively phosphorylates CRMP1 at Tyr504 but
not other CRMPs (Buel et al., 2010). The absence of an
autoinhibitory mechanism in the constitutive active form may
contribute to the non-selective phosphorylation of CRMPs.
Fyn-related kinase Fes and Fer phosphorylate CRMP2 and
CRMP5. In vitro phosphorylation assay and mass spectrometry
analysis revealed that Fer phosphorylates CRMP2 at the 32, 251,
275, 431, 479, and 499 Tyr residues (Zheng et al., 2018). Among
these sites, Tyr479 and/or Tyr499 phosphorylation prevents
the tetramerization of CRMP2, which, in turn, decreases the
interaction of CRMP2 and microtubules (Figures 1, 2).

OTHER POSTTRANSLATIONAL
MODIFICATIONS

SUMOylation—CRMP2 is post-translationally modulated by
a small ubiquitin-like modifier (SUMO) at Lys374, and this
modulation alters CRMP2-interaction with Ca2+ and Na+

channels in a different manner (Figure 2). While SUMOylated
CRMP2 enhances Na+ currents through NaV1.7 surface
expression (Dustrude et al., 2013), it reduces Ca2+ influx
through CaV2.2 (Ju et al., 2013). De-SUMOylation and
de-phosphorylation of CRMP2 at Thr514 contribute to the
formation and maturation of dendritic spines (Zhang et al.,
2018). As the SUMO consensus motif including Lys374 is
conserved among CRMPs, SUMOylation may regulate
other CRMPs.

Oxidation—genetic dissection of drosophila axon guidance
revealed the involvement of flavoprotein oxidoreductase MICAL
in semaphorin-signaling (Terman et al., 2002). CRMP2 binds
and activates MICAL, by releasing its autoinhibition domain
(Schmidt et al., 2008). CRMP2 is subsequently oxidized at
Cys504 by MICAL upon Sema3A-stimulation and transiently
forms disulfate bonds with thioredoxin (TRX; Figure 2).
The CRMP2-TRX complex facilitates the phosphorylation
of CRMP2 at Thr509 by GSK3β (Morinaka et al., 2011),
indicating cross-talk between oxidation and phosphorylation in
Sema3A-signaling.

Proteolysis—various brain injuries such as ischemia and
glutamate toxicity induce calpain-mediated cleavage of all
members of the CRMP family and produce approximately
54 kDa truncated products (Jiang et al., 2007). Calpain cleavage
sites have been identified in CRMP3 and CRMP4. CRMP3 is
cleaved at N-terminal Arg75-Leu76 bond and CRMP4 is at the
C-terminal Arg550-Ser551 bond (Kowara et al., 2005; Hou et al.,

2006). Processing of CRMP2 at the C-terminal region exposes
nuclear localization signal (NLS) within residues Arg471-Lys472,
which brings the truncated CRMP2 to the nucleus (Rogemond
et al., 2008). Each truncated CRMP has a unique function.
Truncated CRMP2 suppresses neurite outgrowth and reduces
surface expression of the NR2B NMDA receptor subunit
to protect neurons from glutamate toxicity (Bretin et al.,
2006; Rogemond et al., 2008). Cleaved CRMP3 translocates
to the nucleus and acts as a histone H4 deacetylase, which,
in turn, induces neuronal cell death (Hou et al., 2006;
Hou et al., 2013).

CRMP INTERACTING MOLECULES

CRMPs interact with membrane and intracellular proteins
(Supplementary Table S3). Here, we classify those proteins
into several categories including cytoskeletal proteins and ion
channels.

Tubulin and microtubules—overexpression CRMP2 in
hippocampal neurons switch neurite identity from dendrites
to axons (Fukata et al., 2002; Yoshimura et al., 2005). This
action is accomplished by two functions (Niwa et al., 2017).
First, CRMP2 monomers bind to tubulin dimers and transport
them to the distal end of axons to facilitate the neurite
outgrowth. Second, CRMP2 tetramer stabilizes microtubules
(Lin et al., 2011). These actions are canceled by the C-terminal
phosphorylation of CRMP2 by GSK3β because phosphorylated
CRMP2 loses its binding ability (Figure 2). It has been shown
that Fer phosphorylates CRMP2 at Tyr479 and Tyr499. Crystal
structures of the CRMP2-Tyr479Glu phospho-mimicking
mutant revealed that the phosphorylation of Tyr479 interferes
with the tetramerization of CRMP2 by introducing a negative
charge in the hydrophobic cavity of the tetramer interface (Zheng
et al., 2018). CRMP2 α-helix 19 (476–487) serves as a tubulin-
dimer interface (Niwa et al., 2017). As CRMP2-tubulin dimer
interaction is abrogated by the C-terminal phosphorylation
of CRMP2 (Sumi et al., 2018), this modulation would also
alter the higher structure of the C-terminal region and α-helix
19. However, such alteration of full-length CRMPs has not
been revealed in a structural basis. CRMP3 inhibits tubulin
polymerization and neurite outgrowth in cultured cerebellar
granule neurons (Aylsworth et al., 2009). CRMP4 interacts
with microtubules in hippocampal neurons to facilitate axon
outgrowth (Khazaei et al., 2014). CRMP5 is phosphorylated by
GSK3β at Thr516 (Brot et al., 2014). This phosphorylation
is essential for tubulin-binding of CRMP5 but inhibits
neurite outgrowth.

