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ABSTRACT
Cinnamomum camphora, a member of the Lauraceae family, is a valuable aromatic

and timber tree that is indigenous to the south of China and Japan. All parts of

Cinnamomum camphora have secretory cells containing different volatile chemical

compounds that are utilized as herbal medicines and essential oils. Here, we

reported the complete sequencing of the chloroplast genome of Cinnamomum

camphora using illumina technology. The chloroplast genome of Cinnamomum

camphora is 152,570 bp in length and characterized by a relatively conserved

quadripartite structure containing a large single copy region of 93,705 bp, a small

single copy region of 19,093 bp and two inverted repeat (IR) regions of 19,886 bp.

Overall, the genome contained 123 coding regions, of which 15 were repeated in the

IR regions. An analysis of chloroplast sequence divergence revealed that the small

single copy region was highly variable among the different genera in the Lauraceae

family. A total of 40 repeat structures and 83 simple sequence repeats were detected

in both the coding and non-coding regions. A phylogenetic analysis indicated that

Calycanthus is most closely related to Lauraceae, both being members of Laurales,

which forms a sister group to Magnoliids. The complete sequence of the chloroplast

of Cinnamomum camphorawill aid in in-depth taxonomical studies of the Lauraceae

family in the future. The genetic sequence information will also have valuable

applications for chloroplast genetic engineering.
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INTRODUCTION
Cinnamomum, contains 250–300, or more, species worldwide and is a species-rich

genus of evergreen aromatic tree and shrub belonging to the Lauraceae family. As the

representative species of Cinanamomum, the camphor tree (Cinnamomum camphora)

is a broad-leaved evergreen characterized by aromatic oils in all of the plant parts.

This species originated in the southern parts of China and Japan, and has a widespread

naturalized distribution in many other countries. Camphor trees can reach up to 40 m
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in height and live to be over 1,000 years old. They have oval or elliptical leaves with wavy

margins that give off a distinctive aromatic smell when crushed. In addition to providing

sources for spices and essential oils, the species also has a notable commodity value

as lumber and is ecologically significant in garden construction (Babu et al., 2003).

Chloroplast serves as the metabolic center of plant life by converting solar energy to

carbohydrates through photosynthesis and oxygen release (Neuhaus & Emes, 2000).

The advent of high-throughput sequencing technology has facilitated rapid progress in

the field of chloroplast genetics and genomics. Approximately 800 complete chloroplast

genomes from a variety of land plants have been retained in the National Center for

Biotechnology Information (NCBI) organelle genome database since the first chloroplast

genome of tobacco (Nicotiana tabacum) (Shinozaki et al., 1986) and liverwort

(Marchantia polymorpha) (Ohyama et al., 1986), which were sequenced simultaneously in

1986. The sequenced chloroplast genomes have improved our understanding of plant

biology and evolutionary relationships. Chloroplast genomes of land plants have a high

degree of conservation in size, structure, gene content and the gene’s linear order. They

comprise a single circular chromosome, typically ranging in size from 107 kb (Cathaya

argyrophylla) to 218 kb (Pelargonium) (Chumley et al., 2006; Lin et al., 2010). Chloroplast

genomes have a quadripartite structure, with a pair of inverted repeats (IRs) separated by

one large and one small single copy region (Yurina & Odintsova, 1998). Several plant

chloroplast genomes also show significant structural rearrangements, with evidence of the

loss of IR regions or entire gene families (Hirao et al., 2008; Yi et al., 2013). Additionally,

the presence of IRs might stabilize the chloroplast genomes organization (Chang et al.,

2006; Wicke et al., 2011). The chloroplast genome consists of 120–130 genes divided into

three functional categories, protein-coding genes, introns and intergenic spacers. Most

genes primarily participate in photosynthesis, transcription and translation.

While morphological and palynological studies of the phylogeny of Lauraceae family

have been performed (Rohwer, 1993; Shang & Tang, 1994), the classification systems have

not been widely accepted or approved. The use of morphological and palynological

characteristics generally resolves the majority plant classifications but there is currently

insufficient information on the Lauraceae family to provide the high-resolution necessary

to differentiate some within-species taxa, whose taxonomic relationships are

controversial. Therefore, research has been conducted on the relationships among the

members of the Lauraceae family using multiple short sequences inferred from the

chloroplast (Chanderbali, van der Werff & Renner, 2001; Lee, Lee & Choi, 2013; Li et al.,

2004; Rohwer, 2000), which provides important molecular information that can be

applied to deciphering evolutionary relationships between closely related taxa with

phylogenetic clades.

