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Abstract
Magnetoencephalography (MEG) records brain activity with excellent temporal and good spatial resolution, while functional 
magnetic resonance imaging (fMRI) offers good temporal and excellent spatial resolution. The aim of this study is to imple-
ment a Bayesian framework to use fMRI data as spatial priors for MEG inverse solutions. We used simulated MEG data 
with both evoked and induced activity and experimental MEG data from sixteen participants to examine the effectiveness of 
using fMRI spatial priors in MEG source reconstruction. For simulated MEG data, incorporating the prior information from 
fMRI increased the spatial resolution of MEG source reconstruction by 3 mm on average. For experimental MEG data, fMRI 
spatial information reduced the spurious clusters for evoked activity and showed more left-lateralized activation pattern for 
induced activity. The use of fMRI spatial priors greatly reduced location error for induced source in MEG data. Our results 
provide empirical evidence that the use of fMRI spatial priors improves the accuracy of MEG source reconstruction. The 
combined MEG and fMRI approach can provide neuroimaging data with better spatial and temporal resolutions to add another 
perspective to our understanding of the neurobiology of language. The potential clinical applications include pre-surgical 
evaluation of language function for epilepsy patients and evaluation of language network for children with language disorders.

Keywords  Brain · Bayesian statistics · Inverse problem · Magnetoencephalography · Functional magnetic Resonance 
imaging

Introduction

The last decade has witnessed great advances in multi-modal 
data fusion techniques (Auranen et al., 2009; Baillet & Gar-
nero, 1997; Baillet et al., 1999; Debener et al., 2006; Friston 
et al., 2008; Henson et al., 2010; Nummenmaa et al., 2007; 
Sato et al., 2004; Wipf & Nagarajan, 2009) and increas-
ing interests in studying high-order cognition in the human 
brain using multi-modal techniques, especially data fusion 
of functional magnetic resonance imaging (fMRI) and mag-
netoencephalography (MEG) (Liljestrom et al., 2009; Pang 

et al., 2010; Vartiainen et al., 2011; Wang et al., 2012). Our 
previous study has demonstrated spatial concordance in the 
left inferior frontal gyrus (IFG) for covert or overt genera-
tion versus overt repetition, and bilateral motor cortices 
when overt generation versus covert generation (Wang et al., 
2012), algin with other studies (Pang et al., 2010; Vartiainen 
et al., 2011). In sum, these studies provide evidence that the 
two modalities are assessing the same language network dur-
ing language production and comprehension tasks. The high 
spatial concordance between fMRI and MEG data in access-
ing language function provides confidence that fMRI can 
be used as spatial constraints on MEG source localization. 
Consequently, high spatiotemporal information obtained 
from the promising multi-modal data integration approach 
can potentially yield new insights into the complex brain 
networks supporting high-order cognition. Several integra-
tion schemes have been introduced to combine fMRI and 
MEG data such as fMRI-guided equivalent current dipole 
(ECD) fitting (Ahlfors & Simpson, 2004), fMRI-constrained 
cortical current density imaging (Dale et al., 2000; Liu et al., 
2008; Ou et al., 2010), and the recent popularity of Bayes-
ian schemes applied in MEG source inversion (Auranen 
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et al., 2009; Friston et al., 2008; Henson et al., 2010; Wipf 
& Nagarajan, 2009).