Actin—CRMP1 indirectly regulates actin-cytoskeleton
through the interaction with actin-binding proteins including
filamin-A and Ena/VASP proteins (Nakamura et al., 2014;
Yu-Kemp et al., 2017). Interestingly, distinct roles were
demonstrated for CRMP1 and CRMP2 in steering axonal
outgrowth, using microscale-chromophore-assisted local
inactivation (micro-CALI) method (Higurashi et al., 2012).
CRMP1 and CRMP2 have characteristic distribution in
the growth cones. CRMP1 was co-localized with actin in
the peripheral domain, while CRMP2 was co-localized
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FIGURE 2 | CRMP2-posttranslational modification and signaling. Extracellular ligands, modulating enzymes, posttranslational medication sites in CRMP2, and
downstream molecules are represented. Red arrows from enzymes to CRMP2 represent phosphorylation. Blue, yellow, and gray arrows indicate SUMOylation,
oxidation, and reduction, respectively. Green and red stop arrows represent facilitation and inhibition, respectively. Not all ligands or downstream molecules are
shown.

with tubulin in the central domain. It has been shown that
CRMP4 binds F-actin and causes actin bundling (Rosslenbroich
et al., 2005). This actin bundling is involved in the filopodia
extension of hippocampal growth cones (Khazaei et al., 2014).
CRMP5 interacts with actin and tubulin in growth cones
(Gong et al., 2016). CRMP5 is localized in filopodia of growth
cones and its overexpression promotes filopodial formation
(Hotta et al., 2005).

Motor proteins—both Antero- and retro-grade motor
proteins bind to CRMP2. Kinesin-1 binds to CRMP2 through
the interaction of the kinesin light chain and the C-terminal
region of CRMP2 (Kimura et al., 2005). In contrast, the
N-terminus of CRMP2 binds to the dynein heavy chain but the
interaction interferes with the retrograde transporting activity
(Arimura et al., 2009). Combining these actions may facilitate the
transport of the CRMP2-tubulin dimer complex to the distal end
of the axons. The CRMP2 and Kinesin-1 complex also transports
TrkB-containing vesicles to axonal plasma membranes (Arimura
et al., 2009).

Na+ channel—CRMP1 interacts with NaV1.7 and modulates
the Na+ currents by lowering the threshold of the channel
(Yamane et al., 2017). This action is probably augmented
by C-terminal phosphorylation because the overexpression
of phosphomimetic CRMP1-Thr509Asp/Ser522Asp mutant
enhanced the current. CRMP2 also interacts with NaV1.7 and
phosphorylation of Thr509 and Ser522 of CRMP2 augments
the action (Dustrude et al., 2013). This interaction is modulated
by SUMOylation and phosphorylation of CRMP2. While
Ser522 phosphorylation and Lys374 SUMOylation prevent
NaV1.7 internalization, Tyr32-phosphorylation facilitates the
endocytosis of NaV1.7 (Dustrude et al., 2016).

