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Abstract: Most current approach to metagenomic classification employ short next generation
sequencing (NGS) reads that are present in metagenomic samples to identify unique
genomic regions. NGS reads, however, might not be long enough to differentiate similar genomes.
This suggests a potential for using longer reads to improve classification performance. Presently,
longer reads tend to have a higher rate of sequencing errors. Thus, given the pros and cons, it remains
unclear which types of reads is better for metagenomic classification. We compared two taxonomic
classification protocols: a traditional assembly-free protocol and a novel assembly-based protocol.
The novel assembly-based protocol consists of assembling short-reads into longer reads, which will be
subsequently classified by a traditional taxonomic classifier. We discovered that most classifiers made
fewer predictions with longer reads and that they achieved higher classification performance on
synthetic metagenomic data. Generally, we observed a significant increase in precision, while having
similar recall rates. On real data, we observed similar characteristics that suggest that the classifiers
might have similar performance of higher precision with similar recall with longer reads. We have
shown a noticeable difference in performance between assembly-based and assembly-free taxonomic
classification. This finding strongly suggests that classifying species in metagenomic environments
can be achieved with higher overall performance simply by assembling short reads. Further, it also
suggests that long-read technologies might be better for species classification.
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1. Introduction

The species level classification is an important problem in metagenomics analysis.
Computational workflows aim for the identification of microbial species that are present in
metagenomics samples. Examples include studies that assessed the host-microbe interactions in
the gut microbiome to gain better insight into human health [1], revealed ecological differentiation of
closely related bacteria [2], uncovered the presence of ancient sub-populations of marine bacteria [3],
and highlighted extensive intra-species recombination [4,5].

Methods for classification and profiling of microbial communities are diverse. CLARK [6] uses
a database of k-mers that aims to uniquely describes genomic regions of each targeted microbes.
GOTTCHA [7] has a different approach to identifying unique genomic regions of targeted microbes by
using a combination of empirical data and machine learning methods. Kraken [8] also utilizes k-mers,
but builds taxonomic trees that help differentiate closely related microbes. MetaPhlAn2 [9] employs a
similar taxonomic approach, but narrows read alignment and its analysis is on a set of only around
one million markers.

More recent technologies can produce very long reads, but at the expense of having higher costs
and much higher error rates [10]. However, longer reads have been found to be more appropriate
or better compared to short reads in certain studies [11]. Single-molecule sequencing (SMS) offers
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exceptionally long reads that enable direct sequencing of genomic regions that are difficult to sequence
with short reads, including long repetitive elements, extreme GC-content regions, and complex
gene loci. Similarly, these platforms enable structural variation characterization at previously
unparalleled resolution and direct detection of epigenetic marks in native DNA [12]. Similarly,
the PacBio sequencing system can capture full-length 16S rRNA sequences [13]. Third-generation
nanopore sequencing offers many solutions to the current problems of using whole metagenome
sequencing (WMS) for infectious disease diagnostics. It has been successfully utilized for pathogen
detection, AMR prediction, and characterization of mixed microbial communities [14].

While long read technologies are more appropriate for certain studies, short read technologies are
mature and less expensive. Is it possible to leverage known strengths of short read technologies to
garner the high performance of long reads?

In this paper, we demonstrate that it is possible to improve the performance of species classification
in metagenomic applications using long reads that are assembled from short reads. This finding has two
major implications. First, it suggests that many existing studies that utilize short reads can benefit from
long reads that are assembled from the short reads. Although there is an extra computational cost of
assembly and minor modification to the existing workflows, the increase in performance might justify
the cost. Second, this finding suggests that there are potential gains in utilizing long-reads technologies
in this type of applications. As current long-read technologies have different characteristics from
short-read technologies in terms of cost and sequencing errors, the trade-offs between these pros and
cons remain to be investigated.

2. Method

Most metagenomic classifiers, including those that we studied in this paper, consist of two main
steps. In the preprocessing step, a classifier utilized reference genomic sequence of existing species to
build an index or reference table. The index or reference table was built only once for a metagenomic
environment. In the classification step, the classifier used the index or reference table to classify
metagenomic data, in the form of reads, and make predictions.

