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Phantom vortices: hidden angular 
momentum in ultracold dilute 
Bose-Einstein condensates
Storm E. Weiner1, Marios C. Tsatsos2, Lorenz S. Cederbaum3 & Axel U. J. Lode4

Vortices are essential to angular momentum in quantum systems such as ultracold atomic gases. The 
existence of quantized vorticity in bosonic systems stimulated the development of the Gross-Pitaevskii 
mean-field approximation. However, the true dynamics of angular momentum in finite, interacting 
many-body systems like trapped Bose-Einstein condensates is enriched by the emergence of quantum 
correlations whose description demands more elaborate methods. Herein we theoretically investigate 
the full many-body dynamics of the acquisition of angular momentum by a gas of ultracold bosons in 
two dimensions using a standard rotation procedure. We demonstrate the existence of a novel mode of 
quantized vorticity, which we term the phantom vortex. Contrary to the conventional mean-field vortex, 
can be detected as a topological defect of spatial coherence, but not of the density. We describe previously 
unknown many-body mechanisms of vortex nucleation and show that angular momentum is hidden in 
phantom vortices modes which so far seem to have evaded experimental detection. This phenomenon is 
likely important in the formation of the Abrikosov lattice and the onset of turbulence in superfluids.

Quantized vortices are perhaps the most interesting way angular momentum is known to manifest in quantum 
many-body systems1,2. They appear in a variety of experiments with systems including atomic Bose-Einstein 
condensates (BECs)1,3–5, and exciton-polariton condensates6. Typically, a quantum vortex is characterized by a 
density node and a phase discontinuity. Other known signatures of angular momentum, such as center-of-mass 
rotation, surface waves, and quadrupole modes are also features of the density profile2,7. However, it is well known 
that there exist aspects of many-body dynamics, like fragmentation8,9, that may not be visible in the density10,11. 
Coreless vortices, i.e., vortices invisible in the density, are known to exist in mean-field spinor condensates12,13 and 
have been recently found in a multicomponent condensate14. Since the core of a vortex in one (spin-) component 
is filled with the other (spin-) component, coreless vortices are not visible in the density. However, coreless vorti-
ces have not yet been seen in single-component condensates with no spin. Note that experiments studying vortex 
nucleation in rotating BECs have thus far observed a critical frequency below which no vortices are detected, 
see for instance refs 1,15,16. As we shall show in the following, however, vortices without cores are present in 
single-component BECs even below the critical rotation velocity. These coreless vortices, to date, seem to have 
evaded experimental detection as they cannot be seen from the density.

Traditionally, the dynamics of BECs are aptly treated using the time-dependent Gross-Pitaevskii (GP) equa-
tion17 which assumes that the many-body wavefunction is coherent and condensed for all time. Naturally, this 
assumption neglects the existence of quantum correlations and precludes the possibility of fragmentation, i.e. 
macroscopic occupation of more than one hyphenate state18. In other computational investigations, the rota-
tion frequency was modulated at fixed anisotropy which also leads to instabilities and formation of vortex lat-
tices, within the GP theory19–21, the Bogoliubov approach22 and beyond23. More recently, much effort has been 
devoted to exploring the role of fragmentation in stationary states of bosonic systems8,24–29 including those with 
spin degrees of freedom30–32 using methods such as best mean-field theory or general variational many-body 
approaches. In particular, it has been shown that there exist energy eigenstates with definite angular momen-
tum that are fragmented for repulsive interactions26 as well as in two dimensions for attractive interaction33. In 
the study of adiabatic vortex nucleation in few-body systems27, it was shown that fragmentation is unavoidable. 
Generally, nontrivial dynamics involve many eigenstates, each of which may be fragmented. Hence, it stands to 
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reason that a true many-body method is necessary to describe the dynamics of a two-dimensional condensate as 
it acquires angular momentum.

