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Over the past decade, substantial developments have been made in the

detection of circulating tumor DNA (ctDNA)—cell-free DNA (cfDNA)

fragments released into the circulation from tumor cells and displaying the

genetic alterations of those cells. As such, ctDNA detected in liquid biop-

sies serves as a powerful tool for cancer patient stratification, therapy guid-

ance, detection of resistance, and relapse monitoring. In this Review, we

describe lung cancer diagnosis and monitoring strategies using ctDNA

detection technologies and compile recent evidence regarding lung cancer-

related mutation detection in liquid biopsy. We focus not only on epider-

mal growth factor receptor (EGFR) alterations, but also on significant

co-mutations that shed more light on novel ctDNA-based liquid biopsy

applications. Finally, we discuss future perspectives of early-cancer detec-

tion and clonal hematopoiesis filtering strategies, with possible inclusion of

microbiome-driven liquid biopsy.

1. Introduction

Personalized medicine—specifically precision oncology

—nowadays provides molecular characterization of a

patient’s tumor via tissue biopsy and can help guide

treatment decisions. However, to fully implement

personalization in the field of oncology, it is necessary

to have an easily accessible and less invasive way to

determine and follow the molecular makeup of a tumor

from the moment of its detection and over the treatment

of the disease. One such approach is through a liquid

biopsy, where the genetic characterization of the tumor
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can be assessed through a biofluid sample. The term ‘liq-

uid biopsy’ refers to tumor-derived analytes sampled

from various biological fluids, usually blood, but also

other clinical specimens, such as urine, saliva, ascites,

and cerebrospinal fluid [1].

The constant development of technologies to detect

cell-free DNA (cfDNA) with high sensitivity has facili-

tated the employment of liquid biopsies in diverse clin-

ical applications, including in oncology. Analysis of

circulating tumor DNA (ctDNA) obtained from

plasma at multiple time points throughout the course

of the disease allows for patient stratification for treat-

ment (known as ‘companion diagnostics’), screening,

monitoring response to the selected treatment, and

detection of minimal residual disease after surgery.

In this article, we define the terms of cfDNA and

ctDNA, describe their properties, and outline the his-

torical breakthroughs in ctDNA detection. Most

importantly, we then aim at summarizing the most

recent state-of-the-art developments in ctDNA utiliza-

tion in diagnosis, including early-stage detection, treat-

ment selection, and follow-up, in non-small-cell lung

cancer (NSCLC) patients.

2. cfDNA and ctDNA: history,
definitions, and properties

cfDNA refers to degraded DNA fragments of usually

167 bp length that are released into the blood [2,3].

The specific length may result from the action of a

caspase-dependent endonuclease that cleaves DNA

after a core histone and its linker. Recent studies have

shown a distinct nuclear fragmentation pattern, with

variable fragment lengths of cfDNA, from different

tissue of origin [4–7]. Several different types of cfDNA

have been described in the circulation, including both

double-stranded (ds) and single-stranded (ss) DNA

particles. In humans, cfDNA originates from all cells,

yet the vast majority is known to be of hematopoietic

provenance [8–11]. Within the ‘classical’ cfDNA, we

can distinguish more specific subclasses based on its

site of origin or mechanism of release, for example,

mitochondrial DNA (mtDNA) [12], cell-free fetal

DNA (cffDNA) [13], extrachromosomal circular DNA

[14], as well as microbial DNA (mbDNA) [15–17].
The first record of cfDNA detection in blood serum

and plasma was in 1948, by Mandel and colleagues

[18]. Later, in 1977, higher levels of cfDNA were

detected in patients with pancreatic cancer compared

with healthy controls [19], which led to the hypothesis

that tumors release DNA fragments to the circulation.

In 1983, Shapiro and colleagues confirmed correlations

between benign vs. malignant tumors and cfDNA

concentration [20]. Later, Stroun et al. [21] demon-

strated that some of these DNA fragments were of

tumor origin, due to their genomic instability. In the

early 1990s, two independent studies noted the pres-

ence of specific KRAS proto-oncogene GTPase

(KRAS) and NRAS proto-oncogene GTPase (NRAS)

mutations in cfDNA from pancreatic adenocarcinoma

[22] and patients with acute myelogenous leukemia

[22,23]. This fraction of cfDNA was later termed as

‘circulating tumor DNA’ (ctDNA).

ctDNA refers to cfDNA fragments that are released

into the bloodstream from primary tumor or meta-

static cells and display tumor-specific point mutations,

chromosomal rearrangements, copy-number variation

(CNV), and DNA methylation [24–26]. Importantly,

ctDNA is more fragmented than cfDNA, resulting in

a much higher <100 bp fraction in the plasma [27].

The 10-bp periodicity observed for fragments smaller

than 167 bp [3,28] corresponds to a turn of the DNA

helix wrapped around the histone. This might protect

one part of the DNA from the nucleases present in the

blood. This specific fragmentation pattern suggests

that apoptosis may be a major source of cfDNA and

that histones may be the key protein complex associ-

ated with DNA in the blood. The release of longer

ctDNA fragments from tumor cells has been associ-

ated with necrotic cell death and occurs via active pro-

cesses in living cells [11,29,30]. ctDNA fragments that

are released into the circulation mirror the tumor sta-

tus, its evolution, and the genomic alterations present

in primary and/or metastatic tumors [11].