Our method interrupted this workflow by modifying the classification step. Before feeding short
reads as inputs to a classifier, we assembled them into long reads. Figure 1 depicts the process of
comparing a classifier’s performance on short reads and long reads. Figure 1A is the standard workflow
of a classifier, where it took a short reads dataset as input and outputted species that it predicted to be
present in the sample. Figure 1B shows a workflow, in which the same short reads were first assembled
before feeding to the classifier.

Different methods may have different types of prediction formats, which can be species label for
each read, or predicted species for the entire dataset, or predicted percentages of species in the sample
(in case of metagenomics profiling). Metagenomic classifiers outputted a rank separated taxanomic
profile with relative abundances, whereas binning classifiers provided sequence identification,
length used in the assignment, and taxon as output. The classifier’s outputs were then converted into
species names, which produced a list of species.

Each classifier required a reference database of genomic sequences to classify metagenomic reads
into species. We used complete genomes of bacteria archaea, and viruses from NCBI to construct this
database for each classifier. We removed species that were labeled unclassified or unknown because
they might cause problems for taxonomic prediction [15].

For consistency, we used the NCBI taxonomy database [16] to standardize results from different
classifiers. Further, for classifiers that produced strain-level predictions, we converted them to
species-level predictions so that the results could be compared consistently across different classifiers.

We compared the outputs of classifiers using default parameters at the species level because
not all classifiers still predicted at strain level. Species is a taxonomic rank more relevant in clinical
diagnostics or pathogen identification than genus or phylum. Although some clinical diagnosis and
epidemiological tracking often requires identification of strains, genomic databases remain poorly
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populated below the species level [17]. Evaluation was done in a similar way to [17,18]. For each
classifier, we evaluated predicted species produced with assembled reads and predicted species
produced with original short reads.

Figure 1. Workflow of metagenomic classification: (A) original workflow, which uses short reads,
(B) modified workflow, which uses assembled reads. Metegenomic classifiers are Kaiju, CLARK,
Kraken, MetaCache, MetaPhlAn2, DUDes and GOTTCHA. Metagenomic assemblers are MEGAHIT,
metaSPAdes and Ray.

2.1. Classifiers

We evaluated with a set of seven metagenomic classifiers: Kaiju (version 1.7.2) [19],
CLARK (version 1.2.6) [6], Kraken (version 1.1.1) [8], MetaCache (version 0.6.1) [20], MetaPhlAn2
(version 2.6.0) [9], DUDes (version 0.08) [21], and GOTTCHA (version 1.0c) [7]. The choice was
motivated by recent publications comparing the performance of such tools [17].

Kaiju, CLARK, Kraken, MetaCache are k-mer based methods for metagenomic read classification.
CLARK and Kraken were run with the default k-mer size of 31, while MetaCache use 16-mers
by default. Kaiju was run in the fastest MEM mode (with minimum fragment length m = 11), as well
as in the heuristic greedy mode (with minimum score s = 65).

On the other hand, both MetaPhlAn2 [9] and DUDes [21] have to use results of
read-to-reference mapping from Bowtie2 [22]; however, for some longer contigs (several million
bps), Bowtie2 (version 2.3.4.2) crahsed. We used a read mapper designed for both short and long reads:
Minimap2 (version 2.17) [23] as an alternative for mapping reads to reference genomes.

While running the classifiers above, we specified the “paired-end reads” option for raw read
input as well as the “singleton read” option for assembled read input.

2.2. Assemblers

MEGAHIT (version 1.2.9) [24], metaSPAdes (version 3.13.1) [25], Ray (version 2.3.1) [26] were
used to assemble short-reads into contigs. These tools were selected based on their popularity for
assembling metagenomic reads [27].

Assemblers were launched with (mostly) default parameters; taking a pair of FASTQ files that
contains raw reads and then producing a single FASTA file that contains assembled reads for each
dataset. The file names of assembled reads from MEGAHIT, metaSPAdes, and Ray were “final.contigs",
“contigs" and “Contigs" respectively.

Ray parallelized assembly computations using the Message Passing Interface (MPI) standard,
a run agent “mpirun". While metaSPAdes consumes very high memory, MEGAHIT specified multiple
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computational threads and optionally a graphical processing unit for improving its runtime. Due to
the scope of this work, we do not report the runtime as well as memory usage of the assemblers.