Currently there is no best solution for combining fMRI 
and MEG data, but only most suitable approach to integrate 
the two modalities based on the neurobiological character-
istics of brain functions. Based on the current literature, 
parametric empirical Bayesian (PEB) (Henson et al., 2010) 
with distributed cortical current density imaging approach 
is well suited to high-order cognitive data on several counts. 
First, language tasks usually require communication and 
coordination among many regions distributed in the brain. 
It is hard to account for highly distributed regions involved 
in language tasks using ECD modeling which represents a 
relatively small number of focal sources. Second, research-
ers (Liljestrom et al., 2009; Vartiainen et al., 2011; Wang 
et al., 2012) have shown that there is no simple one-to-one 
spatial correspondence between fMRI and MEG results. For 
example, high concordance between MEG and fMRI was 
observed in the left inferior frontal gyrus (IFG), the bilateral 
motor cortices, and the right insula, but not in the left medial 
frontal gyrus and the left cingulate gyrus during an overt 
verb generation task (Wang et al., 2012). The PEB approach 
allows the use of fMRI spatial information as “soft” con-
straints rather than “hard” ones, and thus it is most suited 
for high-order cognitive paradigms. At last, current available 
integration schemes have only been tested in the experimen-
tal paradigms with short-onset and time-locked stimuli such 
as visual, auditory, motor, somatosensory. Note it is easy to 
design a short paradigm with hundreds of trials consisting 
of these stimuli so that high SNR can be achieved for ECD 
fitting by averaging hundreds of trials of external MEG sig-
nals. Thus, for these types of paradigm design, incorporating 
fMRI spatial information into MEG source inversion offers 
very limited advantage and is not a cost-effective approach 
since MEG alone can already achieve sufficient localization 
accuracy with hundreds or even thousands of trials of neu-
romagnetic data. However, for high-order cognitive tasks, 
especially natural language processes like story listening 
(narrative comprehension), it is extremely hard to acquire 
hundreds of trials within a short time period. Further, it is 
difficult to separate evoked and induced responses to the 
stimulus, complicating the source localization process from 
MEG data alone. Long time intervals can potentially induce 
fatigue and more head motion which deteriorate the quality 
of MEG data. Therefore, for these types of cognitive tasks, 
the extra information from fMRI can play a crucial role in 
improving the solutions of ill-posed MEG source inversion 
and add another perspective to our understanding of the neu-
robiology of language.

In this study, we elaborate on the theory of PEB approach 
and provide information on integration of fMRI spatial con-
strains into MEG source localization. We present empirical 
evidence using simulations and analysis of experimental data 

from sixteen participants who performed a narrative compre-
hension task during MEG recordings. Our results will generate 
evidence that the combined MEG and fMRI approach offers 
time series with better spatial and temporal resolutions, which 
might help us better understand the neural network supporting 
specific cognitive process (e.g., language, reading, etc.). The 
potential clinical applications include pre-surgical evaluation 
of language function for epilepsy patients and evaluation of 
language network for children with language disorders.

Methods

The MEG Inverse Problem

B is the vector of magnetic signal at a given time sample, 
L is the lead-field matrix, X is the unknow brain activities, E1 
is assumed to be Gaussian noise with zero mean and known 
variance. The linear system presented in (1) is underdeter-
mined since the number of sensors (only hundreds) is much 
fewer than the number of possible sources (over thousands). 
In order to find solutions for (1), there are two general meth-
ods including widely used ordinary least squares estimation 
(OLSE) and maximum likelihood estimation (MLE). The for-
mer requires no assumptions about the distributions, but does 
not allow model testing or selection, etc. On the contrary, MLE 
provides complete and consistent solutions and can serve as 
a steppingstone for other inference methods such as Bayes-
ian methods, inference with missing data, etc. We formulated 
the inversion of (1) within a probabilistic Bayesian framework 
which allows us to choose hyperparameters and optimize MEG 
source inversion by incorporating fMRI spatial information.

Bayesian Framework.
The probabilistic model for sources X can be expressed 

under the assumption of Gaussian noise at the sensor level. 
Then, the probability distribution is given by (2).

� denotes the noise variance. The magnetic field B is 
observed for a given source current X is proportional to 
Gaussian probability density. According to Bayes’ theo-
rem, (2) can be used to form the posterior probability over 
unknown X by (3).

� represents all the other assumptions and beliefs about 
the model, the denominator in (3) is the evidence for � and 
ensures the posterior probability is normalized.

(1)B = LX + E1

(2)P(B�X) ∝ exp
�
−
1

2
�‖B − L ⋅ X‖2

�

(3)P(X|B,�) = P(B|X,�)P(X|�)
P(B|�)
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The prior probability density P(X|�) represents all the 
prior information known about the unknown X and con-
strains before data is seen and can be regarded as a regu-
larization which limits model overfitting. Since P(B|�) 
does not depend on X. It can be omitted to generate the 
unnormalized posterior density in (5).

