Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

ELSEVIER

Data Article

Pairwise sequence comparison data of the DNA barcodes of aquatic insects

Koji Inai¹, Kei Wakimura¹, Mikio Kato^{1,2,*}

¹ Riverine Metagenomics Research Group, Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai 599-8531 JAPAN

² Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai 599-8531 JAPAN

ARTICLE INFO

Article history: Received 28 August 2020 Accepted 31 August 2020 Available online 8 September 2020

Keywords: Aquatic insect COI DNA barcode histone H3 sequence comparison sequence similarity

ABSTRACT

This study compared the DNA sequences of cytochrome c oxidase subunit I (COI) and histone H3 of Ephemeroptera, Odonata, Plecoptera, and Trichoptera in a pairwise manner, and calculated the sequence similarities based on uncorrected P-distance (number of identical sites in both sequences per total number of the sites compared). Datasets of annotated sequences, the source organisms of which are identified at the species level in taxonomy, were retrieved from INSD (GenBank/ ENA/ DDBJ) as of the end of May 2020. Similarity scores of the pairwise comparison were sorted by the combinations of taxonomic groups; intraspecific variations, intrageneric-interspecific divergences, intrafamilyintergeneric divergences, and intraorder-interfamily divergences for Ephemeroptera, Odonata, Plecoptera, and Trichoptera. Similarity scores at the cumulative relative frequency points (1%, 5%, 10%, and median) may be used as the threshold to differentiate between the taxonomic groups based on sequence match. This is often done in the characterization of morphologically-unidentified specimens using

DOI of original article: 10.1016/j.egg.2020.100065

* Corresponding Author.

E-mail address: mkato@b.s.osakafu-u.ac.jp (M. Kato).

https://doi.org/10.1016/j.dib.2020.106284

2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

barcode sequences, in the metabarcoding analysis of the local fauna, and environmental DNA analysis.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications Table

Subject	Genetics
Specific subject area	DNA taxonomy and molecular phylogeny of aquatic insects
Type of data	Pairwise sequence comparison of the DNA barcodes of aquatic insects
	summarized in Tables and histograms (Figures)
How data were acquired	Sequence similarity was calculated as the uncorrected P-distance
	(number of identical sites in both sequences per the total number of the
	sites compared) by pairwise sequence comparison using an ad-hoc
	software.
Data format	Raw
Parameters for data	Well-annotated data (source organisms of which are identified precisely
collection	at the species level; not obfuscated with sp.) of COI and histone H3
	were retrieved from INSD. Partial coding regions (COI: 658-bp, histone
	H3: 328-bp) were subjected to pairwise comparison. Short sequences
	were also analyzed, but homologously aligned sequences shorter than
	the half of their standard length were excluded from the analyses.
Description of data	Pairwise sequence comparison was performed, and similarity scores
collection	were sorted by respective combinations of the taxonomic groups
	(intraspecific, interspecific, intergeneric, and interfamily comparisons).
	Computing was performed using an ad hoc software written by one of
	the authors (K.I.), the source code file of which is attached to this
	manuscript.
	File name: sequence_comparison.R
Data source location	Primary data sources: List of INSD accession numbers of the sequence
	data used for the analyses is attached to this manuscript.
	File names: List of INSD accession numbers_COI.txt, List of INSD
	accession numbers_H3.txt
Data accessibility	Provided with the article
Related research article	Kei Wakimura, Yasuhiro Takemon, Shin-ichi Ishiwata, Kazumi Tanida,
	Eman M. Abbas, Koji Inai, Akikazu Taira, Aki Tanaka, Mikio Kato
	A reference collection of Japanese aquatic macroinvertebrates
	Ecological Genetics and Genomics 17,
	2020, 100065

Value of the Data

- Species identification based on DNA sequences is a key step in metabarcoding studies and environmental DNA (eDNA) analysis. We provide a standard of sequence similarity critical values that enables us to assign a taxonomic identity by sequence match.
- Sequence data of obfuscated organism names (named with sp.) in INSD will be assigned to the specific taxon via similarity search based on the criteria presented in these data. This provides benefits to scientists investigating biogeography and taxonomy.
- Because many aquatic insects have a preference in micro- and macro-habitats, they are recognized as indicator species for that specific environment. Based on the critical values presented here, the specimens obtained are identified using DNA sequencing, and evaluation of the aquatic environment via metabarcoding will be enabled.
- These data will also reveal that misidentification of specimens and/or confusion of nomenclature exists in the INSD sequencing data and that the presence of cryptic species is also

plausible. Analyzing the species showing higher intraspecific distances may clarify the cryptic species, and this may attract the attention of insect taxonomists.