3. Result

3.1. Experimental Design

The main hypothesis was that the classification or identification of microbes in metagenomics
samples was better done with long reads than with short reads. We aimed to design a controlled
experiment to verify the hypothesis. To achieve this, we evaluated the ability to detect species in
metagenomics samples of several well-known classifiers on several short-reads datasets and derived
long-reads datasets. The choice of which long-reads datasets were used to compare against which
short-reads datasets was an important design decision. If we chose a long-reads dataset produced
by a current technology to compare against a short-reads dataset produced by a different technology,
the result might be due to differences in technologies rather than in read lengths. As our goal was to
examine the impact of read lengths on classification, we chose to use long reads that are derived from
the same short reads. These derived long-reads datasets were constructed by assembling short reads
from the datasets that are used to evaluate the classifiers’ performance. Although this design choice
removed the effect of sequencing technologies, it introduced the potential effect of assembling reads
on the result. To address this, we evaluated classifiers with different assemblers to remove algorithmic
bias on classification performance.

We chose classifiers and assemblers that were free and widely used. We excluded any tools that
were difficult to use or install, as well as those that were lacking in support of any kind. We selected
seven popular classifiers: Kaiju [19], CLARK [6], Kraken [8], MetaCache [20], MetaPhlAn2 [9],
DUDes [21], and GOTTCHA [7] and three metagenomic assemblers: MEGAHIT [24], metaSPAdes [25],
Ray [26]. These tools employ different algorithmic techniques.

3.2. Performance Assessment

Classifiers were evaluated with synthetic and real samples. Although some tools could work
on the strain level, we evaluated classification results at species levels since most methods still do
not provide strain level identifications. Classification performance of synthetic data was measured in
terms of precision, recall, and F1.

Precision =
TP

TP + FP
; Recall =

TP
TP + FN

; F1 =
2 · precision · recall
precision + recall

where TP (true positives): the number of correctly classified species; FP (false positives): the number of
incorrectly classified species; FN (false negatives): the number of incorrectly classified non-species,
by each method.

To access classifiers’ performance on real data, we define the overall pairwise similarity of a
method c to other methods as

∑n
i=1,c 6=i |Sc ∩ Si|
∑n

i=i |Sc ∩ Si|

where, Si is the number of species predicted by method i. This similarity is between 0 and 1. The closer
it is to 1, the higher the overall similarity to other methods.

3.3. Data

We used the Mende datasets [28], which are synthetic data consisting of 890 genomes representing
457 strains, species, and sub-species. The simulators used to generate custom metagenomic data are
freely available, as are the datasets we used http://www.bork.embl.de/~mende/simulated_data/.

Mende datasets were simulated for Sanger sequencing, pyrosequencing, and Illumina sequencing.
For each technology, three metagenomes were simulated to mimic different community complexities

http://www.bork.embl.de/~mende/simulated_data/
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10 species (10 s), 100 species (100 s), and 400 species (400 s). However, the Sanger sequencing,
pyrosequencing technologies seemed obsolete/out-of-date. We tested our hypothesis on Illumina
paired-end raw reads of Mende datasets, which is a very widely used sequencing platform.

To test our hypothesis with the real data, we used the gut microbiome data [29]. The metagenomic
shotgun-sequencing data for two samples (ERR2017411, ERR2017412) was downloaded from the
European Bioinformatics Institute (EBI) database under the accession code ERP023788.

All data used were paired-end reads within the Illumina platform. Synthetic data consists of
26 million reads for each dataset (10 s, 100 s, and 400 s) with the read length of 75 bp. Real data had
17 million reads for each sample with the read length of 90 bp. There Methods a slight difference in
read lengths between synthetic data and real data; however, the read lengths from 75 bp to 100 bp
were reported [30,31] to produce the same alignment results.

To analyze the distribution of lengths of long reads and assembled contigs, we acquired two
sets of metagenomic sequencing data: PacBio RSII data from the Microbial Mock Community B
of the Human Microbiome Project (HMP Set 7) and Nanopore GridION sequencing data of the
Zymo Community Standards 2 synthetic community (Zymo-GridION-EVEN-BB-SN). The HMP7 data
are publicly available (https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_
Project_MockB_Shotgun). The Zymo data are publicly available (https://github.com/LomanLab/
mockcommunity).

