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Background: Mathematical models are powerful tools to study COVID-19. However,

one fundamental challenge in current modeling approaches is the lack of accurate

and comprehensive data. Complex epidemiological systems such as COVID-19 are

especially challenging to the commonly usedmechanistic model when our understanding

of this pandemic rapidly refreshes.

Objective: We aim to develop a data-driven workflow to extract, process, and develop

deep learning (DL) methods to model the COVID-19 epidemic. We provide an alternative

modeling approach to complement the current mechanistic modeling paradigm.

Method: We extensively searched, extracted, and annotated relevant datasets from

over 60 official press releases in Hubei, China, in 2020. Multivariate long short-term

memory (LSTM) models were developed with different architectures to track and predict

multivariate COVID-19 time series for 1, 2, and 3 days ahead. As a comparison, univariate

LSTMs were also developed to track new cases, total cases, and new deaths.

Results: A comprehensive dataset with 10 variables was retrieved and processed for

125 days in Hubei. Multivariate LSTM had reasonably good predictability on new deaths,

hospitalization of both severe and critical patients, total discharges, and total monitored

in hospital. Multivariate LSTM showed better results for new and total cases, and new

deaths for 1-day-ahead prediction than univariate counterparts, but not for 2-day and

3-day-ahead predictions. Besides, more complex LSTM architecture seemed not to

increase overall predictability in this study.

Conclusion: This study demonstrates the feasibility of DL models to complement

current mechanistic approaches when the exact epidemiological mechanisms are still

under investigation.
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INTRODUCTION

Mathematical models are important tools to understanding and
predicting COVID-19 epidemic dynamics. A recent literature
search in the NIH LitCovid online COVID-19 database revealed
more than 6,000 peer-reviewed published modeling papers on
the current pandemic (1). Among them, most models are
in the mechanistic modeling paradigm. The most common
mechanistic modeling approach is to construct a compartmental

SEIR (Susceptible-Exposed-Infected-Recovery)-type model, fit
the published case series to the model, and quantify key
parameters such as basic reproduction number (R0) (2–4). Other
less-common approaches include cross-scale modeling, agent-
based modeling, and more recent advances in machine learning

and deep learning (DL) models.
Mathematical models of epidemic dynamics, regardless of

types, eventually all rely on the fundamental elements, the
data, to operate. While there are adequate studies on various
modeling approaches, relatively less emphasis has been put on
the neglected yet critical data quality and reliability issues (5).
Given the novelty of the SARS-CoV-2 pathogen, the definition
of “cases” is not consistently and accurately defined across time
and space. Case numbers are contingent on testing capacity
and our knowledge about this novel pathogen, especially at the
beginning the disease. COVID-19 has at least two distinct clinical
stages: severe (which requires hospitalization including intensive
care, use of ventilator) and non-severe (which usually does
not involve intensive medical care) (6). These two stages have
distinct consequences on the transition of the epidemiological
state, especially from susceptible to infected, and from infected to
recovery or death. Without the understanding and incorporation
of these clinical insights, it is difficult to accurately model
COVID-19 epidemic dynamics.

Many non-traditional data and metadata are available but
are not well-explored for the complex socioepidemiological
system of COVID-19 (5). In general, more data can help
characterize complex systems with more resilience to input data
bias. Previously neglected metadata provide additional insights
in characterizing the unprecedented pandemic. However, these
data are generally not well-organized, scattered across different
places, and not in standardized reporting format (e.g., in a table
or database).

DL models are based on deep neural networks which
include convolution neural network (CNN), recurrent neural
network (RNN), and generative adversarial network (GAN).
Compared to non-data-driven methods, which usually focus
on epidemiological mechanisms such as transmission and
recovery, data-driven models are not driven by man-made
assumptions about these mechanisms. Such assumptions may
be misleading because a novel pandemic has many unknowns
both clinically and epidemiologically. According to the Universal
Approximation Theorem (7), even simple neural networks can
approximate complex functions. Among various DL models,
RNNs are particularly useful to handle time series data and have
demonstrated their high performance in audio-visual analytics.
Long short-term memory (LSTM) models, a type of RNN,
have “remember” and “forget” gates, which are essential for

LSTM to learn the high-level representation in time series
data by adjusting how much information to keep (i.e., useful
information) or forget (i.e., unuseful information) from previous
time steps (Figure 1). After all, the fundamental goal of
modeling infectious disease dynamics is to accurately represent
the functional response of the epi-curve across time and
space. Nevertheless, most current DL approaches on COVID-
19 modeling are still univariate on reported case series (8–
11), making them prone to the same data quality issue as
other approaches.

In this study, we explore and demonstrate the feasibility
of data-driven DL models, especially multivariate LSTM, on
characterizing COVID-19 epidemic with additional metadata
mining steps in Hubei, China.