In a pan-cancer study involving 640 patients, Bette-

gowda et al. [31] demonstrated that ctDNA analysis

might allow monitoring of the therapeutic response,

tracking resistance, and, in some cases, early detection

of localized malignancies. They have also shown a cor-

relation between tumor burden and stage of the dis-

ease. Significant differences in ctDNA levels were seen

between cancer types, and the median cfDNA concen-

tration was shown to be 100-fold higher in patients

with stage IV versus stage I disease [31].

ctDNA has a notably short half-life in the blood-

stream [32], and this characteristic is an important fea-

ture in analyzing dynamics of the mutations and

tumor burden after surgery or systemic treatment

throughout the disease. Thus, real-time tumor dynam-

ics might be monitored through ctDNA analysis for

early prediction and assessment of drug response, as

well as early intervention independent of detection by

imaging examinations or clinical symptoms [26]. A

recent study developed a mathematical model to pre-

dict the shedding rate of early-stage NSCLC [33].

From this study, it has been estimated that there
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would be an average of only 1.7 genome copies of

ctDNA in 15 mL of blood for lung tumors with a vol-

ume of 1 cm3.

In general, detection of ctDNA requires the presence

of typical mutations that can be readily detected by

simple sequencing techniques, proving the presence of

tumor. With the advent of genomic information from

the most recent cancer genome sequencing studies, it

has become clear that practically all cancers of every

type harbor somatic alterations. Cancer somatic muta-

tions occur at minor frequencies in normal cell popula-

tions and therefore provide impeccably specific

biomarkers from a biological perspective [34]. Some

historic studies provide temporal analyses of the total

tumor burden, as well as identifying specific mutations

that appear during therapy [29,35–40].
Identification of somatic mutations within white

blood cells might be a recurring source of discordance

between tumor and total cfDNA genotyping. This phe-

nomenon is called clonal hematopoiesis (CH) and is

an aging-related phenomenon whereby nonmalignant

hematopoietic stem and progenitor cells acquire

somatic alterations that can confer a selective advan-

tage [41]. CH mutations are similar to the mutations

detected in plasma and may involve both canonical

CH genes, such as DNA methyltransferase 3 alpha

(DNMT3A); tet methylcytosine dioxygenase 2 (TET2);

ASXL transcriptional regulator 1 (ASXL1); and Janus

kinase (JAK), and driver mutations related to tumors,

such as KRAS, phosphatidylinositol-4,5-bisphosphate

3-kinase catalytic subunit alpha (PIK3CA), and epider-

mal growth factor receptor (EGFR) mutations [42–45].
Because hematopoietic cells are the primary source of

cfDNA [46] and contribute somatic variants to the

cfDNA pool [43,44], several approaches to distinguish

mutations derived from CH from their tumor-derived

counterparts have been proposed [42,47,44]. Studies

that indicated that CH and tumor cfDNA have frag-

ments of a different size distribution might also help

to distinguish between the two [48–50]. Chan et al. [51]

elaborate elegantly on further clinical implications of

the CH phenomenon.

In addition to considering CH before implementing

ctDNA analysis in the clinic, other strict guidelines

and standard operating procedures need to be formu-

lated. Factors like preanalytical standardization need

to be well optimized. For instance, the CANCER-ID

consortium was funded between public and private

sector units with the aim of establishing standard

protocols for and clinical validation of ctDNA- and

circulating tumor cell (CTC)-based biomarkers.

Lampignano et al. [52] compare the preanalytical and

analytical workflows of cfDNA-based techniques, and

Gr€olz et al. [53] explain the importance of preserving

whole-blood specimens after blood drawn for use as

liquid biopsies, and summarize preservation solutions

that are currently available. Through entities like

CANCER-ID or the International Liquid Biopsy Stan-

dardization Alliance (ILSA) [54], the importance of

working toward the global use of liquid biopsy in

oncology practice is being well recognized.

3. A glimpse at lung cancer

Lung cancer remains the most common cause of can-

cer death worldwide, with an estimated 1.8 million

deaths each year [55]. About 85% of patients are his-

tologically grouped as NSCLC, of which lung adeno-

carcinoma (LUAD) and lung squamous cell carcinoma

(LSCC) are the most common subtypes [56,57]. Until

2004, all NSCLC subtypes—LUAD, LSCC, and large

cell carcinoma—were treated in the same manner with

chemotherapy (cisplatin or carboplatin in combination

with either docetaxel, paclitaxel, gemcitabine, or

vinorelbine). The FDA approval of gefitinib—the first

EGFR inhibitor—was a game changer in NSCLC

treatment, leading to stratification of patients with

activating EGFR mutations to targeted therapy [58].

Lung cancer treatment is stage-specific. Early-stage

disease can be cured by surgical resection, while locally

advanced disease demands multimodal treatment,

including chemotherapy, radiotherapy, and surgery for

chosen cases. Intrinsically, due to the usually late

prognosis, NSCLC is a metastatic disease (henceforth,

stage IV or metastatic is applied to NSCLC or

LUAD) with gloomy prognosis. Its response rate is

about 30%, progression-free survival (PFS) 4–
6 months, and median overall survival (OS) about

12 months; however, toxicity usually applies to all

treatment strategies. In the past, some physicians with-

held chemotherapy on the basis of patients’ age (with

the cutoff arbitrarily set at 70 years) [57].

3.1. Early detection

Although the understanding of lung cancer pathobiol-

ogy has significantly improved over the last few dec-

ades, poor disease prognosis is partially attributed to

late stages at diagnosis, given that there are very few

early symptoms [59]. When diagnosed at an early

stage, patients with NSCLC have a 5-year survival rate

of about 71%. For patients diagnosed with stage IV

disease, it is less than 2% [60]. Early diagnosis may

thus improve patient outcome [61], especially if

ctDNA-guided adjuvant therapy administration

reaches the bedside, as proposed in the TRACERx
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consortium study [62,63]. Therefore, there is still a

considerable need to develop noninvasive integrative

biomarkers for early detection of lung cancer.