Ca2+ channel—CRMP2 binds to CaV2.2 and increases Ca2+

current by cell surface expression of the channel (Brittain
et al., 2009). Cdk5-phosphorylation at Ser522 augments the
interaction with and Ca2+ influx through CaV2.2 (Brittain
et al., 2012). However, in contrast to NaV1.7 modulation,
Lys374 SUMOylation of CRMP2 attenuates the Ca2+ current
(Ju et al., 2013). Three domains in CRMP2, CBD1(94–166),
CBD2(212–297), and CBD3(479–500), are involved in CaV2.2-
binding (Brittain et al., 2009). The peptide fuses TAT
(transduction domain of HIV), and CBD3 interferes with
CRMP2 and CaV2.2 coupling to suppress inflammatory and
neuropathic pain in model mice (Brittain et al., 2011).
This effect is due to the reduction of membrane surface
expression of CaV2.2. As the CBD3 sequence partially overlaps
with α-helix 19 (476–487), a tubulin-dimer binding domain,
TAT-CBD3 may also affect CRMP2-tubulin interaction. Also,
CRMP2 interacts with NMDAR and Na/Ca Exchanger 3 to
facilitate glutamate-induced Ca2+ dysregulation in hippocampal
neurons (Brustovetsky et al., 2014). CRMP3 facilitates the
depolarization-evoked Ca2+ response of L- and N-type Ca
channels to promote dendrite morphogenesis of hippocampal
neurons (Quach et al., 2013).

Other membrane and intracellular
proteins—CRMP1 interacts with actin-binding protein Filamin-
A. This interaction is augmented by the Cdk5-phosphorylation
of CRMP1 (Nakamura et al., 2014). CRMP1-binding to
Filamin-A decreases the F-actin gelation cross-linked by
Filamin-A, which, in turn, facilitates remodeling of the actin
cytoskeleton. CRMP1 also interacts with EVL, one of Ena/VASP
proteins, to facilitate actin filament elongation at the barbed end
(Yu-Kemp et al., 2017). CRMP2 interacts with Numb, one of
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the endocytosis adaptor proteins, to regulate endocytosis and
recycling of axonal growth cone membranes (Nishimura et al.,
2003). Long-form CRMP4, but not short-form, interacts with
RhoA and suppresses neurite outgrowth (Alabed et al., 2007).
GSK3β phosphorylates L-CRMP4 at Thr622 and attenuates
RhoA-binding and cancels the suppression (Alabed et al., 2010).
Myelin-associated inhibitors (MAIs) bring their inhibitory action
through the inactivation of GSK3β and dephosphorylation of
L-CRMP4 Thr622. Other known interactions are summarized in
Supplementary Table S3.

NEURONAL SUBCELLULAR
LOCALIZATION OF CRMPs

Each CRMP has a different subcellular localization in a
developmental-stage dependent manner. In primary cultured
cortical neurons, CRMP1 and CRMP2 are predominantly
expressed in axons and, to a lesser extent, in the somatodendritic
regions at 7 days in vitro (DIV 7; Makihara et al., 2016). By
DIV14, while CRMP1 tends to localize to the presynaptic region,
CRMP2 distributes to the axons and dendrites.

Alternative splicing also contributes to localization. L-CRMP2
localizes to the distal axons of hippocampal neurons (Balastik
et al., 2015). Studies in mice in which CRMP3 has been
knocked-out revealed that CRMP3 regulates the dendritic growth
of hippocampal neurons (Quach et al., 2013). CRMP4 distributes
along axons and dendrites of hippocampal neurons and
facilitates their growth through its interaction with actin and
tubulin (Khazaei et al., 2014; Cha et al., 2016). CRMP5 is involved
in the dendritic growth of hippocampal neurons (Yamashita
et al., 2011). The effect of CRMP5 on axon outgrowth is
inconsistent i.e., it can both variably promote and inhibit it
(Brot et al., 2014; Gong et al., 2016); however, the inhibitory
effect may reflect Thr516 phosphorylation of CRMP5 by GSK3β
(Brot et al., 2014).

The neuronal growth cone consists of an actin-rich peripheral
region and a tubulin-rich central domain. The peripheral
region is further divided into filopodia and lamellipodia.
CRMP1 localizes to both the peripheral and central domains,
while CRMP2 localizes to the central domain in chick DRG
growth cones (Higurashi et al., 2012). Focal inactivation
of CRMP2 by micro-CALI support the role of CRMP2 in
microtubule extension and stabilization. CRMP4 localizes
to both the peripheral and central regions of hippocampal
growth cones (Khazaei et al., 2014). Peripheral and central
CRMP4 participate in filopodial F-actin bundling and
microtubule elongation, respectively. CRMP5 predominantly
localizes to the peripheral region of hippocampal growth cones
to promote filopodial formation (Hotta et al., 2005).

Nuclear-translocation of calpain-digested CRMPs has already
been discussed above under the ‘‘Proteolysis’’ section.