An appropriate many-body method is the multiconfigurational time-dependent Hartree for bosons 
(MCTDHB)34 method, which has been shown to accurately capture the transition from coherence to fragmenta-
tion with great success in a variety of systems35–37. MCTDHB provides highly accurate results even for problems 
with time-dependent traps and time-dependent interparticle interactions38,39.

Here we investigate the dynamics of interacting bosons in two dimensions by numerically solving the 
time-dependent many-body Schrödinger equation for a standard rotation scenario using the recursive imple-
mentation of MCTDHB in the MCTDH-X software package40. Our work is among the first that explore the 
many-body dynamics of this type of system beyond mean-field theory41. The system that we describe here is 
similar to that simulated in ref. 19 using the time-dependent GP equation, and analyzed experimentally in ref. 42.  
There, regions in the parameter space were established for which vortices are observed. Even though the GP 
treatment for the parameters chosen herein predicts no vortex nucleation (Supplementary Information), the 
many-body analysis exhibits rich vortex dynamics that are invisible in the density. Our results demonstrate that 
angular momentum in fragmented condensates manifests itself in a new type of coreless vortex, which we name 
the phantom vortex due to its elusive nature. It is important to stress that we found phantom vortices for a wide 
range of particle numbers, interaction strength, interaction range, trap anisotropy, and rotation frequencies, see 
Supplementary Information. An analysis of the energy eigenstates of a six-boson system in the corotating frame 
has shown signatures of phantom vortices (see Fig. 3 in ref. 27). Yet, their importance in the dynamical acquisition 
of angular momentum by many-body systems, even in the parameter regime where no vortices nucleate in the 
density, has been overlooked.

System Description
We begin our analysis, in silico, by first computing the many-body ground state of interacting bosons in an iso-
tropic harmonic trap. Subsequently, we gently transfer angular momentum into the system by elliptically deform-
ing the harmonic trap while rotating the axis of anisotropy at a fixed frequency. The anisotropy parameter is 
varied in a piecewise-linear fashion; first, it is ramped from zero to a maximum value, then held constant over a 
fixed time interval, and finally ramped back to zero. The trap is then kept isotropic for the remainder of the simu-
lation. See Fig. 1a and Supplementary Information for details.

The parameters chosen here correspond to rotating, weakly interacting, zero-temperature atoms, confined by 
a pancake-like trap. The particle density and interactions are similar to the small (i.e. N <  500) 87Rb condensate 
reported in ref. 43. The subcritical rotation frequency chosen herein is not fast enough to nucleate quantized vor-
tices in a mean-field condensate. A GP (M =  1) simulation with the same parameters only absorbs 0.5ħ of angular 
momentum per particle (see Fig. 1d).

The dynamics of an interacting gas of N bosons are governed by the time-dependent many-body Schrödinger 
equation

∂ Ψ = Ψ .ˆi (1)t

We solve Eq. 1 using the MCTDHB ansatz, written in second quantization as
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That is, the bosons dynamically populate all configurations of N particles in M time-dependent variationally 
optimized single-particle states, called orbitals (Supplementary Information). The case where M =  4 and N =  100 
is analyzed in the main text of this work whereas other N, M are discussed in the Supplementary Information. In 
our setting the particle density at rest (t =  0) is close to a Gaussian-like density distribution because the bosons 
are weakly interacting. The temperature is absolute zero throughout the dynamics and the external frequency of 
rotation of the mild anisotropy is at 78% of the trapping frequency.

