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Abstract

Although most commonly benign, neurofibromas (NFs) can have devastating 

functional and cosmetic effects in addition to the possibility of malignant trans-

formation. Orbitofacial NFs, in particular, may cause progressive, disfiguring 

tumors of the lid, brow, temple, face, and orbit, and clinical evidence suggests 

that they may have increased local aggressiveness compared to NFs developing 

at other sites. The purpose of this study was to identify biological differences 

between orbitofacial NFs and those occurring at other anatomic sites. We per-

formed RNA- sequencing in orbitofacial (n = 10) and non- orbitofacial (n = 9) 

NFs. Differential gene expression analysis demonstrated that a variety of gene 

sets including genes involved in cell proliferation, interferon, and immune- 

related pathways were enriched in orbitofacial NF. Comparisons with publicly 

available databases of various Schwann cell tumors and malignant peripheral 

nerve sheath tumor (MPNST) revealed a significant overlap of differentially 

expressed genes between orbitofacial versus non- orbitofacial NF and plexiform 

NF versus MPNST. In summary, we identified gene expression differences be-

tween orbitofacial NF and NFs occurring at other locations. Further investiga-

tion may be warranted, given that orbitofacial NF are notoriously difficult to 

treat and associated with disproportionate morbidity.
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1 |  INTRODUCTION

Neurofibromatosis type 1 (NF1) is a neurocutaneous 
disorder and tumor predisposition syndrome with het-
erogeneous clinicopathologic manifestations affecting 
approximately 1 in 3000 people worldwide (1). Cutaneous 
neurofibroma (NF) is the most prevalent tumor in these 
patients. Plexiform NF, defined as a NF involving mul-
tiple peripheral nerve fascicles, is less frequent but more 
restricted to NF1 patients. Malignant transformation 
develops in 5– 10% of NF1 patients, typically in a plexi-
form NF subtype (2).

Orbitofacial neurofibromatosis type 1 has been histor-
ically studied as a clinical variant of NF1 (3). Affecting 
between 1% and 22% of patients, orbitofacial NFs may 
cause progressive, disfiguring tumors of orbital and peri-
orbital structures (4– 6). In several clinical studies, large 
orbitofacial NFs are felt to be comparatively more ag-
gressive and infiltrative compared to NFs arising in other 
anatomical body sites (7), although the precise reason for 
this remains unclear given difficulties to adjust for when 
comparing anatomic sites. Recurrence after excision is 
relatively high, but clinical aggressiveness may improve 
as the individual ages (7– 9). In the study by Chai et al., 
the 1- year recurrence rate after surgical reconstruction 
was 83% with a median time to recurrence of 7 months 
(10). An orbitofacial NF designation is typically limited 
to patients with infiltrative NFs involving the orbit and 
ocular adnexa. In our published diagnostic pathology 
experience, NF is the predominant nerve sheath tumor 
type involving the orbit and ocular adnexa. In our study, 
NFs (n = 63) were predominantly plexiform (38%), dif-
fuse (25%), or with mixed patterns (5%), and the majority 
developed in patients with known NF1 (89%) (6). Even 
though orbitofacial NFs may be locally aggressive, ma-
lignant transformation appears to be paradoxically rare, 
with only one case of malignant peripheral nerve sheath 
tumor (MPNST) reviewed among 90 nerve sheath tumors 

from 67 patients in this anatomic site (6). The patient, 
a 63- year- old woman, developed clinical progression of 
a childhood orbitofacial NF over several decades, with 
eventual malignant transformation, and death with cra-
niospinal dissemination (11).

Recent advances in our understanding of cancer fa-
cilitated by high throughput platforms have clarified 
an important role for genetic and epigenetic events. We 
know that genetic alterations in plexiform NFs are essen-
tially limited to NF1 mutations (12). Chai and colleagues 
reported six novel NF1 mutations associated with orbi-
tofacial NF in Chinese families and observed more se-
vere ocular phenotypes in successive generations (10). 
We have also previously studied epigenetic alterations 
in orbitofacial NFs using global methylation profiling 
and found promoter hypomethylation and increased ex-
pression of several HOX family gene members (13). We 
hypothesized that global transcriptomic analysis would 
be helpful in further clarifying the biological differences 
between orbitofacial NFs and those developing in other 
body sites. We have excluded localized cutaneous NFs 
from the study group and controls given that they are 
small and have a different biology than orbitofacial NF 
as we understand it.