The posterior probability is proportional to likelihood 
times the prior probability. Possible solution of X must 
simultaneously give a high data likelihood P(B|X,�) 
and be probable under constraint of the prior P(X|�) 
to give an appreciable posterior distribution P(X|B,�) . 
The posterior probability shown in (3) is a measure of 
what is known after the data is seen and quantifies any 
new knowledge gained. The data likelihood P(B|X,�) is 
a measure of how well the model predicted the data and 
essentially determines whether the data under investiga-
tion contains any new information. Bayes’ theorem ena-
bles us to update the distribution over parameters from the 
prior to the posterior distribution over the latent variables 
in light of observed data. For a simple illustration, assume 
that non-informative priors are used. For each voxel in the 
brain, we believe there is a 50 percent chance it will be 
active or inactive. Then, via Bayesian statistics, we update 
our old beliefs iteratively so some voxels might have 90 
percent chance to be active during the task based on the 
data and priors.

Using the expectation maximization (EM) algorithm, 
the model is learned by alternating between estimating 
the posterior distribution over latent variables for a par-
ticular setting of model parameters and then re-estimat-
ing the best-fit parameters given that distribution over 
the latent variables (Beal, 2003; Friston et al., 2007). In 
Bayesian statistics, maximum a posteriori probability 
(MAP) can be used to as a point estimate to approximate 
the posterior distribution. There are four major ways of 
computing MAP estimates, depending upon the specifics 
of the problem. First, when conjugate priors are used, 
MAP estimates can be solved analytically since the mode 
of the posterior distribution can be given in closed form. 
Second, MAP estimates can be computed analytically 
or numerically through numerical optimization such as 
conjugate gradient method or Newton’s method, which 
requires the first or second derivatives. Third, MAP esti-
mates can be obtained via a modification of an EM algo-
rithm which does not require derivatives of the posterior 
density. At last, MAP can also be calculated through a 
Monte Carlo method using simulated annealing.

(4)P(B|�) = ∫ P(B|X,�)P(X|�)dX

(5)P(X|B,�) ∝ P(B|X,�)P(X|�)

PEB Framework

In PEB framework (Henson et al., 2010), the third type of 
method is used to obtain MAP estimates via variational 
free energy under the Laplace approximation (Friston et al., 
2007). Variational Bayes (VB) by variational free energy 
is a generic approach to construct an analytical approxima-
tion of the posterior probability distribution (Bishop, 1998; 
Friston et al., 2007). The foundation of VB is that the log-
evidence can be defined in terms of the free energy F and a 
Kullback–Leibler divergence term.

⟨L(X)⟩q is the expected energy. ⟨lnQ(X)⟩q is the entropy 
measuring the uncertainty in a random variable in infor-
mation theory. From (2), the free energy is a lower-bound 
approximation to the log- evidence because the divergence 
term is always positive. The goal is to compute Q(X) for each 
model by maximizing the free energy F. Then, compute F 
for Bayesian inference and model comparison, respectively.

FMRI Priors

FMRI results are usually presented as noise-normalized 
statistical parametric maps (SPMs) rather than as maps of 
raw signal strength since noise variance may vary greatly 
between voxels. The topological features of these fMRI 
SPMs can be assigned probabilities that quantify the chance 
that the cluster of voxels can be active under null hypoth-
esis. A voxel with the increases in the mean fMRI signal 
associated with one experimental condition versus another 
indicates that it has high probability to be an “active” source 
in MEG source space. Thus, fMRI results can be projected 
onto the cortical mesh and then converted into covariance 
matrices (Henson et al., 2010). Since the underlying physi-
ological connections between fMRI and MEG signals are 
still unclear, fMRI data are treated as probabilistic informa-
tion about the spatial location of active regions in the brain 
rather than quantitative information about the amplitude 
of the neural activity. First, we define a number of discrete 
clusters by thresholding the SPMs since using each suprath-
reshold “cluster” from fMRI SPMs to form a separate prior 
rather than a single prior enables flexibility in adjusting 
different contributions of multiple constrains. Second, the 
fMRI clusters need to be projected onto the cortical mesh 
since the fMRI clusters are 3D volume while MEG corti-
cal mesh is based on the cortical surface through (7). Xfv

i
 is 

the i th fMRI cluster. SCS
i

 is its counterpart on the cortical 
surface. �i is the error term and f is the linkage function that 

(6)l

L = lnP(B,X)

lnP(B��) = F + DKL(Q(X) ∥ P(X�B,�))
F = ⟨L(X)⟩q − ⟨lnQ(X)⟩q
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is Heaviside function binarizing each fMRI spatial prior. H 
is the Voronoï-based interpolation function (Kiebel et al., 
2000) that has been suggested to be more superior than other 
interpolation methods (Henson et al., 2010).