1. Data Description

Source code of the program used for pairwise sequence comparison is attached to the manuscript (file name: sequence_comparison.R). INSD accession numbers of the nucleotide sequences used in the analyses are listed in the text files (file names: List of INSD accession numbers_COLtxt, List of INSD accession numbers_H3.txt). Raw data of pairwise sequence comparison are compressed in a supplementary material attached to this paper.

Figures 1A-1H are drawn based on the pairwise sequence comparison data, and display the frequency distribution of the sequence similarity data pairs (scale at left) (shown in %). Fig. 1A and 1E show the histograms of cytochrome c oxidase subunit I (COI) and histone H3 of Ephemeroptera, respectively. Fig. 1B and 1F show the histograms of COI and histone H3 of Odonata, respectively. Fig. 1C and 1G show the histograms of COI and histone H3 of Plecoptera, respectively. Fig. 1D and 1H show the histograms of COI and histone H3 of Trichoptera, respectively. Each panel includes the histograms showing intraspecific variation, interspecific divergence, intergeneric divergence, and interfamily divergence. Blue lines indicate cumulative relative frequency curves (shown in %, scale at right). Vertical lines of yellow, red, green, and light blue represent the scores of sequence similarity at 1%, 5%, 10%, and the median of cumulative relative frequencies, respectively.

Tables 1A and 1B list the number of sequencing data of COI and histone H3 used in the analyses, respectively. Numbers of taxa (species, genera, and families), to which the sequencing data belong, are also shown.

Table 2A and 2B summarize the sequence comparison results of COI and histone H3, respectively. Critical scores of sequence similarity at each acceptance region (corresponding to the vertical lines in Fig. 1) are shown.

Table 3 shows the results of sequence-matching between the INSD dataset and the sequencing data of specimens named with sp. in Ephemeroptera, which we collected [3]. There was 42 out of 132 specimens attributed to the known species based on the median of intraspecific variations as the threshold, which was 98.2% and 98.7% for COI and histone H3, respectively.

2. Experimental Design, Materials and Methods

Characterization and identification of living organisms via specific DNA sequences (barcodes) has become popular since Hebert et al. [1] had established the technique and procedure. Intraspecific variations and interspecific divergence of barcode sequences are, however, often problematic because of the complexity in taxonomy. Barcoding has poor outcomes in incompletely sampled groups [2]. We have been making efforts to collect Japanese aquatic insects for identification analysis based on morphology and characterization via DNA barcodes [3].

Morphology-based identification is often difficult for specimens at immature developmental stages and those damaged during collection. Also, specific names cannot be given to undescribed taxa. Similarity search for DNA barcodes in INSD is effectively applied to resolve these problems if the reference sequencing data of precisely-identified species are available in INSD. We examined the intraspecific variations and interspecific, intergeneric, and interfamily divergences of DNA barcodes for Ephemeroptera, Odonata, Plecoptera, and Trichoptera using the INSD dataset (as of May 2020) in order to propose critical values for the DNA-based assignment of taxonomic identity.

A Ephemeroptera COI

Figure 1. Pairwise comparison of INSD data.