3.4. Findings

Using assembled reads, four out of seven classifiers increased their precision by up to 2×,
while maintaining similar recall; see Table 1. These four classifiers were Kaiju, CLARK, Kraken and
MetaCache. The improvement in performance was most significant for smaller datasets. With the
dataset 10 s, which consisted of 10 species, CLARK, for example, benefited from a 50× increase in
precision with the same recall, when reads were assembled by any of the three assemblers. With the
dataset 100 s, which consisted of 100 species, CLARK benefited from a 3− 4× increase in precision
with the same recall, when reads were assembled by any of the three assemblers. With the dataset
400 s, which consisted of 400 species, CLARK benefited from a 1.04× increase in precision with the
same recall. Similarly, other three classifiers benefited from assembled reads. Kraken and MetaCache
benefited from increases in both precision and recall with the larger datasets 100 s and 400 s.

MetaPhlAn2’s performance got worse with assembled reads, compared to its performance on
unassembled short reads. We also observed that DUDes and GOTTCHA did not benefit from assembled
reads. The overall F1 scores were highest when reads were assembled by MEGAHIT and metaSPAdes.

We report the assembly statistics (Table 2) and read length distribution of assembled reads
compared to two datasets of current long-read technologies (Figure 2). Note that due to highly
fragmented reads and contigs, the read/contig length distribution was log scaled. In Table 2,
the performance of Ray with MetaPhlAn2, DUDes and GOTTCHA on the 400 s simulation dataset was
much worse than that without assembly, likely because the number of contigs on 400 s was significantly
smaller than that of 10 s, and 100 s. Therefore, Ray was not a good choice for assembling reads with a
high number of species in the sample. We suggest that later assembly algorithm developments should
consider the estimate number of species as an option.

We observed that with synthetic data, the majority of classifiers predicted much fewer species
when reads were assembled; see Table 3. With fewer predicted species, there should be fewer false
positives. Even if prediction mistakes were not random, making fewer positive predictions will
naturally decrease the number of false positives, which tends to increase precision. This observation
likely explains the drastic observed increase in precision, while maintaining similar recall, across the
board with synthetic datasets. With real datasets, we observed a similar behavior that classifiers
predicted much fewer species when reads were assembled. Although we could not compute precision
and recall with real data, the same trend suggests that as with synthetic data, classifiers should be
much more precise when reads were assembled. This increase in precision should, similarly, be drastic

https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun
https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun
https://github.com/LomanLab/mockcommunity
https://github.com/LomanLab/mockcommunity
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when the datasets have much fewer species than the index database that were used by classifiers to
classify species.

Figure 2. Contig length distribution compared to PacBio and ONT long read length distribution.
Contigs were assembled across datasets (from left to right): 10s, 100s, 400s, ERR2017411, ERR2017412
and by different assemblers (from top to bottom): MEGAHIT (MH), metaSPAdes (MS), Ray. The bottom
subfigures are PacBio (left) and ONT (right) read length distribution.

Additionally, Table 4 shows that with real datasets, the overall pairwise similarity decreased with
assembled reads. This suggests that with assembled reads, classifiers had a higher chance of showing
their uniqueness in predicting species.
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Table 1. Precision, recall, F-1 of species-level classification of four metagenomic classifiers on three synthetic short read datasets, which are, respectively, not assembled
and assembled by three assemblers: MEGAHIT (MH), metaSPAdes (MS), and Ray.

Kaiju CLARK Kraken MetaCache MetaPhlAn2 DUDes GOTTCHA

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

10
s

n/a 0.02 1.0 0.04 0 .02 1.0 0.05 0.03 1.0 0.06 0.20 1.0 0.33 1.0 1.0 1.0 1.0 0.90 0.94 1.0 1.0 1.0
MH 0.50 0.90 0.64 1.0 1.0 1.0 1.0 1.0 1.0 0.90 1.0 0.95 1.0 0.40 0.57 0.90 1.0 0.95 1.0 1.0 1.0
MS 0.50 0.90 0.64 1.0 1.0 1.0 1.0 1.0 1.0 0.66 1.0 0.80 1.0 0.20 0.33 0.76 1.0 0.87 1.0 1.0 1.0
Ray 0.39 0.90 0.54 1.0 1.0 1.0 1.0 1.0 1.0 0.83 1.0 0.91 1.0 0.70 0.82 0.83 1.0 0.90 1.0 1.0 1.0