At last, these cortical patches need to be transferred to 
covariance components through (8). Before conversion, an 
extra spatial smoothing step is added to reduce the misreg-
istration errors via a spatial coherency function.

The elements aij in matrix A equals 1 if i and j are neigh-
bors and 0 otherwise. � is the smoothing parameter. After 
smoothing 

[
q1 … qN

]
= G

[
SCS
1

… SCS
N

]
 , the covariance com-

ponents can be generated by the outer product Qi = qiq
T
i
.

Data Simulation.
In (1), L was computed using a single sphere head model 

(Sarvas, 1987). Two dipoles at X1(-38, 43, 5) and X2(-54, 
-13, 5) in Montreal Neurological Institute (MNI) space 
were used to generate the simulated MEG data B. In order 
to check how priors affect both evoked and induced brain 
signals, X1 and X2 had different time courses in (9).

In (9), t ∈ [0.55, 0.85] denotes time in seconds, i 
∈ [1, 100]  denotes the trial number, � is a positive random 

(7)SCS
i

= H
[
f (X

fv

i
)
]
+ �i

(8)G = exp (�A) ≈
∑�

i=�

�
i

i!
A
i

(9)
fX2

= sin[
(
t − t0

)
∕(i ∙ �) ∙ 24 ∙ 2� +

�

2
]

fX1
= sin[

(
t − t0

)
∙ 10 ∙ 2� +

�

2
]

number that is different for each trial so that X2(-54, -13, 
5) contains induced activity. We also added gaussian noise 
to the simulated MEG data to generate data with three 
different noise levels including no noise, signal-to-noise 
ratio = 10 dB and -10 dB. The MATLAB code for simulat-
ing MEG data is available by request and the illustration 
diagram of MEG data simulation process is in supplemen-
tary materials.

The fMRI SPM{T} map was generated using MarsBaR 
(Brett et al., 2002) and then projected to the cortical mesh 
using SPM8 (www.​fil.​ion.​ucl.​ac.​uk/​spm/). Both valid and 
invalid fMRI spatial priors were considered so that we can 
evaluate the impact of invalid priors that mismatch MEG 
dipole locations (see Fig. 1).

For evaluation of source reconstruction results, we 
used absolute measure of localization error denoted by 
Euclidean distance between the estimated peak location 
and the actual location of the sources. We also used area 
under curve (AUC) based on receiver operating charac-
teristic (ROC) curve to quantify the detection accuracy 
of various inverse solutions (Barnes et al., 2013; Grova 
et al., 2006). The simulated MEG data provides the ground 
truth. The various inverse solutions (no fMRI priors, with 
all fMRI priors, with only valid fMRI priors, with only 
invalid fMRI prior) need a decision threshold � to build 
ROC curves. By comparing the inverse solutions with the 
gold standard, we were able to quantify the number voxels 
detected as true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN) for each threshold 
� ∈ [0,1] . Sensitivity and specificity were then estimated 
using (10).

Fig. 1   Hypothetic fMRI priors: (a) mask represents clusters from experimental fMRI SPM{T} map superimposed on a template MRI. (b) 3D 
volumes of priors were projected onto the cortical mesh

Brain Imaging and Behavior (2022) 16:781–791784
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ROC curves were plotted using sensitivity(�) as y-axis 
and (1-specificity(�)) as x-axis for each threshold � ∈ [0,1] . 
Then, AUC was computed to evaluate detection accuracy. 
In general, an AUC value greater than 0.8 is considered as 
sufficiently accurate that achieves 80% good detection rate. 
Higher AUC indicates better performance. For evaluation 
of time-course results, we used scatter plots to visualize the 
correlation between the “true” time courses and the esti-
mated time courses in both time and frequency domain. The 
volume of interests had a radius of 10 mm. Time courses 
were extracted from the first eigenvariate of all voxels in 
the volume of interests, rather than the mean values, since 
the eigenvariate value is more robust to heterogeneity 
of response within a cluster. The root mean square error 
(RMSE) were computed between the “true” time courses 
and the estimated time courses in both time and frequency 
domain.