Despite the fact that several alterations have been

noted in histologically normal bronchial epithelium

specimens of smokers [64], early diagnosis in NSCLC

remains low. Molecular changes are detected in hyper-

plasia and dysplasia, stages that precede carcinoma

in situ and invasive carcinoma [57]. Recent studies show

that aneuploidy and driver mutations also precede can-

cer diagnosis by several years [65]. Driver fusion onco-

genes in LUAD could arise in the early decades of life,

with a long latency period before diagnosis [66].

In 2018, Cohen et al. [67] developed CancerSEEK—
a multianalyte test that can detect eight human cancer

types through determination of the levels of circulating

proteins and mutations in ctDNA. For lung cancer,

the probability of detection reached 75%. It seems that

ctDNA combined with protein biomarkers might serve

as an opportunity to detect cancers before they metas-

tasize, when it is not yet evident radiologically. At this

stage, patients can be cured in up to 50% of cases with

systemic therapies. Nonetheless, further studies should

be performed for the possible implementation of Can-

cerSEEK in the clinical practice.

As the majority of cfDNA originates from

hematopoietic cells, these CH mutations are detected

in plasma and, without appropriate controls, can be

incorrectly attributed to tumor. High-sensitivity

cfDNA analyses have identified CH mutations in 60–
90% of individuals without cancer and shown them to

be age-related [43,44]. To avoid calling these false-

positive CH mutations, white blood cell controls, frag-

ment length discrimination, CH-associated variant fil-

tering, and deep-error controlled sequencing are

required (Fig. 1).

To address this issue, in their latest discovery, Cha-

bon et al. [48] implemented certain improvements to

cancer profiling by deep sequencing (CAPP-Seq) [68]

of ctDNA analysis at lung cancer screening. Although

very low levels of ctDNA were detected in early-stage

lung cancer patients, its presence was confirmed as

strongly prognostic. The mutational profile of total

cfDNA from lung cancer patients and risk-matched

controls revealed nonrecurrent CH, and the mutations

were detected on longer cfDNA fragments. A

machine-learning method called ‘lung cancer likelihood

in plasma’ (Lung-CLiP) allowed for robust discrimina-

tion of early-stage lung cancer patients from risk-

matched controls [48]. These findings give hope for

employment of ctDNA-based screening methods into

the clinical practice, hence reducing cancer-related

mortality by increasing the early-detection rate.

3.2. Personalized treatment for NSCLC

Targetable oncogenic drivers account for almost 25%

of LUADs, of which EGFR mutations are the most

frequent [69]. The use of targeted therapies has

reduced lung cancer mortality [70]. Based on Surveil-

lance, Epidemiology and End Results (SEER) cancer

registries, among men, incidence-based mortality from

NSCLC decreased by 6.3% annually from 2013

through 2016. Similar patterns were found among

women with NSCLC [70].

The Lung Cancer Mutation Consortium (LCMC)

performed the first large-scale study in LUADs for

detection of oncogenic driver mutations in the United

States. Multiplex genotyping for mutation detection

was performed in several sites, using any of three

methods: matrix-assisted laser desorption/ionization

time-of-flight mass spectrometry (Sequenom, Arizona

Research Laboratories), multiplex single-nucleotide

extension sequencing (SNaPshot, Applied Biosystems),

or Sanger sequencing with peptide nucleic acid probes

[71]. The LCMC prioritized genotyping EGFR, KRAS,

erb-b2 receptor tyrosine kinase 2 (ERBB2), AKT ser-

ine/threonine kinase 1 (AKT1), B-Raf proto-oncogene

(BRAF), serine/threonine protein kinase MEK1

(MEK1), NRAS, PIK3CA, ALK receptor tyrosine

kinase (ALK), and MET proto-oncogene (MET).

KRAS mutations were the most frequent, found in 182

of 733 specimens (25%), followed by sensitizing EGFR

mutations (exon 19 deletions, L858R, L861Q, and

G719X) in 122 of 733 specimens (17%). This kind of

EGFR mutation results in sensitivity to tyrosine kinase

inhibitors (TKIs). ALK rearrangements occurred in 57

of 733 specimens (8%). The median survival of

patients with each of the five most common oncogenic

drivers ranged from 2.0 years (mutations in two genes)

to 4.3 years (ALK-rearranged tumors). The 260

patients with an oncogenic driver and treatment with a

targeted drug had a median survival of 3.5 years; the

318 patients with a driver and no targeted therapy had

2.4 years median survival; and the 360 patients with

no driver identified had 2.1 years (P < 0.001) [71].

Other nationwide studies were performed following

the LCMC study [71], including a genomic screening

network (LC-SCRUM-Japan) and the French nation-

wide IFCT-InCa project, as well as a project in

Cologne, Germany (reviewed in ref. [69]). All these ini-

tiatives paved the way for the current genomic classifi-

cation of LUAD and set the basis for the genomic

classification of LSCC [69,72].

Recently, the TARGET study used a ctDNA assay

involving a panel of 641 cancer-associated genes. For

the first 100 patients, ctDNA data showed good

1670 Molecular Oncology 15 (2021) 1667–1682 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

ctDNA in lung cancer detection and monitoring M. Filipska and R. Rosell



concordance with tissue (78% concordance) and iden-

tified potentially actionable mutations in 41% of

patients. Of these patients, 11 of 41 (27%) went on to

a matched therapy [73].