THE RELATION OF CRMPs AND AXON
GUIDANCE MOLECULES

Sema3A, a prototypical inhibitory axonal guidance molecule,
regulates axonal projection of various neurons in the peripheral

and central nervous system (CNS; Nakamura et al., 2000). It also
participates in the dendritic growth and synapse formation and
maturation (Goshima et al., 2016). The role of the CRMPs in
Sema3A-signaling has been studied both in vitro and in vivo.
Sema3A binds the NRP1 and Plexin-A receptor complex, which
activates at least three distinct downstream signaling pathways;
the phosphorylation cascade, the small-G-protein cascade, and
MICAL-mediated oxidation. CRMPs are involved in all of these
signaling pathways.

Sema3A activates Cdk5 and GSK3β kinases, which
sequentially phosphorylates CRMP2 Ser522 and Thr509 residues,
respectively. Phosphorylation of CRMP2 at Tyr32 by Fyn
or Fes has also been shown to be involved in Sema3A-
signaling (Yamashita et al., 2012; Figure 2). Phosphorylation
makes CRMP2 alter its binding partners from tubulin-dimer
to other downstream molecules such as CaV2.2 (Brittain
et al., 2012). CRMP1 also acts on molecules downstream
of Sema3A by being phosphorylated at Ser522 by Cdk5
(Yamashita et al., 2012). CRMP2 binds and activates α2-
chimaerin, a Rac-GTPase activating protein, to downregulate
Rac. This action is involved in the Sema3A response in
DRG neurons (Brown et al., 2004). CRMP2 binds and
activates MICAL by releasing its autoinhibition domain
(Schmidt et al., 2008).

Sema3a-knockout mice demonstrate that Sema3A restricts
peripheral neuron projections while facilitating the formation
of dendrites and synapses in CNS. Sema3a−/− mice showed
an overshooting and defasciculation of trigeminal branches and
DRG neurons (Taniguchi et al., 1997). Crmp2−/− mice show
CRMP2 to be involved in the peripheral projection of the
trigeminal ophthalmic branches (Ziak et al., 2020). However, as
the irregular peripheral projection of DRG axons is absent in
Crmp2−/− mice, CRMP2 may mediate additional guidance cues
such as ephrin-A5 and Slit2 in this projection (Jayasena et al.,
2005; Kubilus and Linsenmayer, 2010).

The involvement of CRMPs in Sema3A-signaling is more
evident in CNS development. Synapse formation of cortical
pyramidal neurons is reduced in Sema3a−/−, Crmp2−/−, and
Crmp2−/− mutants compared to wild-type (Makihara et al.,
2016). Sema3a+/−; Crmp1+/− and Sema3a+/−; Crmp2+/−

double heterozygousmice exhibit a similar phenotype, indicating
that both CRMP1 and CRMP2 act as downstream molecules of
Sema3A-regulated synapse formation. However, as Crmp1+/−;
Crmp2+/− double heterozygous showed normal phenotype,
CRMP1 and CRMP2 may mediate different intracellular
signaling pathways.

Considering the obvious role of CRMPs in synapse
maturation, it is noteworthy that the ‘‘lithium-response (LiR)
pathway’’ governs the phosphorylation state of CRMP2,
hence yielding insight into the pathogenesis of bipolar
disorder (BPD; Tobe et al., 2017). Proteomic and phospho-
proteomic analysis of human-induced pluripotent stem
cells (hiPSCs) and their neuronal derivatives showed that
the ‘‘set-point’’ for the ratio of inactive phosphorylated
CRMP2 to active non-phosphorylated CRMP2 is elevated
uniquely in LiR BPD patients, but not in patients with
other psychiatric (including lithium-nonresponsive BPD)
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or neurological disorders. Lithium (and other CRMP2 pathway
modulators) lowers pCRMP2, increasing dendritic spine
area and density. Actual human BPD brains show similarly
elevated CRMP2 ratios and diminished spine densities;
lithium therapy normalizes the ratios and spines. Behaviorally,
transgenic mice that reproduce lithium’s postulated site-
of-action in dephosphorylating CRMP2 emulate lithium
responsiveness in BPD.

The CRMPs also play roles as downstream target genes of
signaling of other axon guidance molecules, morphogens, and
cytokines in neuronal development and function. BMP-Smad1
signal suppresses CRMP2 gene expression (Sun et al.,
2010). TGF-β signaling regulates neuronal morphogenesis
through the suppression of CRMP2 expression during brain
development (Nakashima et al., 2018). Nicotine administration
causes gene up-regulation of CRMP2 in adult mice during
nicotine-induced hippocampal long-term-potentiation
(Kadoyama et al., 2015).