10
0

s

n/a 0.18 0.87 0.29 0.21 0.98 0.35 0.21 0.84 0.34 0.47 0.97 0.63 0.92 0.87 0.89 0.98 0.84 0.91 0.97 0.89 0.93
MH 0.35 0.87 0.50 0.88 0.99 0.93 0.67 0.86 0.75 0.78 0.99 0.87 0.93 0.79 0.85 0.99 0.82 0.90 0.97 0.89 0.93
MS 0.35 0.87 0.50 0.69 0.99 0.81 0.63 0.86 0.73 0.73 0.99 0.84 0.93 0.80 0.86 0.99 0.84 0.90 0.97 0.89 0.93
Ray 0.25 0.87 0.38 0.98 0.99 0.98 0.75 0.86 0.80 0.83 0.99 0.90 0.94 0.86 0.90 0.97 0.85 0.91 0.97 0.89 0.93

40
0

s

n/a 0.84 0.88 0.86 0.95 0.99 0.97 0.95 0.83 0.88 0.91 0.97 0.94 0.97 0.88 0.93 0.98 0.69 0.81 0.99 0.88 0.93
MH 0.88 0.88 0.88 0.99 0.99 0.99 0.98 0.84 0.90 0.97 0.99 0.98 0.98 0.83 0.90 0.99 0.70 0.82 0.99 0.89 0.94
MS 0.87 0.88 0.87 0.98 0.99 0.99 0.98 0.84 0.90 0.96 0.99 0.98 0.98 0.84 0.91 0.99 0.68 0.81 0.99 0.89 0.94
Ray 0.95 0.85 0.90 0.99 0.99 0.99 0.99 0.84 0.91 0.99 0.98 0.99 0.90 0.02 0.04 0.98 0.46 0.63 1.0 0.22 0.36
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Table 2. Assembly statistics for all assemblers on simulated (10 s, 100 s, 400 s) and real (ERR2017411,
ERR2017412) data.

Statistics Dataset MEGAHIT metaSPAdes Ray

Synthetic Data

number of contigs 10 s 1069 1156 3256
largest contig 10 s 835,563 1,436,250 294,361

avg contig 10 s 31,529.53 29,211.97 10,307.24
n50 10 s 131,416 234,206 31,735

number of contigs 100 s 156,074 210,765 717,512
largest contig 100 s 573,139 190,202 14,995

avg contig 100 s 1936.78 1448.98 189.24
n50 100 s 3051 2732 177

number of contigs 400 s 488,142 901,182 59,663
largest contig 400 s 21,914 13,618 3367

avg contig 400 s 377.24 323.58 149.72
n50 400 s 361 319 138

Real Data

number of contigs ERR2017411 85,426 165,252 252,974
largest contig ERR2017411 516,770 394,993 278,191

avg contig ERR2017411 1606.59 981.96 443.97
n50 ERR2017411 4063 2820 1620

number of contigs ERR2017412 67,750 141,689 201,038
largest contig ERR2017412 212,503 264,186 192,118

avg contig ERR2017412 1360.63 807.96 340.48
n50 ERR2017412 2720 1816 432

Table 3. Number of species predicted by each classifiers.

Kaiju CLARK Kraken MetaCache MetaPhlAn2 DUDes GOTTCHA

26,666,674 paired-end reads (10 s) length of 75 bp

n/a 3553 372 346 50 10 9 10
MEGAHIT 25 10 10 11 5 11 10

MetaSPAdes 31 10 10 15 3 13 10
Ray 36 10 10 12 8 12 10

26,667,004 paired-end reads (100 s) length of 75 bp

n/a 3659 394 380 176 87 73 84
MEGAHIT 1258 95 125 108 80 71 84

MetaSPAdes 1328 122 131 115 81 72 84
Ray 2109 86 107 101 86 74 84

26,665,698 paired-end reads (400 s) length of 75 bp

n/a 3707 416 405 426 402 282 390
MEGAHIT 2024 403 394 411 370 284 388

MetaSPAdes 2522 405 396 416 375 277 389
Ray 754 398 392 394 10 188 99

17,853,919 paired-end reads (ERR2017411) length of 90 bp

n/a 3654 3140 3638 1071 79 29 37
MEGAHIT 2071 1477 1537 718 29 47 25

MetaSPAdes 2618 1782 1867 797 32 33 25
Ray 2679 1630 1731 515 31 40 23

17,793,507 paired-end reads (ERR2017412) length of 90 bp

n/a 3647 3075 3651 1044 82 48 45
MEGAHIT 1653 1035 1058 611 23 33 26

MetaSPAdes 2312 1387 1423 679 39 42 29
Ray 2192 1203 1297 448 21 21 22
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Table 4. Pairwise similarity of a method to other methods.