The many-body Hamiltonian in dimensionless units reads:
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We use a normalized gaussian with width σ =  0.25 as a two-body potential Ŵ  with a two-body interaction 
strength λ0(N −  1) =  17.1. This choice of a short-range interaction is motivated by the similarity of the physics for 
zero- and short-ranged interaction potentials shown in ref. 44. See Supplemental Material for a direct compari-
son. The one-body Hamiltonian ĥ tr( ; )i i  is the sum of the kinetic energy = − ∂T̂ i r
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and ω =  0.78. The anisotropy parameter varies in time so that it is ramped up from 0 to ηmax =  0.1 over tr =  80, held 
fixed at ηmax for tf =  220, ramped down to zero over tr, and then held fixed at 0 for the rest of a simulation until 
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t =  500 as shown in Fig. 1a. The resulting healing length, ξ = = .
λ −

0 17
N
1

2 ( 1)0
 is comparable to the oscillator 

length (1 in dimensionless units) so the particles are indeed weakly interacting.
The primary object of our analysis is the one-body reduced density matrix (RDM), which is defined as the 

partial trace of the N-body density10,11:

∫ρ ′ = Ψ … × Ψ ′ … …⁎t N t t dr r r r r r r r r r( ; ) ( , , , ; ) ( , , , ; ) , (6)N N N
(1)

1 1 1 2 1 2 2

with Ψ  normalized to 1. The trace operation can be understood as eliminating knowledge of the many-body 
effects to obtain a single-particle operator, the RDM. The diagonal, r =  r′ , of the RDM is the particle density,  
ρ(r; t) =  ρ(1)(r|r; t), or simply the density. The RDM is written in its eigenbasis as

∑ρ ρ φ φ′ = ′
=

⁎t t t tr r r r( ; ) ( ) ( ; ) ( ; )
(7)i

M

i
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The eigenvalues, ρ t( )i
NO( ) , are ordered in decreasing magnitude and called natural occupations and the eigenfunc-

tions, φi(r; t), are called the natural orbitals or synonymously, fragments. Note that the density, ρ(r; t) =  ρ(1)(r|r; t), 
is equal to the sum of the squared amplitudes of the natural orbitals, weighted with their natural occupations.

This treatment bears some resemblance to the two-fluid model of Helium below its lambda point, where 
the total density has a superfluid component and thermal component interacting through a mutual viscosity.  
The MCTDHB treatment can likewise be thought of as an M-fluid model, where there are M interpenetrating 

Figure 1. (a) Sketch of the ramping procedure of the anisotropy parameter η(t) with plots of the density ρ(r) at 
representative times in each part. (b) The onset of fragmentation occurs around t =  80, which corresponds to 
the time of maximum anisotropy. By the end of the time of maximal anisotropy, the state is completely 
fragmented, ρ ≈ 40%NO

1
( ) . (c) Orbital angular momenta reach their maximum values early in the period of 

maximum anisotropy (t =  80–150), but evolve to their equilibrium values before the anisotropy is removed. 
Discontinuities in (Lz)ii arise from occupation reordering [see panel (b)]. Fluctuations in (Lz)22 and (Lz)33 from 
t =  250 to t =  500 are strongly correlated due to vorticity transfer between φ2 and φ3. (d) Comparison of energy 
and angular momentum curves for M =  4 (solid lines) and M =  1 (GP, dotted lines). Both quantities agree 
between the two cases until around t =  80 when fragmentation becomes significant and the GP ansatz breaks 
down. Energy and angular momentum oscillate about their maximal values by t =  200, while the anisotropy is 
still maximal. The angular momentum stabilizes at Lz ≈  1.25 per particle (M =  4) and Lz <  0.5 per particle 
(M =  1). The strong correlation between energy and Lz indicates that the perturbation strictly excites angular 
momentum modes in both simulations. To guide the eye, on the bottom plot is marked with a horizontal line at 
1 on the vertical axis. All quantities shown are dimensionless.
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superfluid components coupled through the MCTDHB equations of motion [39], but no thermal component. In 
this treatment, there are hence $M$ order parameters, one for each fragment.

A state is considered coherent when only one natural orbital has significant occupation. In this case, the 
full information of the many-body wavefunction is contained in a single one-particle state and thus, the 
Gross-Pitaevskii mean-field approximation is valid. Otherwise, multiple orbitals have macroscopic occupation 
and the state is said to be fragmented because the density is a sum of multiple single-particle functions. We 
emphasize that, from the view of the RDM, the MCTDHB approach generalizes the mean-field approximation 
by allowing a dynamical transition from coherence to fragmentation. This means that, contrary to the mean-field 
case, the natural occupations are allowed to have non-integer values and vary in time.