2 |  M ETHODS

2.1 | Tumor samples and controls

Snap frozen tissue from orbitofacial NF (n  =  10) ob-
tained from middle eastern patients and non- orbitofacial 
NF (n = 4 plexiform, n = 5 localized intraneural) of vari-
ous ethnicities were studied. All orbitofacial NF were 
large tumors with plexiform components. No localized 
cutaneous/dermal NFs were studied. All patients stud-
ied satisfied clinical criteria for NF1. Clinicopathologic 
features of these patients are illustrated in Figure 1 and 

F I G U R E  1  Clinicopathologic features of orbitofacial neurofibromas. Representative clinical images of orbitofacial neurofibromas 
including patient 10 (right with associated cutaneous pigmentation) (A), patient 9 (left, with associated skull deformity), and patient 6 (right 
upper lid neurofibroma)
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summarized in Table 1 (orbitofacial NFs) and Table 
S1 (non- orbitofacial). Informed consent (or appropri-
ate waiver of consent) was obtained on all patients and 
the study was performed with local institutional re-
view board approval of the participating institutions. A 
human Schwann cell line was obtained from ScienCell 
(ScienCell Research Laboratories Inc., Carlsbad, CA).

2.2 | Immunohistochemistry

Immunohistochemistry was performed using a tis-
sue microarray containing orbitofacial and non- 
orbitofacial NFs as previously characterized (13). 
Immunohistochemistry was performed using antibodies 
directed against WISP2 (Mouse monoclonal, LifeSpan 
Biosciences Cat# LS- B6392; 1:250), pERK (Cell 
Signaling #4370S, 1:250), and MYC (Rabbit monoclo-
nal, Epitomics, catalog #1472- 1, 1:250). A semiquantita-
tive four- tiered scale was used for interpretation, ranging 
from negative (0) to strong positivity in a majority of cells 
(3+) by a neuropathologist.

2.3 | RNA extraction

Total RNA was extracted using TRIzol Reagent (Life 
Technologies, cat. #15596026) and RNeasy Mini Kit 
(Qiagen, cat. #74104) or RNeasy Micro Kit (Qiagen, cat. 
#74004). Briefly, 10– 25 mg frozen tissue was placed into 
50- ml conical tubes and 1 ml TRIzol added. The mix-
ture was placed in a PowerGen 125 homogenizer (Fisher 
Scientific) for 20– 40 s, or a Kontes Pestle Cordless Motor 
(Fisher Scientific) for smaller samples. Homogenate was 
left for 5 min at room temperature and then 200 µl chlo-
roform added to the tube and vortexed for 15  s. After 
Leaving the homogenate for 2 min at room temperature, 
the sample was transferred into a Phase Lock Gel Heavy 
tube (5 Prime, yellow- color tube, spun 20 s prior to use). 
Samples were centrifuged at 12,000 g for 10 min at 4°C 
to separate phases, and subsequently, the upper aqueous 
phase was transferred to a new tube. One volume of 70% 
ethanol was added and mixed by pipetting. Samples were 
subsequently pipetted into an RNeasy mini- column and 
the RNeasy Mini Kit procedure for RNA isolation was 
performed per manufacturer recommendations.

2.4 | Sample preparation and analysis

For the low- input RNA library preparation workflow, 
the quality of total RNA was measured by the Agilent 
Bioanlayzer to determine RNA integrity. Starting mate-
rial was between 500 pg and 100 ng of total RNA and 
construction of the whole transcriptome library was 
prepared as directed in the Nugen Ovation RNA- Seq 
System V2 Preparation Guide. Libraries were run on a 

high sensitivity chip using the Agilent Bioanalyzer to as-
sess size distribution and overall quality of the amplified 
library. Quantification of the libraries was performed by 
qPCR or by the Agilent Bioanalyzer and equimolar con-
centrations of each library were pooled together, clus-
tered and sequencing performed on an Illumina HiseqX 
for a 151 bp × 151 bp, paired- end sequencing.

Illumina's CASAVA 1.8.4 was used to convert BCL 
files to FASTQ files.

2.5 | Preprocessing and quantification

Quality checks and preprocessing were performed to en-
sure the quality of the libraries. Gene expression quan-
tification was performed using salmon (v1.3.0) (14) and 
transcript models from the FANTOM Cage- Associated- 
Transcriptome (FANTOM- CAT) robust set (15), which 
we previously used to analyze coding and noncoding 
gene expression in normal and tumor tissues (16).