Sema3F binds Neuropilin-2 (NRP2)/Plexin-A complex and
activates intracellular signaling like Sema3A. Sema3f and
Nrp2 knockout mice showed axon guidance defects including
disorganized anterior commissure and pruning defect of
hippocampal mossy fiber axons in the infrapyramidal bundle
(Chen et al., 2000; Sahay et al., 2003). Crmp2−/− mice
exhibit reduction of the corpus callosum, hypoplastic anterior
commissure, and defective pruning of CA3 infrapyramidal
bundle and corticospinal visual axons (Ziak et al., 2020). As
Crmp2−/− mice show normal pruning of the hippocampo-
septal bundle, of which projection is regulated by Sema3A,
CRMP2 is involved in Sema3F-regulated axon guidance rather
than Sema3A-guidance.

Reelin regulates neuronal cell migration including neocortex
six-layer formation and hippocampal lamination (Yamamoto
et al., 2009). CRMP1 is involved in Reelin signaling (Yamashita
et al., 2006). Radial migration of cortical neurons is delayed
in Crmp2−/− brain. Dab1, an adaptor protein of Reelin
signaling, is co-localized with CRMP1 in migrating neurons.
Homozygous Dab1 yotari mutant mice, Dab1yot/yot, exhibit
disrupted hippocampal lamination. A similar phenotype is
observed in Crmp2−/−; Dab1+/yot mice but not in Crmp2−/−

or Dab1+/yot mutants. This genetic augmentation suggests
that CRMP1 is involved in the Reelin-regulated neuronal cell
migration.

Nogo, an inhibitory signal for neurite outgrowth after spinal
cord injury (SCI), exerts the action through NgR1 and its
associated transmembrane proteins. It has been shown that
CRMP2 is involved in the downstream of Nogo-signaling by
the Rho-kinase phosphorylation at Thr555 (Mimura et al., 2006;
Petratos et al., 2012). As Nogo downstream signaling, L-CRMP4
(CRMP4b) binds to RhoA and interferes with neurite outgrowth
(Alabed et al., 2007). NgR1 forms a receptor complex with
Plexin-A2, which associates with CRMP2 and CRMP4 in Nogo
dependent manner (Sekine et al., 2019).

Repulsive guidance molecule-a (RGMa) exerts its inhibition
through the phosphorylation of CRMP2 by Rho-kinase and
GSK3β (Wang et al., 2013). Chondroitin sulfate proteoglycan
(CSPG) is a major inhibitor of axonal regeneration after CNS

trauma. Knockout mice studies revealed that CRMP4 mediates
the action of CSPG and/or other inhibitory molecules related
to SCI (Nagai et al., 2015, 2016). The functional recovery
of motor and sensory neurons from SCI is accelerated in
Crmp4−/− mice. Sema4D binds Plexin-B1 and downregulates
R-Ras and PI3K-Akt signaling. This brings the activation of
GSK3β and CRMP2 phosphorylation at Thr514 (Ito et al., 2006).
Plexin-A also inactivates R-Ras by the same mechanism in
Sema3A-signaling. In vivo Sema4D-CRMP2 relation has yet to
be examined.

CRMPs IN CNS REGENERATION AND
DEGENERATION

After nerve injury, peripheral nervous system (PNS) axons form
growth cones and regenerate (Ertürk et al., 2007). However,
axons in the CNS fail to form tips and instead become
dystrophic retraction bulbs (Ertürk et al., 2007; Bradke et al.,
2012). Growth cones contain organized microtubules that
form tight bundles along with axonal axis, whereas retraction
bulbs have disassembled microtubules. The importance of the
microtubule state for growth cone structure is supported by
the fact that the application of the microtubule-destabilizing
agent nocodazole transforms the growth cone into a retraction
bulb-like structure in vitro, resulting in axonal growth arrest
(Ertürk et al., 2007).