Importantly, MCTDHB boils down to the GP mean-field for the case of M =  1, because then the ansatz for 
the method, Eq. (2), becomes identical to the ansatz of the GP mean-field. This allows us to straightforwardly 
compare the predictions of the two approaches.

Another way of describing coherence and fragmentation is through the first-order correlation function, 
g(1)(r|r′ ; t), defined in terms of the RDM as

ρ

ρ ρ
′ =

′

′ ′
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t

t t
r r

r r

r r r r
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A coherent state at time τ must satisfy |g(1)(r|r′ ; τ)| =  1, while any other value indicates fragmentation10. Intuitively, 
|g(1)| measures how well the many-body wavefunction is described by a hyphenate state.

The off-diagonal, r ≠  r′ , terms in g(1) and the orbitals φi are complex-valued. Thus it is instructive to plot their 
magnitudes and phases separately. We hence define the phase of g(1)(r|r′ ; t) to be

′ ≡ ′S t g tr r r r( ; ) arg[ ( ; )], (9)g
(1)

and the orbital phases to be

φ= .S t tr r( ; ) arg[ ( ; )] (10)i i

For the sake of completeness, we likewise define the phase of the many-body wavefunction, Ψ , as

… = Ψ … .S t tr r r r( , , ; ) arg[ ( , , ; )] (11)MB N N1 1

Simulation Results
We have found that there may exist many vortices in the natural orbitals despite there being no visible vortices in 
the density (Figs 2 and 3), even with angular momentum per particle > 1ħ (Fig. 1). We name the vortices which 

Figure 2. (a) The density ρ(r) shows some density minima due to phantom vortices in φ1, but no true density 
node. (b–e) The natural orbital densities, |φi(r)|2 (i =  1, 2, 3, 4), are plotted. Many phantom vortices are present 
in each orbital. (f) The phase, Sg(r|0), of g(1)(r|0) is plotted. Note, Sg is not the many-body phase, SMB(r1, … , rN; t), 
which is too complicated to visualize. Since φ1 carries most of the particles at this time, Sg bears strong 
resemblance to S1. (g–j) The phases, Si, of the natural orbitals φi (i =  1, 2, 3, 4) are plotted. Each 2π phase 
discontinuity marks a phantom vortex core. The central phantom vortex in φ2 (c,h) was mutated from its initial 
angular node, and persisted for the duration of simulation. The two central phantom vortices in φ3 (d,i) were 
mutated from its initial angular nodes and are transient. The three centermost phantom vortices in φ4 (e,j) were 
mutated from an “I” shaped node and persisted for the length of the simulation. All other phantom vortices 
nucleated at the edge of their orbital density and are transient. All panels are plotted at t =  115.0, when 
ρ = .82 0%NO

1
( ) , ρ = .11 8%NO

2
( ) , ρ = .4 1%NO

3
( ) , and ρ = .2 1%NO

4
( ) . See complementary Video S1 

(Supplementary Information). All quantities shown are dimensionless.
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exist in the natural orbitals phantom vortices. These phantom vortices persist on long time scales compared to the 
period of the harmonic trap. Phantom vortices that exist for long times near the center of the trap either nucleate 
on existing topological defects present in the initial natural orbitals or nucleate via a transfer of vorticity between 
natural orbitals (Video S1). Since the simulation starts with a condensed state and both mechanisms of phantom 
vortex nucleation rely on the dynamics and occupation of several fragments, they are inherently many-body phe-
nomena that cannot be described by mean-field methods.