In this study, we sequenced and analyzed the complete chloroplast genome of

Cinnamomum camphora based on illumina high-throughput sequencing technology. In

addition to describing the plastic features of the chloroplast genome, we compared the

gene content, repeat structures and sequence divergence with other reported species in the

Lauraceae family. We also presented results of a phylogenetic analysis of protein sequences

from Cinnamomum camphora and 25 other plant species. The complete chloroplast
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genome of Cinnamomum camphora, in conjunction with previously reported chloroplast

genome sequences, will improve our understanding of the evolution relationships of

genera in the Lauraceae family, especially regarding the position of Cinnamomum

camphora in evolution and plant systematics. Moreover, the complete genome sequence

of Cinnamomum camphora provides valuable data for that can be used in chloroplast

genetic engineering.

MATERIALS AND METHODS
Samples and genome sequencing
Fresh young leaves of Cinnamomum camphorawere obtained from the campus of Nanjing

Forestry University. The chloroplasts of Cinnamomum camphora were isolated using the

Sigma Chloroplast DNA Isolation kit (Sigma, St. Louis, MO, USA), and chloroplast DNA

was extracted using DNaesy Plant Mini Kit (QIAGEN, Hilden, Germany). The purified

DNA was subjected to hydroshearing, end repair and then interrupted randomly to

construct 350 bp libraries. The complete library, with an average read length of 150 bp,

was sequenced using Illumina Hiseq2000 platform.

Chloroplast genome assemble and annotation
To ensure accurate and reliable analyses, raw reads were proofread and assembled with

SOAP denovo (Li et al., 2008). The generated contigs were assembled using the chloroplast

genome sequence of Cinnamomum micranthum (KT348516.1) as a reference. The

chloroplast genome sequences of Cinnamomum camphora were annotated through the

online program Dual Organellar Genome Annotator (Solovyev et al., 2006). The

annotation results were manually checked, including the start and stop codons, and

adjusted by comparison to homologous genes from other sequenced chloroplast genomes.

Transfer RNA (tRNA) genes were verified using tRNA scan-SE in organellar search mode

with default parameters (Schattner, Brooks & Lowe, 2005). The circular chloroplast

genome map of Cinnamomum camphorawas drawn using the OGDRAW program (Lohse,

Drechsel & Bock, 2007). Nucleotide frequency and relative synonymous codon usage

(RSCU) (Sharp, Tuohy & Mosurski, 1986) were analyzed using DAMBE (Xia, 2013) on the

protein-coding genes and only genes in inverted repeat region A (IRA) were used to

represent repeated genes.

Repeat structures and simple sequence repeats (SSRs) analysis
REPuter was used to identify forward and palindromic repeats with a minimal size of

30 bp, hamming distance of three and over 90% identity (Kurtz et al., 2001). Tandem

repeat sequences were identified in Cinnamomum camphora using Tandem Repeats Finder

with default parameters (Benson, 1999). Simple sequence repeats (SSRs) were detected

using the microsatellite identification tool MISA (http://pgrc.ipk-gatersleben.de/misa/)

with the following thresholds: minimum SSR motif length of 10 bp, and 10 repeat units

for mononucleotide SSRs, five repeat units for dinucleotide SSRs, four repeat units for

trinucleotide SSRs, and three repeat units for tetra-, penta- and hexanucleotide

SSRs. The maximum size of interruption allowed between two different SSRs in a
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compound SSR was 100 bp (von Stackelberg, Rensing & Reski, 2006). All of the repeats

identified with the above programs were manually verified to remove redundant results.

Comparative analysis of different Lauraceae plastomes
To encompass the complete nucleotide diversity among Lauraceae species, the complete

chloroplast genome sequences were aligned usingMAFFT 7.222 software (Katoh & Standley,

2013), and manually adjusted with BioEdit software (Hall, 1999). DnaSP 5.0 software

was used to conduct a sliding window analysis to calculate the nucleotide variability (Pi)

values (Librado & Rozas, 2009). Pi is defined as the average number of nucleotide differences

per site between two DNA sequences in all possible pairs in the sample population (Nei & Li,

1979). The window length was set to 600 bp, and the step size was set to 200 bp.