3.2.1. EGFR-mutant LUAD genomic assessment

Targeted next-generation sequencing in tumor tissue

from metastatic NSCLC is gradually becoming more

used for the identification of targetable driver muta-

tions and gene fusions. However, the first question

that comes up when a driver actionable mutation is

detected is: What is the meaning of the other, often

co-occurring, mutations and gene alterations reported?

EGFR-mutant NSCLC was analyzed using the MSK-

IMPACT assay, a clinical test that detects mutations,

copy-number alterations, and select fusions involving

341 (version 1), 410 (version 2), or 468 (version 3)

cancer-associated genes [74]. The median number of co-

mutations was 5 (range 0–19) in samples prior to

EGFR TKI therapy. The most frequent co-occurring

mutations were tumor protein p53 (TP53) (60%

n = 119), PIK3CA (12%, n = 23), catenin beta 1

(CTNNB1) (9%, n = 18), and RB transcriptional core-

pressor 1 (RB1) (10%, n = 19). The most frequent con-

current amplifications were EGFR (22%, n = 45), NK2

homeobox 1/transcription termination factor 1 (NKX2-

1/TTF-1) (15%, n = 29), MDM2 proto-oncogene

(MDM2) (12%, n = 23), cyclin-dependent kinase 4

(CDK4) (10%, n = 21), and forkhead box A1 (FOXA1)

(10%, n = 20) [74]. FOXA1 is a transcription factor

that is frequently mutated in prostate, breast, bladder,

and salivary gland tumors [75]. The median PFS was

11 months; however, if the TP53 mutation was also

present, then the median PFS was reduced (6 months)

[74]. PFS was 5 months when pretreatment MET

amplification (2%, n = 4) was noted. The presence of

TP53 alterations was also associated with shorter sur-

vival [74]. The TP53 concurrent mutation also pre-

dicted shorter PFS to EGFR TKI in EGFR-mutated

NSCLC [76]. More recent studies [77] reconfirm the

Helena Yu co-mutation plot of genomic alterations [74]

and help to gain insights on co-acquired alterations

through the evolution of TKI therapy in NSCLC

patients [77]. PIK3CA mutations showed a domain-

dependent effect on PFS. Mutations in the kinase

domain (Y1021H and H1047R), helical domain

(E542K), and C2 domain (N345K) were associated with

poorer PFS, while mutations in the p85-binding domain

(R88Q, R108H, and K111E) were associated with an

improved survival [77]. Intriguingly, multiple driver

mutations occur in the same gene, especially in PIK3CA

(10% of samples) and EGFR (10%) [78]. In fact, The

Cancer Genome Atlas (TCGA) research network

showed that the principal driver alterations in NSCLC

(i.e., LUAD)—either EGFR mutations or KRAS muta-

tions—include the co-occurrence of several others, com-

monly with TP53 mutations, as well as serine/threonine

kinase 11 (STK11) and kelch-like ECH-associated pro-

tein 1 (KEAP1) mutations and alterations [79].

Fig. 1. Strategies to filter clonal hematopoiesis (CH) from tumor-derived mutated circulating free DNA (cfDNA). Plasma-derived cfDNA,

including circulating tumor DNA (ctDNA), is subjected to fragment size analysis to better discriminate between tumor- and non-tumor-

derived cfDNA. Then, along with white blood cell (WBC)-derived genomic DNA (gDNA), cfDNA is sequenced and analyzed via a rigorous

bioinformatic pipeline. CH may be excluded by filtering nonsynonymous mutations except for the positive selection analysis, mutational

signature analysis, and genes canonically associated with CH [48].
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3.2.2. Detection of EGFR mutations in ctDNA

In our group [80], EGFR mutations in ctDNA were

assessed in a large cohort of 1026 NSCLC patients,

and sensitizing EGFR mutations were found in 113

patients (11%). More than 50% of samples had

<10 pg mutated genomes per µL, with allelic fractions

below 0.25%. Patients treated first line with TKI had

an objective response rate of 72% and a median PFS

of 11 months. Of the 105 patients screened after pro-

gression to EGFR TKIs, sensitizing mutations were

found in 56%, and the acquired T790M mutation was

found in 35%. Detection of EGFR mutations in

plasma ctDNA was used as a selection criterion for

first-line gefitinib in patients with LUAD (BENEFIT

study) [81]. The objective response rate among

188 patients was 72%, while median PFS was

9.5 months. Of 167 patients with available blood

samples, 147 (88%) had clearance of EGFR mutations

in ctDNA at week 8, and median PFS was longer for

these patients than for the 20 patients whose EGFR

mutations persisted at week 8 (11 months vs

2.1 months, P < 0.0001). From baseline next-

generation sequencing (NGS) data in 179 patients [us-

ing an ultra-deep (20 0009) 168-gene panel named

LungPlasma (Burning Rock Biotech, Guangzhou,

China)], three subgroups were seen: those with EGFR

mutations alone (n = 58), those with mutations in

EGFR and tumor-suppressor genes [TP53 (65%), RB1

(8%) or phosphatase and tensin homolog (PTEN),

(3%) (n = 97)], and those with mutations in EGFR

and oncogenes [MET, ERBB2, KRAS, BRAF, ret

proto-oncogene (RET) or ROS proto-oncogene 1

(ROS1) (n = 24)]. Corresponding median PFS in these

subgroups was 13.2 months, 9.3 months, and

4.7 months, respectively [81].