METHODS

Data Mining
Hubei Province, China, was selected in this study because it
had a complete COVID-19 epidemic from starting to ending, a
relatively large first wave of outbreak, and reasonable amount of
information regarding the epidemic, although data quality was
inconsistent at the beginning of the first wave of the epidemic.
We checked the official Hubei Province COVID-19 press release
from January 25, 2020 to May 15, 2020 (12). More than
60 publicly available government press releases were screened
and archived. After the initial check, we designed a specific
regular expression (regex) in Python to crawl the corresponding
webpages and automatically extract information from each press
release. We built a customized lookup table for the regex to
identify specific data of interest, such as numbers of in-hospital
monitoring, from the press release.

Data Preprocessing
The raw data extracted from the press releases were not
consistent. We retrospectively fit missing values with
extrapolation, assuming the first case was on January 1,
2020 in this study as the first “suspected” case was reported
around then. The last official press release was published on May
11, 2020, ∼5 weeks after the lift of lockdown in Wuhan, Hubei,
marking the end of the first wave of the epidemic.

After data preprocessing, all variables were fitted to the same
length of 125d. To fit the DL model, the multivariate time series
were required to be the same length. We applied a min-max
scaler to transform continuous variable values to percentage and
fed them into the DL workflow for increased efficiency. The
percentage outputs from the DL model were then transformed
back to continuous values to compare with actual observed values
and evaluate model performance.

Multivariate Deep-Learning Model Based
on LSTM
The preprocessed multivariate time series were fed into the
LSTM model. There were two types of multivariate LSTM
settings; the first would use one variable (e.g., incident case
numbers) as an output (i.e., dependent variable), while all
other variables were used as predictors (i.e., independent/input
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FIGURE 1 | Schematic data mining and multivariate deep learning (long short-term memory LSTM) workflow for COVID-19 modeling.

variables). In this study, we used multivariate time series at
the same time without differentiating the predictor (input) and
response variable (output). The time series of the cumulative
case, in theory, should have the same predictive power as the
incident case, as the cumulative case is the sum of daily incident
cases from the beginning to the current time step. However, the
cumulative time series has less fluctuation than daily counts, as
cumulatives were monotonically increasing. This property might
have influences on LSTM performance.

LSTM requires the user to specify the number of past time
steps and number of future steps to operate. These are known
as “hyperparameters” in machine learning and DL models, and
are user-definable values. In this study, we chose 3-day past
time steps to predict 3 days ahead as a demonstration on how
LSTM handled temporal autocorrelation. Shorter periods (e.g.,
1 day) may ignore temporal patterns in the data, while longer
periods (e.g., 7 days) may be too long for COVID-19 prognosis;
therefore, 3 days were a reasonable hyperparameter of time step
in LSTM. The dataset was then transformed in a series of 3-day
moving windows, making the new dataset substantially larger
than the original data with more information about the COVID-
19 epidemic, especially potential temporal autocorrelation. This
larger dataset was important for LSTM to learn high-level
representation of the data and improve model performance.

LSTM architecture in this study included multiple stacked
encoders and decoders. In theory, more complex architecture
(i.e., more encoders and decoders) would reinforce the model
to better learn the representation of the data (e.g., temporal
pattern) and increase predictability, but might bear the risk
of overfitting (9). We developed a simpler one-encoder one-
decoder LSTM (E1D1) and a more complex two-encoder two-
decoder LSTM (E2D2). We aimed to investigate whether more
complex architecture E2D2 necessarily increase predictability in
multivariate LSTM.

As a baseline comparison, we also developed individual
univariate LSTM to predict incident cases, cumulative cases,
and new deaths: the three mostly used variables in COVID-19

models. We compared model performance of these univariate
LSTMs with results from multivariate LSTM. An illustration of
the complete analytical workflow is shown in Figure 1. Detailed
model architecture is provided in the Supplementary Material.

To run LSTM models, first 80% of the data was used to train
LSTM. The trained model was then tested with the remaining
20% unseen data to evaluate model performance. Mean
absolute error (MAE) was chosen for LSTM model performance
evaluation by calculating the error between predicted value from
the model and actual reported value in the data. Each variable
derived from data mining and preprocessing steps would have
its own MAE. The LSTM model was trained with 25 epochs,
with the Huber loss function and Adam optimization method.
We used Python 3.7 with additional Scikit Learn and Tensorflow
2.0 packages.