We now give a chronological description of the evolution of N =  100 particles with M =  4 orbitals starting in 
the ground state at t =  0 to t =  500 (see also Video S1 in Supplementary Information). At t =  0, φ1, … , φ4 resem-
bled 1 s, 2px, 2py, and 2s orbitals, respectively. The system began with ρ1 >  99.7% occupation in φ1 and thus was 
almost entirely condensed (Fig. 1b). As the anisotropy was ramped up, φ1, … , φ4 deformed smoothly and rotated 
with the potential. By t =  29.6, due to a reordering of the natural occupations, φ3 and φ4 switched labels. At this 
time, φ1, φ3, and φ4 already showed faint hints of vortices at the edge of their density similar to those seen at later 
times in and Video S1. These vortices are the fragmented counterparts of ghost vortices reported in ref. 21. Ghost 
vortices are distinct from phantom vortices. Ghost vortices are phase defects outside the bulk of the condensate 
density. Although they do not contribute significantly to the energy or angular momentum, they may – through 
interference effects – be responsible for surface waves21 which are also observed in the present work. In contrast, 
phantom vortices do contribute significantly to the angular momentum and energy despite being invisible in the 
density of the system. By t =  45, many ghost vortices were established in φ1 and φ4. Since the state was still more 
than 99% condensed, the ghost vortices in φ1 manifested in the density and would thus have been detectable in 
high-fidelity density measurement. A one-dimensional cut along a core of a ghost vortex in ρ(r) showed that the 
outer density maximum was less than 1% of the density maximum at the center of the cloud. By this time, the two 
initial lobes in φ2 had spread out and closed off the angular node into an elliptic shape. This was the first sign of 
a true phantom vortex in the bulk of the cloud and Video S1. We term this first mechanism of phantom vortex 
nucleation node mutation, since a node in the fragment deforms and mutates into a phantom vortex. Around 
t =  70, ghost vortices in φ4 fused with a distorted angular node to split the two lobes into four with an “I” shaped 
node (see Video S1 at t =  99.4). This node mutated to nucleate three persistent phantom vortices which merged 
into the charge-3 vortex shown in Fig. 3e,j.

By t =  90, the system was significantly fragmented, ρ ≈ 90%NO
1
( )  (Fig. 1b). Fragmentation obscured the 

vortex-induced density nodes of φ1 from being visible in ρ(r) because density from other orbitals filled the vortex 
cores present in φ1. We comment that although larger particle numbers delay the onset of fragmentation, we have 
observed phantom vortices in simulations with up to N =  104 (Supplementary Information). From t =  90 to t =  140, 
each orbital had a complicated vortex structure while the density ρ(r) was largely featureless (Figs 1a and 2a).  
This marks an important aspect of the dynamics: there were many phantom vortices in each orbital, but remark-
ably no vortices were detectable by directly observing the density and Video S1. In this time interval, the orbital 

Figure 3. (a) The density ρ(r) shows a density minimum at the origin which is 75% the maximum density, but 
no true node. (b–e) The natural orbital densities, |φi(r)|2 (i =  1, 2, 3, 4), are plotted. (f) The phase, Sg(r|0), of 
g(1)(r|0) is plotted. Note, Sg is not the many-body phase, SMB(r1, … , rN; t), which is too complicated to visualize. 
There are singularities in Sg that are associated with phantom vortices. Since φ1 and φ4 have a node at r′  =  0, they 
do not contribute to Sg. (g–j) The phases, Si, of the natural orbitals φi (i =  1, 2, 3, 4) are plotted. Each 2π phase 
discontinuity marks a phantom vortex core. The depicted phantom vortex configuration is stable for more than 
100 trap periods. The phantom vortices in φ1 (b,g) and φ4 (e,j) nucleated along preexisting topological defects 
through node mutation whereas the pair of phantom vortices in φ3 (d,i) was nucleated by slow orbital-orbital 
vortex transfer as ghost vortices which then moved to the center. The nucleation of the phantom vortex pair was 
coupled to the destruction of a pair in φ2. (c,h) See the coupled oscillation of (Lz)22 and (Lz)33 [(Fig. 1c) and 
Video S1 (Supplementary Information)]. All panels are plotted at t =  450.0, when ρ = .40 8%NO

1
( ) , ρ = .25 0%NO

2
( ) , 

ρ = .20 8%NO
3
( ) , and ρ = .13 5%NO

4
( ) . See complementary Video S1 (Supplementary Information). All quantities 

shown are dimensionless.
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angular momenta, (Lz)ii ≡  〈 φi|Lz|φi〉 , attained their maximal values and started to decay to their equilibrium val-
ues despite the maximal anisotropy.