2.6 | Differential gene expression analysis

To detect differentially expressed genes, we normalized 
the expression values using the trimmed mean of M- 
values (TMM) (17) and fitted a generalized linear model 
(GLM) approach coupled with empirical Bayes mod-
eration of standard errors and voom precision weights 
(18, 19). The p- values were adjusted to control for mul-
tiple hypothesis testing using the Benjamini- Hochberg 
method and genes with false discovery rate (FDR) equal 
or less than 0.05 were reported (20).

2.7 | Gene set enrichment analysis

The results from the differential gene expression analysis 
were ranked by t- statistics. The ranked lists were tested 
for gene set enrichment using a Monte Carlo adaptive 
multilevel splitting approach, implemented in the fgsea 
(https://doi.org/10.1101/060012) package. A collection of 
gene sets (Hallmarks, REACTOME, and GO Biological 
Processes) were obtained from the Broad Institute 
MSigDB database. Gene sets with less than 15 and more 
than 1500 genes were removed from the analysis, except 
for the GO biological processes whose max size was set 
to 300 in order to avoid overly generic gene sets. The en-
riched pathways were collapsed to maintain only inde-
pendent ones using the function collapsePathways from 
fgsea.

2.8 | Comparison with publicly available data

To identify consensus of differentially expressed mRNA 
between orbitofacial NF and benign and malignant 

https://doi.org/10.1101/060012
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Schwann cell neoplasms in other sites, we analyzed dif-
ferential mRNA expression using publicly available 
microarray data sets from the NCBI Gene Expression 
Omnibus database (GSE14038 and GSE32029) (21). 
mRNA expression profiles that separate different tumor 
groups were studied in the datasets. The profiles were 

ranked by t- statistic and the probability of similarly 
ranked genes across the contrasts was computed based 
on a hypergeometric distribution, as previously de-
scribed (22). Correspondence at the Top (CAT) plots 
implemented in the R/Bioconductor package matchbox 
(23, 24) was used to visualize the results.

F I G U R E  2  Hierarchical clustering of the top differentially expressed genes between orbitofacial NF and non- orbitofacial NF types. The 
color palette and intensity reflect centered and scaled (z- score) counts- per- million

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14038
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32029
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3 |  RESU LTS

3.1 | Orbitofacial and non- orbitofacial NFs 
have distinct gene expression profiles

A total of 804 genes (adjusted p- value < 0.05) were dif-
ferentially expressed between orbitofacial and non- 
orbitofacial NF (333 overexpressed, 471 underexpressed; 
Table S2); 101  genes were differentially expressed be-
tween orbitofacial NF and non- orbitofacial plexiform 
NF (23 overexpressed, 78 underexpressed; Table S3); and 
573 genes were differentially expressed between orbito-
facial NF and non- orbitofacial localized intraneural NF 
(187 overexpressed, 386 underexpressed; Table S4). The 
top genes relatively overexpressed in orbitofacial NF 
included PRRX1, CXCL14, CCDC80, MMP27, CCN5 
(WISP2), EDNRA, XG, MME, FAT4, OSR1, and AR. 
The top genes relatively underexpressed in orbitofacial 
NF included GAP43, MEST, SLCO2B1, SDC3, CIITA, 
SERPINA3, SH3TC1, ITGB8, SLC11A1, HOXB7, and 
CSF3R. Importantly, the differential expression of these 
genes remained when comparing to the non- orbitofacial 
plexiform and localized intraneural groups individually. 

Furthermore, the expression of a set of these genes 
(CXCL14, MMP27, CCN5, XG, OSR1) was particu-
larly high (logFC > 5) in orbitofacial NF compared to 
a non- neoplastic human Schwann cell line (Table S5). 
Hierarchical clustering analysis outlined expression dif-
ferences between the three different groups (Figure 2).

3.2 | Gene pathways enriched 
in orbitofacial NFs

The enrichment analysis revealed a variety of gene sets 
from the REACTOME, HALLMARK, and GO BP 
collection to be enriched in orbitofacial NF and non- 
orbitofacial NF groups. Orbitofacial NF showed path-
ways involved in cell cycle and proliferation (e.g., MYC 
targets and G2/M Checkpoint) upregulated in contrast 
with plexiform and localized intraneural NF. Conversely, 
immune- related pathways were found downregulated in 
orbitofacial NF (e.g., Interferon and cytokine signaling, 
neutrophil degranulation). Plexiform NF showed an in-
creased expression of genes involved in immune- related 
pathways in contrast with localized NF (Figure 3). 