Phylogenetic analysis
A molecular phylogenetic tree was constructed using 26 different plant species with

TreeBeST (http://treesoft.sourceforge.net/treebest.shtml). Among these 26 taxa, Abies

koreana, Picea sitchensis, Pinus taiwanensis, Podocarpus lambertii, Cycas revolute and

Ginkgo biloba were set as the outgroup. The 26 completed chloroplast genome sequences

representing the lineages of angiosperms were downloaded from the NCBI Organelle

Genome Resource database. The protein-coding sequences of related Lauraceae species

were determined by MUSCLE (Edgar, 2004). A phylogenetic tree was constructed based

on a neighbor joining analysis. The bootstrap probability of each branch was calculated by

1,000 replications.

RESULTS AND DISCUSSION
Genome organization and gene features
The complete chloroplast genome size of Cinnamomum camphorawas 152,570 bp, the same

as Cinnamomum micranthum (Wu, Ho & Chang, 2016). The chloroplast genome had a

single circular chromosome with a quadripartite structure, which included a pair of IR

regions (19,886 bp) that were separated by a large single copy (LSC, 93,705 bp) and a small

single copy (SSC, 19,093 bp) regions (Fig. 1). Coding regions (83,429 bp), comprising

protein-coding genes (72,222 bp), tRNA genes (2,271 bp) and rRNA genes (8,936 bp)

accounted for 54.68% of the genome, whereas non-coding regions (69,141 bp) accounted

for the remaining 45.32% of the genome. The overall GC content of the Cinnamomum

camphora was 39.13%. The IR regions had a higher GC content of 44.42%, while the GC

contents of the LSC and SSC were 37.96% and 33.92%, respectively. The high GC

percentage in the IR regions was similar to most reported chloroplast genomes, which could

be the result of ribosomal RNA in this region (Asaf et al., 2016; Qian et al., 2013).

A total of 123 coding regions were identified in the chloroplast genome of Cinnamomum

camphora, of which 107 were unique (Fig. 1 and Table 1). In total, 79 (73 unique) protein-

coding genes were involved in the processes related to photosynthesis, the genetic system

and several currently unknown functions. Additionally, 36 (30 unique) genes encoded

tRNAs and eight (four unique) rRNA genes. Like the genes, the introns of chloroplast

genomes were basically conserved. In Cinnamomum camphora, seven protein-coding genes
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Figure 1 Gene map of the Cinnamomum camphora chloroplast genome. Genes lying inside of the molecule are transcribed in the clockwise

direction, where as those outside are transcribed in the counterclockwise direction. Genes are color-coded based on their functional category. The

innermost circle denotes the GC content across the genome. The dark gray inner circle corresponds to the GC content, and the light gray cor-

responds to the AT content of the genome. Large single copy (LSC), small single copy (SSC) and inverted repeat (IRA and IRB) regions are

indicated.
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(rps16, petD, ndhB (2�), atpF, rpoC1 and rpl2) contain one intron, and four protein-coding

genes (ycf3, clpP and rps12 (2�)) contain two introns (Table S1). The loss of introns within

the protein-coding genes reported in other plant species has not been found in the

chloroplast genome of Cinnamomum camphora (Daniell et al., 2008; Jansen et al., 2008;

Wu et al., 2009). As in many other land plants, rps12 was located with a single 5′ end in

the LSC region and a repeated 3′ end in both of the IR regions (Raman & Park, 2016;

Redwan, Saidin & Kumar, 2015; Yang et al., 2013). There were 15 genes duplicated in the IR

regions, including three protein-coding genes, eight tRNAs and four rRNAs. Overall, the

gene content, number and structure in chloroplast genomes were generally similar to those

of other reported Lauraceae species (Hinsinger & Strijk, 2016; Song et al., 2015, 2016;

Wu, Ho & Chang, 2016).

The sequence analysis indicates 79 protein-coding genes in this genome represented

63,654 bp and 21,218 codons. On the basis of the sequences of protein-coding genes, the

frequency of codon usage was calculated (Table 2). Among these codons 2,203 (10.87%)

encode leucine, while 255 (1.25%) encode cysteine, which are the most and least used

amino acids, respectively. The overall codon bias pattern in of the Cinnamomum

camphora genome tended to use A/U—ending codons, and among the 29 preferred

codons in the Cinnamomum camphora chloroplast genome (RSCU > 1.0), 27 ended

Table 1 List of genes in the chloroplast genome of Cinnamomum camphora.