After t =  150, the trap was still maximally anisotropic, yet the system energy and total angular momentum 
became saturated (Fig. 1d). By t =  144, the vortex structures of φ2 and φ4 reached their steady state. φ2 had a single 
phantom vortex near the center of the cloud which was nucleated from the single node of its initial shape. This 
node-mutated phantom vortex persisted for the length of the simulation. At t =  150, φ4 had three phantom vortices 
in a linear arrangement about the center of the cloud, which persisted for the duration of the anisotropy. This triplet 
fused into a triply charged phantom vortex at the center of the cloud at t =  380 when the trap became symmetric 
again (Fig. 3e,j). Near t =  220, φ2 and φ1 swapped labels due to occupation reordering (see ρ NO

1
( ) and ρ NO

2
( ) in 

Fig. 1b), therefore the steady state of the phantom vortex structure can be seen in Fig. 3b,e,g,j. From t =  220 on, the 
labeling of the orbitals remained fixed because the occupation numbers did not change order anymore (cf. Fig. 1b).

At t =  220, there were two corotating vortices near the center of the cloud in φ2 and none present in φ3. This 
phantom vortex pair nucleated at the edge of the cloud and then moved towards the center, resembling mean-field 
vortex nucleation19,21. However, in our treatment, this pair was transient. The phantom vortices then transferred 
from φ2 to φ3, marking a second mechanism unique to phantom vortex nucleation: slow orbital-orbital vortic-
ity transfer, which we now describe in detail. By t =  275, there were two prominent ghost vortices in φ3 and the 
phantom vortex pair in φ2 had returned from the center to the edge of this fragment. Gradually, the vortices in φ2 
disappearred by exiting the edge of the orbital while the prominent phantom vortex pair in φ3 entered the orbital 
bulk. By t =  340, the phantom vortex nucleation in φ3 was complete, marked by the intervortex separation being 
as small as previously in φ2 at t =  220, before the transfer (Video S1). This direct interaction between φ2 and φ3 

Figure 4. To visualize the four-dimensional single-particle correlation function, g(1)(r|r′ , t =  219.4), we fix a 
reference point at r′  =  (0, 0) (a,c) and r′  =  (1.25, 0) (b,d). The function is complex, so we plot the magnitudes 
(a,b) and phases (c,d) separately. In all panels, we mark the reference point, r′ , with a white circle. In panels (a) 
and (c) [(b) and (d)], the r′  is colocated with a phantom vortex core in φ2 [φ1]. In both cases, phantom vortex 
cores in all orbitals appear as spots of almost complete incoherence, |g(1)| ≈  0, while the core colocated with the 
reference point has a |g(1)| ≈  1 (full coherence). ρ = .35 3%NO

1
( ) , ρ = .35 2%NO

2
( ) , ρ = .17 5%NO

3
( ) , and 

ρ = .12 0%NO
4
( ) . See complementary Videos S2 and S3 for visualizations of g(1) at t =  115 and t =  450 with 

different reference points r′  (Supplementary Information). All quantities shown are dimensionless.
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appears as a strong correlation in the orbital angular momentum, (Lz)22 and (Lz)33, as seen from t =  250 to t =  500 
in Fig. 1c. The transfer of vorticity between fragments occurred on a time scale much slower (τ ≈  50–100) than 
the trap rotation period (τ ≈  8).