F I G U R E  3  Top enriched gene sets enriched across multiple contrasts. Heatmap of mean- centered log2 signed p- values (normalized 
enriched score multiplied by log10 of adjusted p- value) showing the top 10 enriched gene sets of each collection (ranked by signed p- value)
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Next, to further evaluate the significance of these al-
tered genes and pathways, we performed immunohis-
tochemistry, evaluating protein levels (WISP2, MYC) 
and MAPK pathway activation (pERK) (Figure 4). Of 
note, a prior study highlighted a role for WISP2 expres-
sion and MAPK (pERK) activation in ovarian cancer 
cells (25). Furthermore, ERK is an important media-
tor of proliferation resulting from neurofibromin loss 
(26). We detected high (3+) immunopositivity for pERK 
in 22/43 (51%) orbital/periocular NFs compared to 7/28 
(28%) NFs developing in other anatomic sites, a differ-
ence that was statistically significant (p  =  0.04, Fisher 
exact test). Conversely, high expressors of WISP2 were 
similar between the two groups (20/41, 49% orbital/
periocular versus 17/31, 55% nonorbital/periocular 
NFs, p = 0.64). Results were similar when comparisons 

included only tumors that were clearly plexiform and/or 
diffuse (results not shown). MYC immunoreactivity was 
absent in both groups, suggesting that the MYC target 
genes were upregulated by mechanisms other than MYC 
overexpression.

3.3 | Overlap with differentially expressed 
genes in the Schwann cell tumors

By comparing publicly available datasets encompass-
ing various Schwann cell primary tumors/cell lines 
and MPNST, we could observe that the differences be-
tween orbitofacial NF and non- orbitofacial NF were 
significantly similar to the differences between NF 
Schwann cells and MPNST cell lines, suggesting that 

F I G U R E  4  WISP2 and pERK immunoreactivity in orbitofacial and non- orbitofacial neurofibromas. Immunoreactivity ranged from 3+ to 
1+ based on staining intensity in the majority of the cells
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the orbitofacial NF may be more biologically aggressive 
than the non- orbitofacial counterparts despite lacking a 
malignant phenotype (Figure 5).

4 |  DISCUSSION

The wide range of orbitofacial NF clinical manifestations 
and the difficulties to predict the onset or the severity of 
new features, consequences, or complications make its 
management a significant challenge. In addition, orbito-
facial NF seems to behave in a more locally aggressive 
fashion than their counterparts at other body sites, in-
cluding relatively high recurrence rates. Paradoxically, 
malignant transformation of these tumors is exquisitely 
rare, with only one convincing case of transformation to 
MPNST in our prior studies (11).

The biological basis for this clinical behavior remains 
understudied, but data are starting to emerge explaining 
some aspects. Our group recently identified hypomethyl-
ation with associated increased expression of individual 
HOX genes in orbitofacial NF compared with NFs de-
veloping at other sites (13). The HOX genes have a better- 
understood role in embryogenesis, but there is evidence 
that they are also involved in stem cell biology (27) and 
cancer predisposition (28). Another important observation 

in Chinese families with orbitofacial NF is the phenome-
non of anticipation, with more severe phenotypes devel-
oping in subsequent generations (10). In the latter study, 
there was a female predominance (F = 17 and M = 9) and 
a mean age of 26.9 (range 6– 50 years). We observed a simi-
lar age in our study set with a mean age of 27 (range 9– 44) 
while there was a 1:1 ratio of females and males.

In the current study, we performed RNA sequencing to 
uncover further differences between orbitofacial NF and 
NFs developing at other body sites. We excluded cutane-
ous/dermal NFs as the pathogenesis of these tumors is 
distinct and they may have alternative cells of origin (29). 
In our study, several genes of interest were differentially 
expressed in orbitofacial NF compared with the other 
groups. WISP2 (WNT1 inducible signaling pathway pro-
tein 2), which is also known as CCN5, was overexpressed 
in orbitofacial NF compared to the non- orbitofacial NF 
(logFC = 6 compared to non- orbitofacial plexiform NF 
and logFC  =  5 compared to localized intraneural NF) 
and a non- neoplastic Schwann cell line (logFC  =  8). 
WISP2 has been found to promote proliferation in ovar-
ian cancer cells probably through ERK signaling (25). At 
the protein level we detected high WISP2 immunopos-
itivity in approximately half of orbitofacial and non- 
orbitofacial NFs, although MAPK signaling (pERK 
immunoreactivity) was higher in the orbitofacial group. 