Kaiju CLARK Kraken MetaCache MetaPhlAn2 DUDes GOTTCHA

17,853,919 paired-end reads (ERR2017411) length of 90 bp

n/a 0.66 0.69 0.66 0.68 0.65 0.82 0.80
MEGAHIT 0.51 0.63 0.62 0.60 0.76 0.81 0.80

MetaSPAdes 0.53 0.65 0.64 0.63 0.73 0.81 0.81
Ray 0.50 0.64 0.62 0.63 0.74 0.81 0.80

17,793,507 paired-end reads (ERR2017412) length of 90 bp

n/a 0.66 0.69 0.65 0.68 0.71 0.82 0.82
MEGAHIT 0.51 0.63 0.62 0.60 0.76 0.81 0.80

MetaSPAdes 0.53 0.65 0.64 0.63 0.73 0.81 0.81
Ray 0.50 0.64 0.62 0.63 0.74 0.81 0.80

4. Discussion

In this work, we showed the promising prospect of utilizing long reads in identifying species
in metagenomic samples. Long reads, used in this study, are assembled from the same short reads,
which were used to compare classification performance. This was performed to remove potential
side effects of different sequencing technologies. As future long-read technologies achieve fewer
sequencing errors and become less expensive, their use for species classification in metagenomics
should be desirable.

At present, we have demonstrated that we can leverage the advantage of long reads by assembling
short reads that would otherwise be used for species classification. We showed that at least two of
the currently popular assemblers can be used for this purpose. We observed that MEGAHIT and
metaSPAdes produced higher N50s across datasets, while Ray had lower N50s. In fact, it failed to
assemble reads when the datasets contained 400 species. A quick comparison between metaSPAdes
and MEGAHIT assemblers across all the datasets considered in this study confirmed that metaSPAdes
performs better for a smaller dataset (10 s) while MEGAHIT performs better for larger datasets (100 s
and 400 s).

We think that Kaiju, CLARK, Kraken, and MetaCache benefited from the longer reads because of
their approach of using k-mers as unique markers to distinguish closely related species. On the other
hand, MetaPhlAn2, DUDes and GOTTCHA have built-in statistical post-processing procedures that
align reads to reference genomes, which appear not benefit from longer reads.

5. Conclusions

We demonstrated that improvement in taxonomic classification can be achieved with a novel
assembly-based protocol. Specifically, we compared performance of popular metagenomic classifiers
on short reads and longer reads, which are assembled from the same short reads. Using a number of
popular assemblers to assemble short reads, we discovered that most classifiers made fewer predictions
with longer reads and that they achieved higher classification performance on synthetic metagenomic
data. Specifically, across most classifiers, we observed a significant increase in precision, while recall
remained the same, resulting in higher overall classification performance. On real metagenomic data,
we observed a similar trend as in the case of synthetic data that classifiers made fewer predictions.
This suggested that they might have the same performance characteristics of having higher precision
while maintaining the same recall with longer reads.

This finding has two main implications. First, it suggests that classifying species in metagenomic
environments can be achieved with higher overall performance simply by assembling short
reads. This finding can make a big impact on the many existing studies that utilize short reads.
The modification to their existing workflow is minimal, although there is an extra computational
cost of assembling short reads. We showed that a number of existing assemblers could be used for
the purpose of assembling short reads into contigs for this specific purpose. Second, this finding
suggests that the use of long-read technologies in taxonomic classification might result in significant
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improvements. Current long-read technologies tend to have higher sequencing errors and are more
expensive compared to short-read technologies. The trade-offs between the pros and cons may be
further investigated.
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AMR Antimicrobial resistance
NCBI National Center for Biotechnology Information
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