Groups of genes Names of genes

Protein synthesis

and DNA replication

Transfer RNAs trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-UCC, trnfM-CAU, trnH-GUG,

trnI-CAU, trnK-UUU, trnL-UAA, trnL-UAG, trnA-UGC, trnP-GGG, trnP-UGG,

trnQ-UUG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU,

trnV-UAC, trnW-CCA, trnY-GUA, trnI-GAU (2�), trnL-CAA (2�), trnM-CAU (2�),

trnN-GUU (2�), trnR-ACG (2�), trnV-GAC (2�)

Ribosomal RNAs rrn16 (2�), rrn23 (2�), rrn4.5 (2�), rrn5 (2�)

Ribosomal protein small subunit rps11, rps12 (2�), rps14, rps15, rps16, rps18, rps19, rps2, rps3, rps4, rps7 (2�), rps8

Ribosomal protein large subunit rpl14, rpl16, rpl2 (2�), rpl20, rpl22, rpl23, rpl32, rpl33, rpl36

Subunits of RNA polymerase rpoA, rpoB, rpoC1, rpoC2

Photosynthesis Photosystem I psaA, psaB, psaC, psaI, psaJ

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN,

psbT, psbZ

Cytochrome b/f complex petA, petB, petD, petG, petL, petN

ATP synthase atpA, atpB, atpE, atpF, atpH, atpI

NADH-dehydrogenase ndhA, ndhB (2�), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Large subunit Rubisco rbcL

Miscellaneous group Translation initiation factor IF-1 infA

Acetyl-CoA carboxylase accD

Cytochrome c biogenesis ccsA

Maturase matK

ATP-dependent protease clpP

Inner membrane protein cemA

Pseudogenes of

unknown function

Conserved hypothetical

chloroplast open reading frame

ycf1 (2�), ycf2 (2�), ycf3, ycf4
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with A/U. This phenomenon is similarly observed in many other chloroplast genomes

(Nie et al., 2012; Zhang et al., 2016).

Comparative analysis of different Lauraceae plastomes
We compared four other reported chloroplast genomes of representative taxa in the

Lauraceae family with that of Cinnamomum camphora (Table S2). These taxa included

Cinnamomum micranthum (152,570 bp, KR014245.1), Persea americana (152,723 bp,

KX437771.1), Machilus yunnanensis (152,721 bp, KT348516.1) and Litsea glutinosa

Table 2 Relative synonymous codon usage (RSCU) for protein coding in the chloroplast genome of

Cinnamomum camphora.

AA Codon ObsFreq RSCU AA Codon ObsFreq RSCU

UAA 31 1.26 Trp UGG 370 1

UAG 20 0.81 Ala GCU 576 1.81

UGA 23 0.93 GCC 207 0.65

Leu UUA 658 1.79 GCA 352 1.1

UUG 463 1.26 GCG 140 0.44

CUU 445 1.21 Tyr UAU 613 1.56

CUC 162 0.44 UAC 171 0.44

CUA 315 0.86 His CAU 420 1.51

CUG 160 0.44 CAC 137 0.49

Ile AUU 867 1.44 Gln CAA 546 1.44

AUC 397 0.66 CAG 210 0.56

AUA 540 0.9 Asn AAU 717 1.54

GUU 461 1.46 AAC 213 0.46

GUC 165 0.52 Lys AAA 704 1.46

GUA 442 1.4 AAG 261 0.54

GUG 193 0.61 Asp GAU 658 1.56

Ser UCU 444 1.58 GAC 184 0.44

UCC 288 1.02 Glu GAA 789 1.46

UCA 341 1.21 GAG 189 0.54

UCG 176 0.63 Cys UGU 190 1.49

AGU 344 1.22 UGC 65 0.51

AGC 96 0.34 Arg CGU 302 1.39

Pro CCU 346 1.47 CGC 75 0.35

CCC 221 0.94 CGA 297 1.37

CCA 250 1.06 CGG 99 0.46

CCG 122 0.52 AGA 379 1.75

Thr ACU 430 1.55 AGG 18 0.68

ACC 227 0.82 Gly GGU 499 1.26

ACA 324 1.17 GGC 189 0.48

ACG 126 0.46 GGA 602 1.53

Met AUG 513 1 GGG 288 0.73

Notes:
The preferred codons are in bold (RSCU > 1.0).
AA: amino acids.
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(152,618 bp, KU382356.1). To examine the level of sequence divergence of the Lauraceae