F I G U R E  5  Correspondence- at- the- top (CAT) plot between the differential expression of non- orbitofacial versus orbitofacial and multiple 
contrasts. The figure shows the proportion of genes that are similarly differentially expressed in non- orbitofacial versus orbitofacial in 
comparison with other contrasts. Lines represent the proportion of overlap with an increasing list size (up to the top 500 differentially expressed 
genes). Black- to- light gray shades represent the decreasing probability of agreeing by chance based on the hypergeometric distribution, with 
intervals ranging from 0.999999 (light gray) to 0.95 (dark gray). Lines outside this range represent agreement in different cohorts with a higher 
agreement than expected by chance
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This does not exclude that there are biologically relevant 
differences of WISP2 at the protein level in orbitofacial 
NF, given the known limitations of quantifying immu-
nohistochemistry. However, it is intriguing that pERK 
levels were increased in the orbitofacial group, which is 
consistent with the gene enrichment analyses document-
ing upregulation of pathways involved in cell cycle and 
proliferation, as well as our prior detection of increased 
ki67 proliferative indices in orbitofacial NF (13).

Orbitofacial NF has also clinically demonstrated 
increased invasiveness, and histologically contains 
plexiform and diffuse components. The tumor micro-
environment, as in other tumors, is likely to play a 
role, in the form of complex processes involving matrix 
metalloproteinases and chemokines. Matrix metallo-
proteinase 27 (MMP27) and C– X– C motif chemokine 
ligand 14 (CXCL14) were also overexpressed in the orbi-
tofacial NF group. A variety of metalloproteinases play 
distinct roles in tumor– microenvironment interactions, 
including MMP27. CXCL14 is a chemokine that may be 
secreted by the tumor microenvironment and demon-
strates protumor properties in glioblastoma, prostate, 
and breast carcinoma (30). The androgen receptor (AR) 
was also relatively overexpressed in the orbitofacial 
NF compared to the non- orbitofacial NF groups (but 
not compared to nonneoplastic Schwann cells). In one 
study, AR signaling supported tumor growth and an-
giogenesis in NF (22).

We previously documented increased ki67 prolif-
erative indices in orbitofacial NF compared to NF 
developing in other sites (13), and there is emerging ev-
idence that inflammation contributes to NF formation 
(31). Our gene set enrichment analyses also supported 
these findings. We found that genes involved in cell 
cycle and proliferation (i.e., MYC targets, G2M check-
point) pathways were overexpressed in orbitofacial NF. 
Conversely, genes associated with immune and inflam-
matory response (i.e., interferon and cytokine signaling 
and inflammatory response) were found downregu-
lated in orbitofacial NF. We also demonstrated that the 
biological differences between orbitofacial and non- 
orbitofacial NF were significantly similar to the differ-
ences observed between Schwann cell primary tumors/
cell lines and MPNST by comparing our results with 
other publicly available datasets, which supports the 
findings of orbitofacial NF being more aggressive than 
its non- orbitofacial counterparts.

There are several caveats in interpreting the findings 
in our study. First, the orbitofacial NFs were obtained 
from middle eastern patients while the non- orbitofacial 
controls were obtained from various ethnic backgrounds. 
Second, it is still unclear from the available studies and 
our data whether the reported local aggressiveness of or-
bitofacial NF is related to intrinsic biologic properties or 
to the practical hurdles involved in resecting tumors in 
a complex anatomical region containing critical struc-
tures. Adjusting for these factors will require prospective, 

multi- institutional well- controlled clinical studies in the 
future. Third, despite our attempt to use various controls 
to specify the transcriptome of orbitofacial NF, it is at the 
moment unclear whether the differences in phenotype are 
related to anatomic site or other intrinsic biologic proper-
ties. It would be of great interest in the future to perform 
functional experiments validating expression data using 
cell lines and xenograft models. At the moment, models 
of these disease are lacking, even in well catalogued NF1 
repositories (32), further highlighting the difficulties in 
studying this disease. Despite all these limitations, our 
data and that reported in the limited clinical literature 
available suggest that indeed orbitofacial NFs have a 
distinct biology, and may be associated with increased 
growth and recurrence rates compared to their non- 
orbitofacial counterparts while demonstrating a very low 
incidence of malignant progression.

In summary, we have identified key biologic differ-
ences between orbitofacial NF and NFs developing 
at other sites, with altered gene levels involved with 
the tumor microenvironment, proliferation, and in-
flammatory pathways. Further functional studies and 
correlation with other genetic factors will be useful in 
establishing the precise role that each of these genes play 
in the biology of NF developing in special anatomic sites 
and hopefully lead to novel, much- needed therapeutics.
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