Phosphorylation of CRMP2 at its C-terminal domain by
serine/threonine (Ser/Thr) kinases causes growth cone collapse
via microtubule destabilization, while inhibition of C-terminal
phosphorylation stabilizes the microtubules (Yamashita and
Goshima, 2012; Nagai et al., 2017). CRMP2 phosphorylation
is also induced during Wallerian degeneration after optic
nerve injury. During Wallerian degradation, zinc/RING
finger protein 1 (ZNRF1)-dependent protein kinase B (Akt)
degradation increases GSK3β activity and results in an
increase in CRMP2 phosphorylation at Thr514 (Wakatsuki
et al., 2011). The introduction of the CRMP2-Thr514Ala
(CRMP2T514A) virus suppresses the Wallerian degradation of
the optic nerve in vivo (Wakatsuki et al., 2011). To delineate
the in vivo role of CRMP2 phosphorylation at Ser522, the
CRMP2S522A/S522A (CRMP2KI/KI) mouse was generated
(Yamashita et al., 2012). Due to the phosphorylation of
Ser522 by Cdk5 functions, as priming phosphorylation followed
GSK3β phosphorylation of Thr509/Thr514/Ser518, 4 sites of
phosphorylation in the C-terminal domain of CRMP2 are
eliminated in the CRMP2KI/KI mice (Yamashita et al., 2012).
Wallerian degeneration following optic nerve injury was found
to be suppressed in CRMP2KI/KI mice (Kinoshita et al., 2019).
Axonal damage of the optic nerve induces retinal ganglion
cell death in the wild-type mice (Duan et al., 2015). However,
suppression of retinal ganglion cell death is observed in
CRMP2KI/KI mice (Kondo et al., 2019). Moreover, axonal
regeneration was promoted in CRMP2KI/KI mice. CRMP2KI/KI

mice showed higher expression of the regenerative axonal
marker growth-associated protein 43 (GAP43). Tracing of
the axon by injecting an anterograde tracer into the eye
showed elongated optic nerves in CRMP2KI/KI mice, while
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labeled axons were limited in wild-type mice after optic nerve
injury. These results are in agreement with the observation
that optic nerve regeneration occurs after the intravitreal
administration of the CRMP2T514A virus (Leibinger et al.,
2017). Overexpression of wild-type CRMP2 via a viral infection
promoted regeneration of the hypoglossal nerve in the adult
rats (Suzuki et al., 2003). In an SCI model, microtubule-
stabilizing agents have been found to promote functional
recovery and serotonergic axon regeneration (Hellal et al.,
2011). CRMP2KI/KI mice also showed better functional, motor
and sensory recovery, and serotonergic axon regeneration
(Nagai et al., 2016). CRMP2KI/KI DRG neurons showed an
enhanced neurotrophic response to brain-derived neurotrophic
factor and a hindered inhibitory response against CSPG.
These alternations, which were in response to external factors,
may also be linked to the recovery in CRMP2KI/KI mice
after SCI.

Recently, the mutant superoxide dismutase (SOD)1G93A

mouse model of amyotrophic lateral sclerosis (ALS) was
crossed with the CRMP2KI/KI mice to assess the genetic
inhibition of CRMP2 phosphorylation. Compared to baseline,
CRMP2KI/KI mice x SOD1G93A mice developed a slower
degeneration of axons and neuromuscular junctions and a
delayed progression of motor symptoms (Numata-Uematsu
et al., 2019). The myelin oligodendrocyte glycoprotein-
induced experimental autoimmune encephalomyelitis
(EAE) mouse model of multiple sclerosis (MS) showed
an increase in CRMP2 phosphorylation at Thr555 in
a Nogo-dependent manner (Petratos et al., 2012). The
anti-Nogo-A antibody prevented the development of
EAE and increased CRMP2 phosphorylation at Thr555.
A recent study further demonstrated that abrogation of
the NgR1/pCRMP2 signaling cascade maintains Kinesin-
1-dependent anterograde axonal transport to limit the
inflammation-mediated axonopathy and demyelination of
the EAE model (Lee et al., 2019).

Methyl-phenyl-tetrahydropyridine (MPTP) readily
penetrates the blood-brain barrier and enters the brain
where it is converted into 1-methyl-4-phenylpyridinium
(MPP+) by MAO-B in astrocytes. MPP+ is transported by
the dopamine (DA) transporter into DA nerve terminals,
and it destroys dopaminergic neurons, thereby causing the
symptoms similar to those of Parkinson’s disease (PD).
MPTP administration in non-human primates and aged
rodents are often used to model PD. The elevation of
CRMP2 phosphorylation at Thr514 through Akt/GSK3β
was reported in an MPP+-PD model in dopaminergic neurons
in vitro (Fang et al., 2015). Elevation of CRMP2 phosphorylation
at Ser522 was observed in dopaminergic neurons in the
substantia nigra compacta (SNc) in vivo (Togashi et al., 2019).
Production of p25 and elevation of Cdk5 activity have been
reported in an MPTP-induced PD mouse model (Smith
et al., 2003; Cheung and Ip, 2012). Therefore, increased
phosphorylation of CRMP2 at Ser522 is consistent with these
studies. CRMP2KI/KI mice showed increased axonal viability
in the nigro-striatal pathway in an MPTP-induced PD model
(Togashi et al., 2019).