Experimental MEG Data

The experimental MEG and fMRI data from sixteen par-
ticipants with average age 15.8 years were described in our 
previous study and a detailed description of the data and 
paradigms can be found in (Wang et al., 2012). MEG data 
were acquired using a 275-channel whole head MEG sys-
tem (VSM Med-Tech Ltd., Port Coquitlam, BC, Canada) 
sampled at 6 kHz and fMRI data were acquired on a Philips 
Achieva 3-Tesla MRI scanner with Dual Quasar gradients 
(Philips Medical Systems, Best, The Netherlands). During 
the scan, the participants performed a narrative comprehen-
sion task including three conditions (story listening, question 
answering, and pure tone listening). In the current study, we 
only focused on the contrast of story listening versus tone 

(10)
specificity(�) =

TN(�)

TN(�)+FP(�)

sensitivity(�) =
TP(�)

TP(�)+FN(�)

listening. The group fMRI results were used as spatial priors 
for MEG source reconstructions (see Fig. 2). Three clusters 
that survived the thresholding (height threshold T = 5.78 
and extent threshold k = 50 voxels, p < 0.005 Family-Wise 
Error rate corrected) were projected onto the template corti-
cal mesh in Fig. 2-1 and correspond approximately to left 
inferior gyrus (IFG) and bilateral superior temporal gyrus 
(STG).

Results

Simulation Study

Table 1 summarized the location error for both peak and 
center of mass from different inversion methods including 
multiple sparse priors (MSP) without spatial priors, MSP 
with all priors, MSP with only valid priors, and MSP with 
only invalid priors (see supplementary Fig. S2), as well as 
the AUC values. The ROC curves were plotted in Fig. 3.

Note that the ROC curves had a non-smooth appearance 
due to the small number of true positive voxels embedded 
in the simulated data set relative to true negative voxels. 
True positive voxels were detected as positive at an abrupt 
threshold, the distribution of values was not very wide rang-
ing. Still the AUC varied with the prior information incor-
porated in the model and from this parameter we could see 
that the performance was superior when valid fMRI priors 
or mixture of valid and invalid fMRI priors used in the esti-
mation process.

For evoked source X1(-38, 43, 5), the location error of 
peak activity was not affected by the fMRI priors, but the 
location error of the center of cluster decreased when the 
accurate fMRI priors were incorporated. In addition, the 
mixture of spatial priors with valid and invalid locations 
decreased the location error of the center of cluster. The 

Fig. 2   Threshold SPM{T} for 
group fMRI results in MNI 
standard space from 16 partici-
pants. There priors are gener-
ated from group fMRI results 
and projected on the MNI 
template cortical mesh. Color 
reflects T-value (scale irrelevant 
other than blue regions having 
value zero)
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AUC increased from good to excellent when the accurate 
fMRI priors were used.

For induced source X2(-54, -13, 5), the location errors of 
peak activity and the center of cluster were greatly reduced 
by the fMRI priors. Higher-order cognitive activity in the 
brain has been shown to be induced responses. Even when 
only inaccurate spatial prior was used, the location error and 
AUC was not affected that much. The add-on white noise 
slightly decreased the AUC and increased the location error 
for both sources.

The extracted time courses were plotted against the actual 
time courses (see supplementary Fig. S6-7). Table 2 showed 
the RMSE values for different inversion methods. The intro-
duction of spatial priors reduced discrepancy between the 
reconstructed time courses and ground truth, which were 
more evident in evoked source activity X1. For evoked 
source activity X1, average of 100 trials did not change the 
RMSE compared to 100-trial time courses. But for induced 
source activity X2, average of 100 trials reduced the RMSE 
dramatically compared to 100-trial time courses. Inversion 
with all fMRI spatial priors including invalid and valid 
ones offered the lowest RMSE for evoked source activity 
X1, while inversion with valid only spatial fMRI priors gives 
lowest RMSE for induced source activity X2 without aver-
aging. The virtual sensor approach gave the lowest RMSE 
for induced source activity X2 after averaging all the trials. 
The inversion approach with all fMRI spatial priors pro-
vided the lowest overall RMSE for both evoked and induced 

source activity (X1 and X2). The time course extraction was 
problematic for induced response X2 due to the trial-to-trial 
variability. The unaveraged time courses had higher RMSE 
which indicated high discrepancy between the original sig-
nal and extracted signal.

The single-sided amplitude spectrum plots were gener-
ated for all time course using Fourier transformation (see 
supplementary Fig. S8). All inversion methods yielded low 
RMSE. Table 3 showed the RMSE for spectrum plots.