An earlier seminal study deciphered the evolution

and clinical impact of co-occurring genetic alterations

in 1122 EGFR-mutated NSCLC patients by means of

the Guardant 360 ctDNA assay, which covered single-

nucleotide variants, small insertions/deletions (indels),

gene rearrangements/fusions, and copy-number gains

across 68 clinically relevant cancer genes [82]. PIK3CA

and CTNNB1 mutations were noted in tumor tissue,

as described above [74]. Interestingly, concurrent geno-

mic alterations detectable in EGFR-mutant NSCLC

patients encoding the EGFR C797S mutation were also

found [82]. Using new versions of the Guardant360

ctDNA assay, covering 73 cancer-related genes, two

studies have reported great concordance between the

ctDNA assay and tissue-based clinical genotyping. In

the United States, 282 patients were evaluated in the

NILE study (Non-Invasive versus Invasive Lung

Evaluation) [83]. In tissue-positive patients, the bio-

marker was identified alone (12/60) or concordant with

ctDNA (48/60), with an 80% ctDNA sensitivity.

Importantly, the ctDNA median turnaround time was

faster than tissue (9 vs 15 days; P < 0.0001) [83]. We

conducted a similar prospective study in Spain [84] in

186 NSCLC patients, confirming that the Guardant360

NGS ctDNA assay was not inferior to standard-of-

care tissue testing in detecting recommended biomark-

ers, further confirming that ctDNA-based first-line

therapy produces outcomes similar to tissue-based test-

ing [84].

As confirmed in multiple studies, detection of EGFR

mutations in plasma serves as a satisfactory surrogate

for tissue biopsy. Significant weight should be put on

the co-occurring genetic alterations, since their detec-

tion serves as an important prognostic marker.

3.2.3. Significance of EGFR L858R mutation in ctDNA

We carried out a large-scale ctDNA screening of

patients with NSCLC for EGFR mutations in Spain.

EGFR mutations were found in 350 of 2015 patients

(16.6%). For 217 patients who received erlotinib, the

adjusted hazard ratios for the duration of PFS were

2.94 for men (P < 0.001); 1.92 for the presence of the

L858R mutation, as compared with a deletion in exon

19 (P = 0.02); and 1.68 for the presence of the L858R

mutation in paired serum DNA, as compared with the

absence of the mutation (P = 0.02) [85]. After examin-

ing the ctDNA of 97 patients included in the EUR-

TAC phase 3 trial [86] using a peptide nucleic acid-

mediated 5’ nuclease real-time polymerase chain reac-

tion (TaqMan) assay, it was determined that median

OS was shorter in patients with the L858R mutation

in ctDNA than in those with the exon 19 deletion

(13.7 vs 30 months, P < 0.01). Moreover, univariate

analysis of patients with EGFR mutations in ctDNA

identified the L858R mutation in tumor tissue or in

ctDNA as a marker of shorter OS (hazard ratio, 2.70,

P < 0.001) and PFS (hazard ratio, 2.04, P = 0.008).

For patients with the L858R mutation detected pri-

marily in tissue, median OS was 13.7 months for

patients with the L858R mutation in ctDNA and

27.7 months for those with no mutation detected

(P = 0.03). The conclusion was that the L858R muta-

tion in ctDNA might be a novel surrogate prognostic

marker [87].

The FLAURA phase 3 trial of osimertinib vs gefi-

tinib in first line also showed a shorter PFS and OS in

EGFR-mutant NSCLC harboring the L858R mutation

in tumor tissue [88,89]. Anterior gradient 2 (AGR2), a

disulfide isomerase that promotes lung tumorigenesis,
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is significantly expressed (using TCGA datasets) in

EGFR L858R airway tumors induced by transforming

growth factor alpha (TGFA; an EGFR ligand), but

not in normal lung. Experimental data points out that

AGR2 may contribute to the growth of EGFR L858R

airway lung tumors induced by TGFA. In addition,

TGFA induces the expression of AGR2 in human

EGFR-mutant LUAD. As explained below, TGFA-

mediated fibrosis associated with EGFR-mutant lung

tumors in vivo may induce growth factors (e.g., FGF)

that confer resistance to EGFR TKIs, gefitinib, erloti-

nib, afatinib, and osimertinib. It has been posited that

TGFA is a therapeutic target for recurrent EGFR-

mutant lung cancer (e.g., osimertinib-resistant LUAD)

[90]. Although the biological background of L858R

mutations has not been elucidated, it is remarkable

that multiple driver mutations in the same EGFR gene

can occur for L858R, in contrast with the EGFR exon

19 deletion [91]. A number of rare (minor) mutations

are found in extracellular and transmembrane

domains, together with the L858R major driver muta-

tion. These findings lead us to speculate that multiple

mutations in the same oncogene cooperate to potenti-

ate its tumor-promoting activity [90].

3.2.4. Landscape of acquired EGFR mutations, other

mutations, and gene fusions in EGFR-mutant NSCLC

EGFR-mutant NSCLC patients treated with TKI often

develop acquired EGFR mutations that, until now,

were only examined in re-biopsies. As an example, a

patient that harbored EGFR exon 19 deletion was

treated with afatinib [92]. After progression, the sec-

ond biopsy still revealed the presence of EGFR exon

19 deletion and the acquired EGFR exon 20 T790M.

Treatment was then switched to osimertinib (a

mutant-specific third-generation EGFR TKI). When

the third biopsy was performed, EGFR exon 19 dele-

tion was pervasively identified, with disappearance of

EGFR exon 20 T790M and emergent EGFR exon 20

C797S (acquired with osimertinib). The patient was

treated with gefitinib (EGFR inhibitor, first genera-

tion) which induced tumor response once more [92].