Another member of the CRMPs, CRMP4, is reported
to be involved in the signal pathway of myelin-associated
inhibitors (MAIs; Alabed et al., 2007, 2010; Nagai et al., 2015).
MAIs activate ras homolog family member A (RhoA), which
interacts with L-CRMP4 to inhibit axonal growth in vitro.
CRMP4 also interacts with CSPG through the NgR/GSK3β
pathway. After SCI, CRMP4−/− mice showed motor and sensory
axonal growth (Nagai et al., 2015, 2016). Furthermore, the
deletion of CRMP4 prevents DA neuronal loss in SNc and
increases axonal viability in the DA neurons in the striatum
(Tonouchi et al., 2016).

THE ROLE OF CRMPs IN INFLAMMATORY
CELLS AND GLIA

In SCIs, scar formation occurs at the lesion site where astrocytes
are recruited by the pro-inflammatory cytokines secreted from
the activated microglia/macrophages. The compaction and
seclusion of infiltrating inflammatory cells in the lesion center
occur during the sub-acute phase of SCI. It is generally accepted
that glial scars inhibit axonal growth, by physically interacting
with the distal tip of axons (Filous et al., 2014) or by secreting
extracellular matrix molecules such as CSPGs (Tan et al., 2011;
Burnside and Bradbury, 2014; Cregg et al., 2014) and inhibitory
axon guidance molecules such as Sema3A (Kaneko et al., 2006).

A reduction in scar formation after SCI in CRMP2KI/KI mice
has been reported (Nagai et al., 2015). In rat SCI, activation
of GSK3β in reactive astrocytes is involved in the infiltration
of inflammatory cells and scar formation by Wnt signaling-
mediated β1-integrin expression (Renault-Mihara et al., 2011).
Compaction of scar formation was observed in the GSK3β
inhibitor treatment of SCI. Therefore, one possible explanation
for the reduced scar formation in CRMP2KI/KI after SCI is that it
is mediated by the inhibition of CRMP2 phosphorylation.

After SCI, CRMP4 expression is reported in activated
microglia/macrophages (Nagai et al., 2015). In cultured
BV-2 microglial cells, microglia express CRMP4 after
lipopolysaccharide stimulation (Manivannan et al., 2013).
CRMP4 is involved in the association of F-actin, cytokine
release, migration, and phagocytosis in BV-2 cells. Injection of
Zymosan, macrophage-activating agent, to the spinal cord of
Crmp4−/− mice, showed reduced microglial activation (Nagai
et al., 2015). In Crmp4−/− mice with SCIs, reduction of scar
formation promoted axonal growth and significant locomotor
recovery was observed.

Inflammatory responses have been implicated in other causes
of neuronal degeneration, including PD. Disease progression
has been linked to the secretion of inflammatory cytokines
that engage neighboring cells, including astrocytes, which, in
turn, induce autocrine and paracrine responses that amplify
the inflammation, leading to further neurodegeneration
(Niranjan, 2014). Reduced inflammatory response and
suppressed DA neuron death after MPTP injection have
been observed in CRMP4-/- mice (Tonouchi et al., 2016).
Since cell death of DA neurons by MPTP injection was
suppressed, the reduced inflammatory response may be a
secondary consequence of the limited release of factors from
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dying neurons. MS is a chronic inflammatory, demyelinating,
and neurodegenerative disorder of the CNS. In an EAE mouse
model of MS, the importance of CRMP2 Ser522 phosphorylation
was demonstrated using CRMP2KI/KI mice (Moutal et al.,
2019). CRMP2 is also expressed in the immune system
and plays a critical role in T lymphocyte polarization and
migration (Vincent et al., 2005). C-X-C motif chemokine 12
(CXCL12)/SDF1 treatment activates T lymphocyte migration
by switching the dephosphorylation of the GSK3β site
(Thr509/Thr514) of CRMP2 (Varrin-Doyer et al., 2009).
CXCL12/SDF1 also induces tyrosine phosphorylation at
Tyr479 via Yes kinase, and the introduction of CRMP2-
Tyr479Phe expression suppresses the migration of Jurkat
cells, indicating the importance of tyrosine phosphorylation of
CRMP2 (Varrin-Doyer et al., 2009).