B Odonata COI

Figure 1. Continued

C Plecoptera COI

Figure 1. Continued

D Trichoptera COI

Figure 1. Continued

E Ephemeroptera histone H3

Figure 1. Continued

Figure 1. Continued

G Plecoptera histone H3

Figure 1. Continued

H Trichoptera histone H3

Figure 1. Continued

Table 1A

COI sequences retrieved from INSD (GenBank/ENA/DDBJ) as of May 2020

	Ephemeroptera	Odonata	Plecoptera	Trichoptera
Number of DNA sequences	12522	9238	6984	34592
Number of species	781	1365	629	3347
Number of genera	175	401	168	461
Number of families	31	36	16	45

Table 1B

Histone H3 sequences retrieved from INSD (GenBank/ENA/DDBJ) as of May 2020

	Ephemeroptera	Odonata	Plecoptera	Trichoptera
Number of DNA sequences	630	442	519	108
Number of species	200	311	191	59
Number of genera	105	149	111	34
Number of families	30	30	16	12

Table 2A

Threshold of sequence similarity (%) of COI

Sequence comparison	Acceptance region	Ephemeroptera	Odonata	Plecoptera	Trichoptera
Intraspecific	median	98.2	99.3	99.4	99.6
Interspecific	1% of data pairs	94.2	99.7	99.0	94.5
(intrageneric)	5% of data pairs	88.2	97.7	94.9	89.8
	10% of data pairs	86.1	94.9	92.3	88.4
	median	81.6	88.0	85.7	84.0
Intergeneric	1% of data pairs	84.7	89.9	91.0	88.0
(intrafamiry)	5% of data pairs	83.2	87.1	88.3	86.5
	10% of data pairs	82.5	86.1	86.0	85.6
	median	80.1	83.3	81.9	81.1
Interfamily	1% of data pairs	83.2	85.7	84.1	83.4
(intraorder)	5% of data pairs	81.6	84.4	83.0	80.8
	10% of data pairs	80.7	83.7	82.4	79.5
	median	77.2	81.1	80.3	76.0

Table 2B

Threshold of sequence similarity (%) of histone H3

Sequence comparison	Acceptance region	Ephemeroptera	Odonata	Plecoptera	Trichoptera
Intraspecific	median	98.7	99.3	100.0	99.8
Interspecific	1% of data pairs	100.0	100.0	99.8	100.0
(intrageneric)	5% of data pairs	99.9	99.9	99.1	98.0
	10% of data pairs	99.7	99.6	98.7	97.2
	median	94.5	98.2	97.2	90.8
Intergeneric	1% of data pairs	97.7	98.7	97.3	93.5
(intrafamiry)	5% of data pairs	96.3	96.9	96.2	90.5
	10% of data pairs	94.9	95.5	95.6	89.2
	median	90.8	87.3	92.1	84.4
Interfamily	1% of data pairs	93.4	94.4	93.0	91.9
(intraorder)	5% of data pairs	92.3	91.9	91.6	89.5
	10% of data pairs	91.6	90.2	90.9	88.4
	median	88.4	83.7	87.9	83.5

Well-annotated data (source organisms of which are identified at the species level; not obfuscated with sp.) of COI and histone H3 genes were retrieved from INSD. Partial coding regions (COI: 658-bp, histone H3: 328-bp) were subjected to pairwise comparison, and the scores of sequence similarity were sorted by respective combinations of the taxonomic groups. Short se-