Previously, it was suggested that combining first-

and third-generation TKIs in first-line therapy could

be crucial, because neither a T790M, nor a C797S

mutation, alone, would be able to drive resistance to

the combination [93]. For T790M-positive, erlotinib-

resistant NSCLCs that develop a C797S mutation fol-

lowing therapy with a third-generation TKI, the con-

figuration of the T790M and C797S mutations

influences how the cells can respond to therapy. If the

two mutations are in trans (on separate alleles), then

the combination of first- and third-generation TKIs

can restore EGFR inhibition. Conversely, if the two

mutations are in cis (on the same allele), the cells are

refractory to any of the EGFR TKIs, as well as the

combination of first- and third-generation inhibitors

[93]. It was foreseen that clinical assessment of the cis

versus trans configuration can be examined by NGS,

since T790M and C797S mutations are in close enough

proximity to coexist on a significant number of indi-

vidual sequencing reads [93,94]. Interestingly, it was

shown that, at a concentration of 1 µmol�L�1, afatinib

can inhibit mutant EGFR with C797S in the absence

of T790M [93].

Osimertinib is the preferred first-line therapy for

EGFR-mutant NSCLC [88,89]; however, resistance

unavoidably develops in patients. Resistance is medi-

ated by acquired secondary mutations in EGFR. In

addition to C797S, others also occur, such as L718Q

[95]. Analysis of ctDNA data from patients disclosed

that L718Q mutations usually appear in the context of

an L858R driver mutation [96]. This adds evidence to

the observation that additional mutations occur in the

presence of EGFR L858R, rather than in EGFR exon

19 deletion [78].

On the same lines as Niederst’s observations [93],

treatment in mice revealed that both erlotinib and afa-

tinib caused regression of osimertinib-resistant C797S-

containing tumors, whereas only afatinib was effective

in L718Q mutant tumors. Combination of first-line

osimertinib plus erlotinib could prevent the emergence

of secondary mutations in EGFR [96].

A novel EGFR G724S mutation, causing resistance

to osimertinib, occurs with exon 19 deletion, but not

L858R. In addition, the exon 19 deletion/G724S

retains sensitivity to afatinib, but not to erlotinib [97].

EGFR C724S was identified in 4% of postosimertinib

patients treated with first-line osimertinib, whereas

C797X was identified in 29% of postosimertinib

patients treated with later-line osimertinib [98].

Targeted NGS for 416 cancer-related genes was car-

ried out in 93 osimertinib-resistant NSCLC patient sam-

ples, mainly in ctDNA, and matched pretreatment

samples of 12 patients. A co-mutation plot of

postosimertinib-treated patients revealed two subgroups

of patients: those with major EGFR tertiary mutations

at the positions of L718/G719, L792, and G796/C797

(identified with a frequency of 9.7%, 10.8%, and

24.7%, respectively). In most cases, mutations were also

noted in EGFR T790M and TP53 [99]. Almost all

patients without EGFR resistance mutations showed

TP53, MET, KRAS, or PIK3CA mutations [99].

Median OS after osimertinib progression (osimer-

tinib given as second-line in EGFR T790M mutant

1673Molecular Oncology 15 (2021) 1667–1682 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

M. Filipska and R. Rosell ctDNA in lung cancer detection and monitoring



NSCLC patents) was 5.4 months in 40 patients from

the AURA study, whose plasma was available after

disease progression [100]. Twelve (30%) of these had

the T790M mutation (four of whom also had C797S).

Patients without detectable EGFR-activating mutations

in plasma before treatment had the best overall and

postprogression survival (22.4 months and

10.8 months, respectively). Loss of T790M but pres-

ence of EGFR-activating mutations in plasma was

associated with the shortest PFS (median 2.6 months).

Importantly, in 22 postprogression tumor samples, one

squamous cell and two small-cell transformations were

seen. In addition, the number of patients was small

and T790M was found in 50% of samples, C797S in

17%, MET amplification in 50%, BRAF mutations in

8%, and KRAS mutations in 8%.

Once we have the data from a ctDNA analysis,

what should we do with it? What do we do when fac-

ing the multiplicity of genomic aberrations described?

Is it a basic rule in medicine to bear in mind their fre-

quency? Secondly, are the acquired driver co-

alterations druggable? A recent study has shed light on

these issues [98]. MSK-Fusion Solid, a custom RNA-

seq panel, was used to detect fusions in cases where no

resistance mechanism was identified by NGS and suffi-

cient tissue was available. Among 62 patients, histolog-

ical squamous transformation was identified in 15% of

first-line osimertinib cases and 14% of later-line cases.

Nineteen percent of patients treated with first-line

osimertinib had off-target genetic resistance (2 MET

amplifications, 1 KRAS mutation, 1 RET fusion, and

1 BRAF fusion), whereas 4% had an acquired EGFR

mutation (EGFR G724S). Patients with squamous

transformation acquired PIK3CA mutation, chromo-

some 3q amplification, and fibroblastic growth factor

(FGF) amplification. The compound mutation EGFR

S768 + V769L and the mutation MET H1094Y were

also identified. Longitudinal analysis of two patients,

who received later-line osimertinib with emergence of

ALK fusion, revealed that one patient acquired an

EGFR C797S mutation and lost the ALK fusion after

treatment with osimertinib and alectinib. The other

patient acquired the ALK G1202R mutation after

treatment with osimertinib and alectinib [98]. Recent

studies confirm the validity of ctDNA analysis for

response assessment to osimertinib [101] and others

regarding the prognostic impact of TP53 mutations,

suggesting that EGFR-mutant and TP53 wild-type

patients may benefit from the combination of EGFR

TKI with bevacizumab [102].