Experimental MEG Data

The introduction of group fMRI results as spatial priors for 
MEG inverse problem significantly increased free-energy 
F (T(15) = 2.51, p < 0.05, one-tailed). For evoked activity, 
the effect of fMRI priors on the source reconstruction was 
mainly to divide activity slightly more bilaterally in the STG 
and reduce the spurious clusters (see Fig. 4). For induced 
activity, the effect of fMRI priors on the source reconstruc-
tion was to pull activity slightly more left in STG (see Fig. 4) 
that was consistent with known patterns of leftward laterali-
zation of this task (Wang et al., 2012).

Discussion

We implemented the hierarchical Bayesian framework on 
MEG source reconstruction with fMRI spatial information 
incorporated as spatial priors and applied this approach to 
both simulated MEG data and experimental MEG data from 
sixteen adolescents during a narrative comprehension task.

For simulated MEG data, the spatial resolution of 
MEG source reconstruction increases (3 mm on average) 
by incorporating the prior information from fMRI in the 
source reconstruction. The use of fMRI spatial priors greatly 
reduced location error for induced source in MEG data. This 
is important since the induced responses of the neuronal 
activity in the brain are often corresponding to high-order 
cognitive tasks. Therefore, the additional spatial priors from 
fMRI could benefit the accuracy of source reconstruction 
especially for this type of high-order cognitive processes. 
Wang et al. (2012) reported similarities and differences 
between fMRI and MEG data from the same participant 
(Wang et al., 2012). FMRI spatial priors would include 
valid and invalid spatial locations. Our results suggested that 
the combination of accurate and inaccurate spatial priors 
still increased the accuracy of MEG source reconstruction 
since the inaccurate priors are effectively discarded in the 
restricted maximum likelihood procedure. The AUC was 
greatly increased from good to excellent when the fMRI 
priors are incorporated into the MEG inversion problem. 
Thus, the MSP with fMRI priors is a robust approach for 
MEG inverse problem.

Table 1   Summary of different inversion methods

Localization Error 
(mm)

No priors All Valid Only Invalid Only

No noise
  X1 Peak 9.70 9.70 9.70 9.70

Cmass 8.15 7.80 7.80 8.15
  X2 Peak 7.35 5.83 5.83 7.35

Cmass 6.75 1.56 1.56 6.75
AUC​ 0.82 0.99 0.99 0.85
Signal-to-Noise Ratio = 10 dB

  X1 Peak 9.70 9.70 9.70 9.70
Cmass 8.15 7.80 7.80 8.15

  X2 Peak 7.35 5.83 5.83 7.35
Cmass 7.10 1.64 1.64 7.10

AUC​ 0.82 0.99 0.99 0.85
Signal-to-Noise Ratio = -10 dB

  X1 Peak 9.70 9.70 9.70 9.70
Cmass 8.76 8.50 8.50 8.76

  X2 Peak 7.35 5.83 5.83 7.35
Cmass 7.49 1.81 1.81 7.53

AUC​ 0.80 0.95 0.96 0.84
Cmass: the center of the cluster
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Fig. 3   The ROC curves for different inversion methods. Blue: Inversion without fMRI priors; Green: Inversion with all fMRI priors including 
valid and invalid; Khaki: Inversion only with valid fMRI priors; Red: Inversion only with invalid priors

Table 2   RMSE as a quantitative 
measure of time-course 
extraction quality for each 
inversion method

RMSE No priors All Valid Only Invalid Only Virtual Sensor

X1

Average of 100 trials 0.015 0.001 0.004 0.011 0.007
100 trials 0.020 0.002 0.005 0.016 0.010
X2

Average of 100 trials 0.033 0.024 0.037 0.021 0.008
100 trials 0.490 0.494 0.488 0.497 0.505
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This is the first study that applied the hierarchical Bayes-
ian framework on simulated MEG data from both evoked 
and induced source activity. The evoked responses are 
phase-locked to trial onset and induced responses have a 
random phase-relationship over trials. Simple paradigm 
design with short duration of visual, or auditory, or sensory, 
or motor stimulus usually produces evoked responses. High-
order cognitive paradigms have longer stimulus duration and 
induce a more complex process in the brain that varies over 
trials. This type of paradigm usually generates both evoked 
and induced activity in the brain. From our simulated data, 
we found that the accurate fMRI spatial priors have evident 
effects on the induced activity not the evoked activity. The 
induced responses benefit more from the fMRI prior infor-
mation since there is more trial-to-trial variability in the 
induced responses. From our experimental data, activation 
patterns from evoked and induced responses separate dif-
ferent stages of language processes involved in the narrative 

comprehension task. This finding demonstrated that the wide 
range of neuronal activity recorded by MEG could improve 
our understanding of language processes.