Gene	Accession No.	Specimens with laboratory ID	Reference data showing highest similarity	Sequence similarity
Histone H3	MK774487	Ameletus sp. OPU_BS_2017-221-OC-EP	GQ433995 Ameletus montanus	325/328; 99.1%
Histone H3	MK774515	Ameletus sp. OPU_BS_2017-222-OC-EP	GQ433995 Ameletus montanus	327/328; 99.7%
Histone H3	KF562981	Ameletus sp. OPU_BS_A2012-262	AY870291 Ameletus costalis	327/328; 99.7%
COI	KP970695	Baetis sp. MK-2015a OPU_BS_B2013-101	KP970701 Acentrella sibirica	652/658; 99.1%
COI	KP970699	Baetis sp. MK-2015c OPU_BS_B2013-134	KF563060 Nigrobaetis chocoratus	654/658; 99.4%
Histone H3	JQ655111	Baetis sp. OPU_BS_B2010-23	KF562972 Baetis thermicus	327/328; 99.7%
Histone H3	JQ650129	Baetis sp. OPU_BS_B2011-19	MH260739 Nigrobaetis taiwanensis	324/328; 98.8%
Histone H3	JQ650161	Cincticostella sp. OPU_BS_C2011-113	KF562982 Ephacerella longicaudata	324/328; 98.8%
Histone H3	KF563005	Cincticostella sp. OPU_BS_C2011-117	KF562982 Ephacerella longicaudata	328/328; 100%
COI	KF563023	Cinygmula sp. OPU_BS_C2011-90	MK774298 Paracinygmula zhiltzovae	656/658; 99.7%
COI	KF563024	Cinygmula sp. OPU_BS_C2011-91	MK774290 Paracinygmula zhiltzovae	656/658; 99.7%
COI	MK774329	Drunella sp. OPU_BS_2017-165-YS-EP	MK774351 Drunella ishiyamana	657/658; 99.8%
Histone H3	MK774449	Drunella sp. OPU_BS_2017-165-YS-EP	MK774458 Drunella ishiyamana	328/328; 100%
COI	MK774330	Drunella sp. OPU_BS_2017-166-YS-EP	MK774351 Drunella ishiyamana	658/658; 100%
Histone H3	MK774450	Drunella sp. OPU_BS_2017-166-YS-EP	MK774456 Drunella ishiyamana	325/328; 99.1%
Histone H3	MK774512	Drunella sp. OPU_BS_2017-208-YS-EP	JQ650124 Drunella ishiyamana	328/328; 100%
Histone H3	MK774514	Drunella sp. OPU_BS_2017-323-YS-EP	JQ650124 Drunella ishiyamana	328/328; 100%
COI	KP970696	Ecdyonurus sp. MK-2015c OPU_BS_E2013-130	MK774290 Paracinygmula zhiltzovae	656/658; 99.7%
Histone H3	MK774489	Ecdyonurus sp. OPU_BS_2018-038-IN-EP	JQ650162 Afronurus yoshidae	328/328; 100%
Histone H3	KP970755	Epeorus sp. MK-2015 OPU_BS_E2012-235	MK774420 Epeorus ikanonis	328/328; 100%
Histone H3	KP970756	Epeorus sp. MK-2015 OPU_BS_E2012-236	MK774420 Epeorus ikanonis	328/328; 100%
Histone H3	KF562963	Ephemerella sp. OPU_BS_E2012-129	MK774468 Teloganopsis punctisetae	328/328; 100%
COI	KF563053	Ephemerella sp. OPU_BS_E2012-86	KP970723 Ephemerella notata	656/658; 99.7%
COI	KF563054	Ephemerella sp. OPU_BS_E2012-90	KP970723 Ephemerella notata	655/658; 99.5%
Histone H3	KP970729	Ephemerella sp. OPU_BS_E2013-51	KF562983 Ephemerella atagosana	327/328; 99.7%

Table 3 Identification of ambiguous specimens of Ephemeroptera by DNA barcodes.

(continued on next page)

Tabl	e 3	(continued	1)