Great progress has also been made in the use of

ALK inhibitors for the treatment of patients with

ALK-positive NSCLC, from crizotinib to second-

generation ALK inhibitors, including alectinib, briga-

tinib and ensartinib, and lorlatinib, a third-generation

ALK inhibitor [103]. The combination of ALK and

MET inhibitors is emerging as a plausible efficient

combination, since MET amplification has been

detected in 15% of tumor biopsies from patients

relapsing on next-generation ALK inhibitors, including

12% and 22% of biopsies from patients progressing

on second-generation inhibitors or lorlatinib, respec-

tively [104]. Also, two tumor specimens harbored sup-

pression of tumorigenicity 7 (ST7)-MET

rearrangement [105]. A recent phase 2 study, VISION,

evaluates tepotinib (a MET inhibitor) for the treat-

ment of NSCLC with MET exon 14 skipping muta-

tions. PFS with tepotinib was 11 months (tissue

biopsy, n = 60), 8.5 months (liquid biopsy, n = 66) and

8.5 months (combined biopsy, n = 60) [106]. In addi-

tion, for MET exon 14 skipping mutations, patients

treated with crizotinib (MET inhibitor; PROFILE

1001), PFS was significantly shorter in patients with

MET mutations detected in ctDNA versus nondetected

in ctDNA, with a median of 3.6 months vs 7.8 months

(hazard ratio = 2.27, P = 0.06) [107].

It is clear that targeted NGS in tissue and plasma

provides complementary theranostic information in the

current era of single targeted therapy. However, the

genomic evaluation could become complex with

the cornucopia of genomic alterations that are being

developed, and tracking plasma is the most suitable

advance that the practitioner has, although it poses

multiple hurdles on how to treat the patient. One

appealing case described an EGFR L858R patient that

also displayed EGFR G719S in four different regions

of the resected lung tumor, in different allelic propor-

tions, as well as SWI/SNF-related, matrix-associated,

actin-dependent regulator of chromatin, subfamily a,

member 4 (SMARCA4) [108]. At the time of relapse,

she received afatinib and a liver metastasis biopsy was

performed where L858R was found in an allelic frac-

tion of 14%, together with other gene mutations. After

2 years of afatinib, a resection of an ovarian metasta-

sis revealed mutation of the EGFR gene in six different

regions: L858R, G719S (allelic fraction range, 40–
50%), and EGFR C797S (allelic fraction range 9–14%)

in five of the six areas of the ovary. SMARCA4 muta-

tion was found in all six ovarian areas analyzed, with

an allelic fraction of more than 40%. After the ovary

metastasis resection, the patient continued afatinib for

more than 2 years without recurrence [108]. Almoner-

tinib is a third-generation EGFR TKI with high selec-

tivity for EGFR-sensitizing and T790M resistance

mutations that show great inhibitory activity against

T790M, T790M/L858R, and T790M/Del19 [109].
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The secondary objective of a recently opened multicen-

ter, open-phase II clinical study (NCT04841811), in

patients with unresectable stage III NSCLC is to assess

the safety of different treatment decisions guided by

ctDNA monitoring [110].

Targeted NGS ctDNA assays are warranted to man-

age the complexity of genomic alterations; however,

intrinsic and acquired resistance also involves the identi-

fication of pathways that influence sensitivity, such as in

KRAS G12C-mutant NSCLC, where the combination

of the KRAS G12C inhibitor, PI3K inhibitor, and

SHP2 inhibitor caused tumor regression in mouse mod-

els with acquired resistance to AMG510 [111]. Co-

treatment in EGFR-mutant NSCLC is highly recom-

mended to improve PFS and OS. We and other groups

have shown that targeting STAT3, YAP1, and SHP2

could have great synergism in vitro and in vivo in

EGFR-mutant cell line models [112–114] and that, by

preventing NF-jB signaling activation, the formation of

acquired EGFR mutations could be prohibited [115].

3.2.5. ctDNA as a biomarker for immunotherapy

Most recently, the introduction of immunotherapy

with promising responses in subgroups of cancer

patients preceded the search for biomarkers to better

stratify patients. This raised the question of whether

studying a tumor microenvironment from the tissue

biopsy was crucial for predictive biomarker discovery

or whether a biomarker could be reasonably sought in

a peripheral blood sample. It has been demonstrated

that the latter may be achieved via analysis of tumor

mutation burden (TMB) in ctDNA, adding another

liquid biopsy biomarker to a constantly expanding list

of blood tests for the management of cancer. An inter-

esting approach to combine two liquid biopsy bio-

sources would be to complement TMB detected on

ctDNA with PD-L1 assessment on CTCs [116]. The

recently opened BESPOKE clinical trial

(NCT04761783) is to examine the impact of SIGNA-

TERATM (a personalized and tumor-informed 16-plex

NGS assay to detect ctDNA) on clinical decision-

making regarding immunotherapy for treatment of

solid tumors [117].

Interestingly, fusion-driven LUADs often have

SETD2 mutations, which are not seen in LUADs with

EGFR, KRAS, BRAF, or MET mutations [66]. This

finding is of interest, since ALK or ROS1 fusion-

driven LUADs show poor benefit with immune check-

point inhibitors (anti-PD-1 or anti-PD-L1 monoclonal

antibodies) [118,119]. SETD2 methyltransferase medi-

ates STAT1 methylation on lysine 525, being an essen-

tial signaling event for interferon-alpha-dependent

antiviral immunity [120]. The current management of

metastatic NSCLC has evolved from chemotherapy to

chemotherapy plus immune checkpoint inhibitors in a

large number of NSCLC patients with no identifiable

driver oncogene mutations or fusions [56,121].