The introduction of accurate spatial priors reduced dis-
crepancy between the reconstructed time courses and the 
actual time courses. The effect was more evident in the 
estimated time courses of the evoked source. This finding 
was encouraging in that spatial priors are beneficial not 
only in spatial accuracy but also in temporal accuracy. 
The trial-to-trial variability for induced source affected the 
accuracy of estimated time courses at each individual trial 
due to random nature of the phase relationship with the 
stimuli. When the time courses from induced source were 
transferred into frequency domain, the power spectrum 
in the frequency domain for each trial showed much less 
discrepancy between the ground truth and estimation. This 
finding confirmed other studies in the literature (David, 
Kilner, & Friston, 2006; Friston, 2006; Michalopoulos 

Table 3   RMSE as a quantitative 
measure of time-course 
extraction quality for each 
inversion method

RMSE No priors All Valid Only Invalid Only Virtual Sensor

X1

Average of 100 trials 0.0009 0.0001 0.0002 0.0007 0.0004
100 trials 0.0010 0.0001 0.0003 0.0008 0.0005
X2

Average of 100 trials 0.0016 0.0011 0.0019 0.0009 0.0004
100 trials 0.0026 0.0022 0.0029 0.0021 0.0017

Fig. 4   Group composite activa-
tion maps of story > tone con-
trast from MEG without fMRI 
spatial priors (left) and MEG 
with fMRI spatial priors (right) 
results (N = 16). Significant 
level: p < 0.05 false discovery 
rate corrected. Cluster size > 20. 
Slice range: Z = -5 to + 50 mm 
(Talairach coordinates) and 
5 mm between each successive 
slice displayed. All images are 
in radiologic orientation (left on 
the right, right on the left)
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et al., 2011), suggesting using the average energy over 
trials to represent the induced responses.

For our experimental data, the introduction of fMRI 
spatial priors showed significant increases in the free-
energy bound, which indicates the improvement in model 
evidence by adding fMRI spatial information into MEG 
source reconstruction. Our experimental results are in 
line with Henson et al. (Henson et al., 2011). The group 
composite activation maps of story > tone contrast from 
MEG with fMRI spatial priors showed very similar activa-
tion patterns to our previous cross-sectional fMRI studies 
(Karunanayaka et al., 2007; Szaflarski et al., 2012; Van-
nest et al., 2009). FMRI spatial information reduced the 
spurious clusters for evoked activity and showed more 
left-lateralized activation pattern for induced activity. The 
activations in the STG were bilateral for evoked activity, 
whereas activations in the STG were left-lateralized for 
induced activity. The bilateral activations in STG, revealed 
by evoked responses, could be due to the residual prelin-
guistic auditory processing since the use of tone listening 
as the control condition presumably subtracts out earlier 
stages of auditory processing. The strong left-lateralized 
activations in STG, revealed by induced responses, agree 
with other fMRI studies (Benson et al., 2006; Binder et al., 
2000; Mummery et al., 1999; Scott et al., 2000), which 
suggested the high-order cognitive process for understand-
ing speech sounds takes place in the left temporal lobe. 
Therefore, MEG with fMRI spatial priors might be helpful 
in determining the lateralization of language functions in 
presurgical mapping.

The limitations of this study are also identified. First, the 
fMRI spatial priors in the present study are binarized for 
simplicity. The fMRI spatial priors can also be continuous 
function of fMRI signal. Binary priors can produce slightly 
higher statistical value than continuous priors (Henson et al., 
2010). Then, the forward model used in this study was the 
single sphere head model (Sarvas, 1987), which is the sim-
plified model. Future studies could test different forward 
models (e.g., boundary-element models) and its effects on 
MEG inverse solutions with fMRI priors.

Conclusion

In summary, the hierarchical Bayesian framework allows 
us to incorporate fMRI spatial priors and improve MEG 
source estimates resulting in a distribution of likely solutions 
instead of a single solution. Combining MEG and fMRI data 
within the Bayesian framework is a promising approach to 
overcome the limitations of each modality and offers brain 
signal with fine spatiotemporal resolution which is crucial 
for effective connectivity analysis.
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