Gene	Accession No.	Specimens with laboratory ID	Reference data showing highest similarity	Sequence similarity
COI	KP970725	Ephemerella sp. OPU_BS_E2014-68	MH260769 Ephemerella imanishii	654/658; 99.4%
COI	KP970726	Ephemerella sp. OPU_BS_E2014-69	MH260769 Ephemerella imanishii	653/658; 99.2%
COI	KP970727	Ephemerella sp. OPU_BS_E2014-71	MH260769 Ephemerella imanishii	655/658; 99.5%
COI	KP970728	Ephemerella sp. OPU_BS_E2014-73	MH260769 Ephemerella imanishii	653/658; 99.2%
COI	KP970715	Ephemerellidae sp. OPU_BS_E2014-4	MK774364 Teloganopsis punctisetae	658/658; 100%
COI	MK774406	Heptageniidae sp. OPU_BS_2017-159-DB-EP	MK774314 Rhithrogena japonica	658/658; 100%
Histone H3	MK774446	Heptageniidae sp. OPU_BS_2017-159-DB-EP	MK774418 Rhithrogena japonica	328/328; 100%
COI	MK774367	Paraleptophlebia sp. OPU_BS_2017-209-YS-EP	GU354161 Paraleptophlebia chocolata	654/658; 99.4%
Histone H3	MK774469	Paraleptophlebia sp. OPU_BS_2017-209-YS-EP	GQ433999 Paraleptophlebia chocolata	328/328; 100%
COI	KF563018	Paraleptophlebia sp. OPU_BS_P2010-362	GU354161 Paraleptophlebia chocolata	656/658; 99.7%
Histone H3	JQ650148	Paraleptophlebia sp. OPU_BS_P2010-362	GQ433999 Paraleptophlebia chocolata	328/328; 100%
Histone H3	KF562978	Paraleptophlebia sp. OPU_BS_P2012-248	JQ650134 Paraleptophlebia spinosa	327/328; 99.7%
Histone H3	KF562979	Paraleptophlebia sp. OPU_BS_P2012-249	JQ650134 Paraleptophlebia spinosa	327/328; 99.7%
Histone H3	KP970731	Paraleptophlebia sp. OPU_BS_P2013-106	GQ433999 Paraleptophlebia chocolata	328/328; 100%
Histone H3	KP970732	Paraleptophlebia sp. OPU_BS_P2013-200	GQ433999 Paraleptophlebia chocolata	328/328; 100%
Histone H3	KP970733	Paraleptophlebia sp. OPU_BS_P2013-202	GQ433999 Paraleptophlebia chocolata	328/328; 100%
COI	KF563013	Rhithrogena sp. OPU_BS_R2010-16	KP970686 Epeorus aesculus	653/658; 99.2%
Histone H3	JQ650146	Rhithrogena sp. OPU_BS_R2010-16	MH260744 Epeorus aesculus	324/328; 98.8%
COI	KF563014	Rhithrogena sp. OPU_BS_R2010-19	KP970686 Epeorus aesculus	654/658; 99.4%
COI	KP970721	Siphlonurus sp. OPU_BS_S2014-10	KF563047 Siphlonurus sanukensis	653/658; 99.2%
Histone H3	KP970745	Siphlonurus sp. OPU_BS_S2014-10	KF562970 Siphlonurus sanukensis	328/328; 100%
Histone H3	KP970746	Siphlonurus sp. OPU_BS_S2014-11	KF562970 Siphlonurus sanukensis	328/328; 100%
COI	KP970718	Siphlonurus sp. OPU_BS_S2014-7	KF563047 Siphlonurus sanukensis	651/658; 98.9%
Histone H3	KP970742	Siphlonurus sp. OPU_BS_S2014-7	KF562970 Siphlonurus sanukensis	328/328; 100%
COI	KP970720	Siphlonurus sp. OPU_BS_S2014-9	KF563047 Siphlonurus sanukensis	651/658; 98.9%
Histone H3	KP970744	Siphlonurus sp. OPU_BS_S2014-9	KF562970 Siphlonurus sanukensis	328/328; 100%

quences in INSD were also analyzed, but the homologously aligned sequences shorter than the half of their standard length were excluded.

For intraspecific comparison, each of the sequence pairs was counted to achieve frequency distribution of the similarity scores. For the comparisons between higher taxonomic levels, the frequency was normalized to each pair of the species; e.g. in the case of comparison between species-X (2 sequences available) and species-Y (3 sequences available), there are six combinations of sequence pairs, and then 1/6 is taken as the respective similarity score. This normalization was done to avoid the excess contribution of the species, for which multiple sequencing data exist in INSD.

Declaration of Competing Interest

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Number: 17K07541). The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106284.

References

- P.D.N. Hebert, A. Cywinska, S.L. Ball, J.R. de Waard, Biological identifications through DNA barcodes, Proc. R. Soc. Lond. B 270 (2003) 313–321.
- [2] C.P. Meyer, G. Paulay, DNA barcoding: Error rates based on comprehensive sampling, PLoS Biol 3 (2005) e422.
- [3] K. Wakimura, Y. Takemon, S. Ishiwata, K. Tanida, E. M. Abbas, K. Inai, A. Taira, A. Tanaka, M. Kato, A reference collection of Japanese aquatic macroinvertebrates. *Ecol. Genet. Genom.* 17, 2020, 100065.