CRMP2-INTERACTING DRUGS

Several small molecules that have been shown to bind CRMP2 are
lacosamide (Wilson et al., 2012, 2014), lanthionine ketimine (LK;
Hensley et al., 2010a, 2013; Hensley and Harris-White, 2015),
edonerpic maleate (Abe et al., 2018) and naringenin (Ghofrani
et al., 2015; Lawal et al., 2018). These molecules are considered
candidates for application in the treatment of some of the
CRMP2-related pathological conditions discussed above.

(R)-Lacosamide inhibits CRMP2-mediated neurite outgrowth
in cultured cortical neurons. (R)-lacosamide reduces CRMP2-
mediated tubulin polymerization in vitro (Wilson et al.,
2012). It seems to prevent posttraumatic axon sprouting
in vivo. An in vitro study showed that (S)-lacosamide, a
stereoisomer of the clinically used antiepileptic drug (R)-
lacosamide, impairs the ability of CRMP2 to enhance tubulin
polymerization in vitro without altering tubulin-binding
(Wilson et al., 2014).

Lanthionine ketamine-ethyl ester (LKE) is a synthetic
cell-penetrating ester derivative of LK, an endogenous sulfur
amino acid metabolite in the mammalian brain (Hensley et al.,
2010a). LK and LKE bind directly to CRMP2 and change
the binding affinity of CRMP2 to its binding partners such
as tubulin dimers and neurofilaments. LKE administration
reduces CRMP2-tubulin affinity while enhancing CRMP2-
neurofilament binding. The neurite growth-promoting
action of LKE has been reported in NSC-34 mouse motor
neuron-like cells and primary chick DRG neurons (Hensley
et al., 2010a). LKE has also been shown to have a neuroprotective
effect on these cells from oxidative stress insults. When
applied to the SOD1G93A transgenic mouse model of ALS,
LKE was reported to delay progressive neurodegeneration
(Hensley et al., 2010b). LKE treatment also substantially
diminished cognitive decline and brain amyloid-β (Aβ)
peptide deposition and phospho-tau accumulation in the
3 × Tg-AD mouse model of AD, reducing the density of
Iba1-positive microglia (Hensley et al., 2013). In this study,
LKE normalized CRMP2 phosphorylation at Thr514 and
suppressed neuroinflammation in the brains of these mice
(Hensley et al., 2013). LKE has also been tested in a mouse
model of SCI and was reported to benefit the recovery of

motor function and reduce post-traumatic neuroinflammation
(Kotaka et al., 2017).

Edonerpic maleate has been shown to bind CRMP2, and
facilitate experience-driven synaptic glutamate α-amino-
3-hydroxy-5-methyl-4-isoxazole-propionic-acid (AMPA)
receptor delivery and accelerate motor function recovery
after motor cortex cryoinjury in mice in a training-dependent
manner through cortical reorganization (Abe et al., 2018).
Edonerpic maleate decreased the amount of phosphorylated
form of CRMP2, and activated actin-depolymerizing factor
(ADF)/cofilin, thereby leading to the trafficking of AMPA
receptors into the spine surface under plasticity-inducing
conditions. The drug failed to augment recovery in CRMP2-
deficient mice, suggesting a CRMP2-dependent action (Abe
et al., 2018).

Naringenin has demonstrated the ability to bind and decrease
CRMP2 phosphorylation (Yang et al., 2016; Lawal et al., 2018).
This action of changing CRMP2’s phosphorylated status and
hence the binding of cytoskeletal elements may account for the
ability of naringenin to improve AD pathology and cognitive
deficits in mouse models of AD. For example, naringenin has
been shown to significantly improve the performance of Aβ-
injected rats in passive avoidance and radial arm maze tasks
(Ghofrani et al., 2015). In a 5xFAD mouse model of AD,
naringenin ameliorated memory deficits and decreased amyloid
plaques and phosphorylated tau (p-tau; Yang et al., 2016). Some
of the beneficial effects of naringenin in rodent models of AD
may also be related to its anti-inflammatory actions (Park et al.,
2012; Wu et al., 2016).

CONCLUSION

TheCRMPs family of proteins appear to coordinately be involved
in several coordinated biological events including axon guidance,
target recognition, synapse maturation, and dendritic branching.
The CRMPs possess the ability to interact with various kinds
of molecules, thereby being involved in these many processes.
Although the CRMPs themselves are regulated by versatile
enzymes having a wide substrate spectrum, successful chemical
modulators or therapeutic agents may be developed to act on
such protein-protein interaction interfaces.
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