family, the Pi values within 600 bp were calculated with DnaSP 5.0 software among the

five chloroplast genomes of Cinnamomum camphora, Cinnamomum micranthum,

M. yunnanensis, L. glutinosa and P. americana. Between the two Cinnamomum species,

Pi values varied from 0 to 0.025 (ycf2) with a mean of 0.00362, indicating that the

differences between the two Cinnamomum genomes were small (Fig. 2A). However,

five of the genes (ycf2, rrn23, ycf1, trnL-UAG and ndhF) showed high levels of variation,

which were much higher than the values of other regions (Pi > 0.02). Among the five

Lauraceae species, the Pi values ranged from 0 to 0.3178 (ndhH) with a mean of 0.03361,

indicating that the differences among different species of the genera in the Lauraceae

family were greater than those between congeneric species (Fig. 2B). Particularly, the

entire SSC regions were highly variable among the different genera in the Lauraceae

family. Coding regions, including those of ycf1, psaC, ccsA, rpl32 and a set of genes named

ndh, have been identified as highly variable regions in the SSC region. The SSCs often have

a higher nucleotide substitution rates relative to the IRs in land plants (Perry & Wolfe, 2002;

Figure 2 Comparison of the nucleotide variability (Pi) values of the whole plastomes in the (A)

Cinnamomum and (B) Lauraceae (window length: 600 bp, step size: 200 bp). X-axis: positions of

the midpoints of a window, Y-axis: nucleotide diversity in each window.
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Zhang, Ma & Li, 2011). These comparatively highly variable loci are good for

exploiting molecular markers and evaluating interspecies phylogenetic relationships

(Chen et al., 2015; Dong et al., 2012; Timme et al., 2007).

Repeat and SSR analyses
Repeat motifs are very useful in the analysis of genome rearrangements and play an

important role in phylogenetic analyses (Cavalier-Smith, 2002). A total of 40 repeat

structures with a length at least 30 bp were detected in the chloroplast genome

of Cinnamomum camphora. Similarly, 61, 45, 46 and 40 repeat structures were detected

in Cinnamomum micranthum, L. glutinosa, M. yunnanensis and P. americana (Fig. 3D).

Cinnamomum micranthum had the greatest total number of repeats, and the other four

Lauraceae species showed similar numbers and patterns of repeats. For repeat analysis of

Cinnamomum camphora, 12 forward and 12 palindromic repeats were found with a size

of 30–44 bp, whereas only one forward and one palindromic repeats were 15–29 bp in

length. Similarly, 13 tandem repeats were 15–29 bp, and one tandem repeat was 30–44 bp

in length (Figs. 3A–3C). The presence of these repeats indicated that the region is a

Figure 3 Number and type of repeated sequences in five plastomes of Lauraceae. (A) Frequencies of the palindromic repeats by length;

(B) frequencies of the tandem repeats by length; (C) frequencies of the forward repeats by length; (D) total of the three repeat types.
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potential hotspot for genome reconfiguration (Asano et al., 2004; Gao et al., 2009).

Additionally, these repeats were informative resources for developing genetic markers for

phylogenetic and population genetic studies (Nie et al., 2012).

Simple sequence repeats, also known as microsatellites, are 1–6 bp repeating sequences

that are widely distributed throughout the chloroplast genome. SSRs are typically co-

dominant and have a higher degree of polymorphism. Here, we detected perfect SSRs with

a minimum size of 10 bp in Cinnamomum camphora and four other Lauraceae species.

The SSRs were interrupted by a maximum distance of 100 bp. Based on the analysis,

83 perfect SSRs were detected in the chloroplast genome of Cinnamomum camphora.