Despite the progress in immunotherapy, not all

NSCLC patients respond. Whole-exome sequencing of

104 patients treated with immune checkpoint inhibitors

identified that corrected TMB (cTMB) adjusted for

tumor purity predicted the benefit of immunotherapy,

as well as smoke-related mutational signature and

human leukocyte antigen status. However, mutations

in receptor tyrosine kinase (RTK) genes were indica-

tive of no response [122].

4. Conclusions and perspectives

In the hope of overcoming several obstacles and chal-

lenges resulting from classical tissue biopsy-based diag-

nosis, liquid biopsy emerged as a robust tool for

ctDNA monitoring and disease detection and monitor-

ing. Importantly, liquid biopsies trump tissue biopsies

when there is insufficient material for testing or its

quality is unsatisfactory. In addition, a patient’s poor

performance status and tumor accessibility are often a

substantial concern.

Tumors are highly heterogeneous, and sampling in

its entirety is challenging: How well does a small tissue

biopsy sample represent the whole tumor? In patients

with multiple metastases, to gain a holistic view of the

disease biopsy, samples should be collected from all of

the (known) metastatic sites (Fig. 2). Since the blood

reaches most tumor sites in patients with advanced

cancers, it is perhaps reasonable to speculate that

blood-based liquid biopsies might better reflect tumor

heterogeneity. Moreover, tumors evolve over time and

can modify their molecular fingerprint, making clinical

decisions based on historical biopsy data insignificant.

The limitation of acquiring tissue biopsy samples lon-

gitudinally to determine disease response or monitor

relapse is also reduced by the liquid biopsy approach,

since multiple samples can be collected noninvasively

over time (Fig. 2).

Although early-detection strategies based on ctDNA

are promising, numerous hindrances must be

addressed before they can be robustly applied in the

clinic. False-positive results can be precarious for any

screening assay. Experience thus far suggests that

benign tumors and non-neoplastic conditions do not

generally give rise to ctDNA [29], so the ‘overdiagno-

sis’ of benign tumors is not likely to pose a major

problem. Moreover, strategies to filter out CH signal

are being developed (Fig. 1) [34–36].
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ctDNA can be robustly detected in plasma when a

significant number of copies of mutant ctDNA are

shed into blood. However, when the amounts of

ctDNA are too low, analysis of individual mutant loci

might result in a negative result because of sampling

background noise even when using an assay with per-

fect analytical sensitivity [123]. It is much easier to

detect a single mutation in the follow-up of an

advanced disease and more demanding in the early

stage where higher depth for detecting a broad panel

of mutations requires more ctDNA input. Where the

amount ctDNA isolated is not sufficient for an NGS

analysis, alternative platforms, such as NanoString

nCounter, can be of service [124].

A revolutionary approach for cancer management

was proposed by Wan and colleagues [125], in which

tumor-guided personalized ctDNA screening is per-

formed in longitudinally collected plasma samples.

Such patient-specific mutation lists provide an oppor-

tunity for highly sensitive monitoring from a range of

sequencing data types using methods for signal aggre-

gation, weighting, and error suppression [125]. All this

makes ctDNA still the most useful technique for

companion diagnostics approaches where the mutation

is druggable.

Despite its potential, ctDNA analysis is not suitable

to diagnose all cancers, since some tumor types (e.g.,

gliomas and sarcomas) are poor ctDNA shedders.

Moreover, ctDNA-based assays are applicable in

tumors with higher TMB, whereas, for example,

glioblastoma multiforme or pancreatic adenocarci-

noma are barely detectable in blood, especially at ear-

lier stages, due to their low shedding and TMB. Thus,

Poore et al. [17] have approached this limitation: They

addressed the possibility of using mbDNA to discrimi-

nate between cancer and healthy patients. In short,

their findings suggest that mbDNA may serve as a bio-

marker for cancer diagnosis and detection even for

low-TMB cancers. This new path in liquid biopsy can-

cer diagnostics has been opened by highlighting

another clinical application of microbiome-based

assays [17,126].

In conclusion, ctDNA-based liquid biopsies can be a

powerful tool for cancer diagnosis, monitoring, prog-

nosis, and individualized treatment and can completely

change the current paradigms of cancer management,

Fig. 2. ctDNA-based liquid biopsy in clinical use. Lung cancer was diagnosed at early stage, EGFR exon 19 deletion (ex19del) was detected,

and the tumor was subjected to resection. Subsequently, two liquid biopsies detected no mutated circulating tumor DNA (ctDNA), indicating

no progression of the disease. At the recurrence, EGFR ex19del and L858R mutation (L858Rmut) was detected in ctDNA and erlotinib was

administered to the patient. L858R mutant cells metastasized to the liver and developed resistance to erlotinib (yellow line). Tumor derived

from the EGFR ex19del clone responded well to the therapy (gray line). Solid arrows indicate liquid biopsy sample collection time points;

dashed arrows indicate treatment procedures.
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especially in a multianalyte setting. However, consider-

able research and development are still needed to

improve the isolation, enrichment, and downstream

analysis of all circulating biomarkers. In our view, in

current clinical practice, ctDNA measurements need to

be combined with standard-of-care approaches and

ideally combined with other blood-based biosources.
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