RESULTS

Data Mining
After screening published COVID-19 situation reports and press
releases, 10 variables were included in this study. These variables
were: new confirmed cases, new deaths, new discharges from
hospital, cumulative confirmed cases, cumulative hospitalization
of COVID-19 patients in severe stage defined by the National
Health Commission of China) (6), cumulative hospitalizations in
critical stage, cumulative deaths, cumulative discharges, number
of individuals tracked (i.e., contact tracing), and number of
individuals with high likelihood of infection and beingmonitored
in hospital (i.e., suspected cases). While case and death numbers
were common variables in current COVID-19 models, we
suggested that numbers of hospitalizations, discharges, tracing,
and suspected cases could help depict the COVID-19 epidemic
more comprehensively.

Additional data cleaning and extrapolation and interpolation
were performed to make sure all time series of the 10 included
variables had the same length of 125d, from January 1, 2020 to
May 11, 2020. The dimension of the dataset was 125 by 10.
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FIGURE 2 | Comparison of model loss (multivariate E1D1 vs. E2D2).

Multivariate and Univariate LSTM
Both LSTMs in E1D1 and E2D2 architectures (Figure 2 left and
right panels, respectively) showed no evidence of overfitting
or underfitting in either training (blue curve) or validation
set (orange curve) in 25 epochs. Model losses diminished
quickly after a few (<10) epochs in all scenarios. E2D2, the
more complicated architecture, had a smaller difference between
training and validation set, which was more desirable than E1D1.

The detailed MAEs of each LSTM architecture are provided in
Table 1. For prediction of new cases number, more complicated
E2D2 architecture provided better accuracy in 1-d ahead (687 vs.
919), but substantially worse in 2-d ahead (1,168 vs. 470), and
again better prediction (1,039 vs. 1,383) in 3-d ahead prediction
than simpler E1D1. For total cumulative cases, less complicated
E1D1 architecture provided consistently better predictability
than E2D2 across all three prediction steps (1, 2, and 3d). Because
the Health Commission of China had changed the definition
of “confirmed case” on February 2, 2020 to include clinical
cases based on CT scan (6), and the case numbers had a large
peak, which might not reflect the actual epidemic dynamics
and proposed challenge for models to deal with, especially in
the middle of a time series (i.e., “spikes”). Therefore, we also
provided relative MAEs based on the maximum number of each
variable (Table 1, values in parenthesis) to evaluate the model
performance more comprehensively.

We further examined whether time series of other variables
could be predicted more accurately because of higher input
data reliability. Multivariate LSTM performed reasonably well in
predicting new deaths, hospitalizations of patients in both severe
and critical condition, as well as total number of discharges from
the hospital. Once again, we did not observe that either E1D1 or
E2D2 was superior to the other in all three prediction time steps.
Therefore, multiple architectures might need to be developed for
different tasks (e.g., immediate or short-term prediction). Total
deaths and new discharges were having the worst predictability
among the 10 included variables. While in theory total deaths
and total discharges were the cumulative sum of daily deaths and
daily discharges, data-driven LSTM seemed to treat daily and

total numbers independently, thus resulting in vastly different
predictability of these variables.

In addition, univariate LSTM performed substantially better
in 2d- and 3d-ahead prediction of the incident case, total case,
and new death than their multivariate LSTM counterparts,
no matter what architecture was chosen (E1D1 or E2D2).
Multivariate LSTM only outperformed univariate models in 1d-
ahead prediction (Table 1) in both E1D1 and E2D2 architecture.
Nevertheless, because of the inconsistency in “case” definition,
the seemingly better predictability of univariate LSTM on case
numbers should be interpreted with caution.

DISCUSSION

This DL approach is able to tackle some modeling challenges in
current complex epidemiological systems such as the COVID-19
pandemic. In summary, not all variables had the same predictive
power in the multivariate LSTM that we developed. New
cases, total cases, new death, hospitalization of severe patients,
hospitalization of critical condition patients, total discharged,
total tracked, and total monitored in hospital had much better
predictability than new discharge and total death. Univariate
LSTM performed better than multivariate model in predicting
both new case, total case, and new death for 2d- and 3d-ahead
prediction, but multivariate LSTM outperformed at 1d-ahead
prediction. We also tested 5d-ahead prediction, and the results
were similar. In addition, more complex E2D2 architecture did
not provide substantial performance boost over simpler E1D1
architecture. While the definitions of “case” were not consistent
over time and space, we suggested that new death could be a
more robust variable to track and predict during the COVID-19
epidemic. In general, there was no “one-size-fits-all” solution of
LSTM architecture, and we suggest future case studies to develop
several different architectures in parallel to identify the most
appropriate one. In addition, LSTM is just one type of RNN
besides other alternatives such as gated recurrent network (8).

LSTM is relatively easy to operate and straightforward to
quickly adjust LSTM architecture by adding, removing, or
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TABLE 1 | Multivariate and Univariate Model Performance Comparison Between Different LSTM Architectures based on Mean Absolute Error (MAE).