Similarly, 88, 81, 82 and 86 were identified in Cinnamomum micranthum, L. glutinosa,

M. yunnanensis and P. americana (Fig. 4A). The majority of the SSRs in these chloroplast

genomes were mononucleotides, ranging from 54 in L. glutinosa to 65 in Cinnamomum

Figure 4 Number and type of simple sequence repeats (SSRs) in five plastomes of Lauraceae. (A)
Numbers of different SSR types identified in the five Lauraceae chloroplast genomes and (B) frequencies

of identified SSR motifs in different repeat class types. SSRs were classified as the number of repeat unit

lengths.
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micranthum. Additionally, only one hexanucleotide was present in all of the Lauraceae

species. In Cinnamomum camphora, the most abundant motif, at 74.50%, was a run of

mononucleotide A/T (Fig. 4B). This result confirmed that the chloroplast SSRs found in

most plants are generally composed of polythymine or polyadenine repeats, and

infrequently contain cytosine and guanine repeats (Choi, Chung & Park, 2016; Kuang et al.,

2011). The total output consisted of 83 SSRs: 76% (63 SSRs) in the LSC region, 19%

(16 SSRs) in the SSC region, and 5% (four SSRs) in the IR regions (Table S3). In comparison

with the IR region, the SSRs were more prevalent in the LSC and SSC regions. SSRs in

coding regions are prone to mutation and cause frame-shifts to occur, which renders the

gene non-functional (Wang, Barkley & Jenkins, 2009). Chloroplast SSRs have been used to

evaluate genetic variations among plant genotypes (Vendramin et al., 1999) and to

Figure 5 Molecular phylogenetic tree of 26 species based on a neighbor joining analysis. Numbers

above and below nodes are bootstrap support values �50%.
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investigate the genetic diversity of Lauraceae species (Santos, Spironello & Sampaio, 2008;

Zhai et al., 2010). The SSRs in this analysis are good resource for developing

molecular markers and will be applied to molecular marker-assisted breeding, population

genetics and genetic linkage map construction (Deguilloux, Pemonge & Petit, 2004;

Huang et al., 2014).

Phylogenetic analysis
Chloroplast genome sequences are useful for deciphering phylogenetic relationships

among closely related taxa and for clarifying the evolutionary patterns of plant species

(Jansen et al., 2007; Kyunghee et al., 2015). To examine the phylogenetic position of

Cinnamomum camphora in the Lauraceae family, the core protein-coding genes that are

common to all 26 chloroplasts were used to infer their phylogenetic relationships (Fig. 5).

Several species in the gymnosperm were set as outgroups. The alignment analysis was

conducted by MUSCLE. A neighbor joining analysis was performed with TreeBeST using

1,000 bootstrap replicates. The long branches indicated faster rates of plastid sequence

evolution compared with other members in the tree. The tree suggested the correct

phylogeny inference, followed by the latest angiosperm phylogeny group III (Bremer et al.,

2009). The phylogenetic tree indicated that Calycanthus is most closely related to

Lauraceae, which are both members of Laurales and Laurales forms a sister group to

Magnoliids. In corroboration with other studies, Endiandra discolor were first separated

from the other Lauraceae species (Hinsinger & Strijk, 2016; Rohwer & Rudolph, 2005).

Furthermore, the position of Cinnamomum camphora was clustered with Cinnamomum

micranthum, both of which are members of Cinnamomum. The chloroplast genome of

Cinnamomum camphorawill provide valuable and essential genetic information to further

the phylogenetic resolution among angiosperms (Leebens-Mack et al., 2005; Moore et al.,

2007; Ruhfel et al., 2014).

CONCLUSION
We successfully assembled, annotated and analyzed the complete chloroplast sequence

of Cinnamomum camphora. As an ancient tree species, the chloroplast genome of

Cinnamomum camphorais was still conserved and found to be very similar to its sister

taxon, Cinnamomum micranthum. The repeat sequences identified in Cinnamomum

camphora could be selected for developing markers, population studies and phylogenetic

analyses. A phylogenetic analysis suggested that Calycanthus is most related to

Lauraceae, with both of them being members of Laurales, which forms a sister group

to Magnoliids. The availability of the Cinnamomum camphora chloroplast genome will

aid in for further investigations of this woody plant and will also, in conjunction with

previously published chloroplast genome sequences, help to expand our understanding

of the evolutionary history of Lauraceae chloroplast genomes, including the position

of Cinnamomum camphora in plant systematics and evolution. In addition, it will

assist in making other molecular biology applications, such as chloroplast gene

transformation, feasible.
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