As the anisotropy was ramped down, the phantom vortex pair in φ3 approached the trap center and reached a min-
imal separation of ≈ 1.5 by t =  380 when the trap became symmetric. This was the only instance where we observed 
a phantom vortex nucleate at the edge of a fragment and persist in its bulk (Fig. 3d,i). Simultaneously, during the 
ramp-down, three singly charged phantom vortices in φ4 coalesced into a dynamically stable charge-3 phantom vortex. 
This contrasts with the known spontaneous decay of charge-n vortices to n single vortices45 and can only occur for 
phantom vortices for which the surrounding density of the other fragments may appartently stabilize the higher charge.

Although phantom vortices are not detectable directly from the density, they are strikingly pronounced in the 
one-body correlation function, |g(1)(r|r′ ; t)| (Fig. 4). We have two key observations about the coherence of phan-
tom vortices. First, we fix r′  near the core of a phantom vortex; remarkably, |g(1)(r|r′ ; t)| is close to 0 for all r near 
and inside the cores of other phantom vortices. Second, we fix r′  away from the cores of all phantom vortices and 
again observe that |g(1)(r|r′ ; t)| is close to 0 for all r near and inside the cores of phantom vortices (Fig. 4, Videos 
S2 and S3). Even phantom vortices in the same fragment are found to be incoherent. We conclude, therefore, that 
phantom vortices are incoherent both with respect to each other and the remaining bulk density. This implies 
that they are distinct objects in the fragmented condensate. Furthermore, phantom vortices are observable since 
g(1)(r|r′ ; t) is measurable via interference experiments, e.g. ref. 46.

Discussion
We have found that fragmentation increases – together with the energy and total angular momentum of the sys-
tem – even for a rotation that is not fast enough to nucleate vortices in the density ρ(r; t). Vortices, as seen in the 
laboratory (see for instance refs 16,47,48), seem not emerge in our scenario. The GP mean-field description of the 
same system shows no vortices; however the absorbed angular momentum in that case is roughly three times less 
than the one predicted by the many-body theory. The angular momentum that the vortex-free GP state posseses is 
all due to surface excitations and deviations from a symmetric state. The many-body state, however, additionally 
contains angular momentum in the phantom vortices.

It is a natural follow-up question to ask whether or not the experimentally observed vortices are coherent 
or fragmented objects. If they are fragmented, phantom vortex cores across all relevant orbitals must coin-
cide. We were able to show that if the coincident phantom vortices are of the same charge, there must be addi-
tional phantom vortices, such that the fragments can maintain orthonormality (see extended discussion in 
Supplementary Information). Furthermore, if all phantom vortices are coincident, they must be of different 
charge, see for instance φ1 and φ4 in Fig. 3b,e and Supplementary Information. In either case, and in direct con-
tradiction to the mean-field result, the angular momentum per particle must be greater than unity in order to 
nucleate a fragmented vortex in ρ(r; t). Perhaps some experimentally detected vortices are in fact phantom vor-
tices rather than mean-field vortices, as also suggested in ref. 49. More work is needed in that direction, in order 
to explore the existence and implication of fragmentation in supercritically rotated gases and the experimental 
visibility of phantom vortices in single-shots.

In summary, we have observed rich vortex dynamics within individual orbitals of a fragmented single compo-
nent BEC. Since these vortex dynamics cannot be observed in the density, we termed the vortices in the fragments 
phantom vortices. We have identified two mechanisms of phantom vortex nucleation, namely node mutation and 
slow orbital-orbital vortex transfer, which have no mean-field analogue. In node mutation, phantom vortices 
nucleate on preexisting topological defects in a fragment, whereas in slow orbital-orbital transfer, vortices are 
transferred between fragments. Phantom vortices are clearly visible in the correlation function. A detailed anal-
ysis of the correlation function shows that phantom vortices are completely incoherent both with each other and 
the bulk density between other phantom vortices. Phantom vortices are thus distinct quantum objects that are 
experimentally observable, for instance, via interference experiments.
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