LSTM architecture MAE E1D1 MAE E2D2

Day/Variable Day1 Day2 Day3 Day1 Day2 Day3

New cases 919 (6.19) 470 (3.17) 1,383 (9.32) 687 (4.63) 1,168 (7.87) 1,039 (7.00)

Total cases 842 (1.24) 3,555 (5.22) 5,905 (8.67) 2,686 (3.94) 3,914 (5.74) 7,866 (11.54)

New deaths 11 (4.55) 8 (3.31) 18 (7.44) 0 (0.00) 15 (6.20) 20 (8.26)

New discharges 594 (23.11) 320 (12.45) 184 (7.16) 416 (16.19) 302 (11.75) 255 (9.92)

Hospital severe 670 (7.21) 215 (2.31) 84 (0.90) 669 (7.20) 299 (3.22) 144 (1.55)

Hospital critical 130 (5.22) 58 (2.33) 55 (2.21) 209 (8.39) 78 (3.13) 18 (0.72)

Total deaths 1,579 (35.00) 1,144 (25.35) 898 (19.90) 1,431 (31.72) 1,084 (24.02) 873 (19.35)

Total discharges 689 (1.07) 626 (0.97) 27 (0.04) 2,304 (3.57) 1,526 (2.37) 3,611 (5.60)

Total tracked 17,487 (6.17) 5,669 (2.00) 20,359 (7.19) 398 (0.14) 17,917 (6.33) 25,764 (9.10)

Total monitored 2,213 (2.85) 2,889 (3.72) 2,486 (3.20) 1,930 (2.48) 4,426 (5.70) 5,460 (7.03)

New cases univariate 1,235 (8.32) 63 (0.42) 394 (2.65) 877 (5.91) 190 (1.28) 60 (0.40)

Total cases univariate 5,720 (8.40) 705 (1.03) 3,640 (5.34) 2,814 (4.13) 1,042 (1.32) 1,920 (2.82)

New deaths univariate 21 (8.68) 2 (0.83) 5 (2.07) 14 (5.79) 5 (2.07) 4 (1.65)

The first 10 variables were in the same multivariate LSTM model. The last three univariate LSTMs were different models based on their respective univariate inputs. Numbers in

parentheses represented relative values as percentage.

revising existing layers, which are the building blocks for LSTM.
More importantly, themultivariate LSTMdeveloped in this study
can be easily extended to further incorporate more data such
as in the MIDAS GitHub repository (13). Other non-traditional
data, such as social media, sensor-based data, and drone imaging,
can be incorporated into the LSTM model to better characterize
multiple aspects of COVID-19 dynamics (14–19). Decentralized
blockchain techniques and robotics could also provide rich and
secure inputs for data-driven models such as LSTM (19, 20).

Unlike mechanistic models, data-driven DL models generally
do not require thorough understanding of disease mechanisms
to work with, as DL is directly driven by underlying data. We
suggest the data mining step is therefore essential: more data
will increase model resilience against biases in case numbers
(e.g., inconsistent case definition in early phase of COVID-19).
Recent blockchain technology could facilitate data archiving and
mitigate data tampering issues (19).

For DL, existing models developed in a certain region
can be applied to other regions with distinct sociocultural
backgrounds via the transfer learning technique (10). This
is another key potency specific to DL models. Modeling
and comparing epidemic dynamics across sociocultural
backgrounds in different regions of the world is a
challenging task to mechanistic models. Many sociocultural
differences (e.g., public attitude toward interventions and
willingness of compliance to these interventions) may
drive COVID-19 dynamics differently, but the influence
of these factors is difficult to quantify in mechanistic
models. However, for neural-network-based DL models,
we can fix existing network layers and “transfer” this
pretrained model from one region to another with distinct
sociocultural backgrounds.

There are some downsides of data-driven DL models.
Most prominently, DL models generally do not have
good interpretability, compared to explicit mechanistic

models. Therefore, DL models generally cannot derive
important parameters such as R0, which is the key in
mechanistic models. We suggest that DL models are
more appropriate for prediction than interpretation. The
other technical challenge is that although DL modeling
process has been substantially simplified with Keras and
Tensorflow libraries, it still requires a substantial amount of
programming experiences and skills. The modeling approach,
process, and results could be opaque to stakeholders and
concerned citizens.

CONCLUSION

In this study, we describe a data-driven workflow on
COVID-19 modeling, including data mining, cleaning,
preprocessing, and DL with multivariate RNNs. We
suggest that the multivariate LSTMs demonstrated in this
study are not intended to replace the current mechanistic
modeling approaches. DL models, when meticulously
developed on robust datasets, are able to complement
existing modeling approaches by providing a different
angle on the complex epidemiological systems such
as COVID-19.
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