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Purpose: To identify the underlying genetic causes of fundus albipunctatus (FA), a rare form of congenital stationary
night blindness that is characterized by the presence of white dots in the midperiphery of the retina and delayed dark
adaptation, in Pakistan.
Methods: Two families with FA were identified by fundus examination, and genome-wide single nucleotide
polymorphism genotyping was performed for two individuals from family A and six individuals from family B.
Genotyping data were subsequently used to identify the identical homozygous regions present in the affected individuals
of both families using the online homozygosity mapping tool Homozygosity Mapper. Candidate genes selected from the
homozygous regions were sequenced.
Results: Three identical homozygous regions were identified in affected persons of family A (on chromosomes 8, 10,
and 12), whereas a single shared homozygous region on chromosome 12 was found in family B. In both families, the
homozygous region on chromosome 12 harbored the retinol dehydrogenase 5 (RDH5) gene, in which mutations are known
to be causative of FA. RDH5 sequence analysis revealed a novel five base pair deletion, c.913_917delGTGCT
(p.Val305Hisfs*29), in family A, and a novel missense mutation, c.758T>G (p.Met253Arg), in family B.
Conclusions: We identified two novel disease-causing RDH5 mutations in Pakistani families with FA, which will improve
diagnosis and genetic counseling, and may even lead to treatment of this disease in these families.

Fundus albipunctatus (FA; OMIM:136880), or flecked
retina disease, was described for the first time by Lauber [1].
FA is a rare form of congenital stationary night blindness and
is characterized by the presence of typical white dots on the
whole fundus or concentrated in the midperipheral region of
the retina, with or without macular involvement, and a delay
in dark adaptation. The inheritance pattern of FA is autosomal
recessive [2-5]. In one family, a male and his two daughters
showed FA, which could be due to autosomal dominant or
pseudodominant (i.e., autosomal recessive) inheritance [6].
Mutations in three genes–retinol dehydrogenase 5 (RDH5),
retinaldehyde-binding protein 1 (RLBP1), and retinal pigment
epithelium–specific protein (RPE65)–are  known  to  be
associated with FA [7-10]. Retinitis punctata albescens has
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similar phenotypic characteristics but is progressive in nature
and is mostly caused by mutations in RLBP1 [8].

FA-causing mutations were first identified in RDH5,
which is expressed predominantly in the retinal pigment
epithelium (RPE) [7]. RDH5 encodes an enzyme that is part
of the visual cycle, which involves a series of specialized
enzymes and retinoid binding proteins that are essential for
the regeneration of the 11-cis retinal chromophore [11-14].
RDH5 consists of 318 amino acids and is highly conserved
among different species [15]. Within the RPE cells, RDH5
resides in the smooth endoplasmic reticulum [16] where it is
principally involved in chromophore regeneration by
catalyzing the final step in the biosynthesis of 11-cis retinal
[7,17-20].

The current study explores the molecular mechanisms
behind FA in Pakistani families, using high-density single
nucleotide polymorphism (SNP) microarrays and sequence
analysis of known FA genes located in the identified
homozygous regions. Using this approach, we identified two
novel mutations in RDH5 in two families with FA.
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METHODS
Approval of the study: Approval for this study was granted by
the Ethics Committee/Institutional Review Board of Shifa
College of Medicine/Shifa International Hospital, Islamabad.

Signed informed consent was obtained from members of both
families participating in the current study.

Family collection and clinical evaluation: Families A and B
(Figure 1) reside in remote areas of Pakistan and were part of

Figure 1. Pedigrees and sequencing results. A: Segregation of the mutation in family A. B: Segregation of the mutation in family B. C and
D: Sequence electropherograms of affected individuals carrying homozygous variants (upper panels) and unaffected heterozygous carriers
(middle panels) of families A (C) and B (D), along with the results of a control individual (wild-type [wt], lower panels). Arrows point to the
probands; individuals tested with single nucleotide polymorphism (SNP) microarrays are indicated with asterisks.
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a cohort of 83 families with retinitis pigmentosa and
associated retinal diseases. Blood samples were collected
from affected and normal individuals of both families and
DNA was extracted by a standard protocol [21]. Pedigrees
were drawn using Haplopainter [22]. Both families were
clinically evaluated by fundus examination; in addition,
electroretinography (ERG) measurements were recorded for
family A.
Homozygosity mapping analysis: All affected individuals
from both families and one healthy person from family B were
subjected to high-density HumanOmniExpress (>700 K;
Illumina Inc., San Diego, CA) single nucleotide
polymorphism (SNP) microarray analysis. Genotyping data
were analyzed with the online tool Homozygosity Mapper
[23]. Haplotypes of affected and normal individuals were
compared in each family to identify the identical homozygous
regions shared by all affected individuals.
Primer design and RDH5 sequence analysis: The online tool
Primer3 [24] was used to design PCR primers (Table 1). The
five exons of RDH5, including their flanking exon-intron
boundaries, were amplified by PCR using standard conditions
and reagents. PCR-amplified exonic fragments were
electrophoretically separated on 2% agarose gels containing
ethidium bromide and DNA bands were visualized under
ultraviolet transillumination. PCR clean-up purification plates
(NucleoFast® 96 PCR; Cat. No. 743100.10, Macherey-Nagel,
Düren, Germany) were used to purify the amplified fragments
according to the manufacturer’s protocol. Briefly, 20 µl of
each amplified PCR product was transferred to Nucleofast 96
PCR plate. Wells were filled up to 100 µl volume with RNase-
free water to ensure the uniform loading. Contaminants were
removed by ultrafilteration with the help of a vacuum
apparatus for 10 min. Thirty µl of RNase-free water was
poured in each well and DNA was recovered by thorough
mixing with a multi-channel pipette. Sanger sequencing was
then performed with Big Dye Terminator version 3 and
analyzed on a 3730 DNA analyzer (Applied Biosystems, Inc.,
Foster City, CA).

Vector NTI Advance (TM) 2011 software from
Invitrogen Corporation (Carlsbad, CA) was used to analyze
the sequencing results of RDH5 exons.
In silico analysis: Sorting Intolerant from Tolerant (SIFT),
Polymorphism Phenotyping v2 (Polyphen-2), and Mutation
Taster [25] were used to assess the possible pathological
nature of the missense variant identified in this study. Project

HOPE [26] was used to analyze and predict the structural
variations in mutant RDH5.

Amino acid conservation: RDH5 protein sequences from
different species including human (H. sapiens,
ENSP00000257895), macaque (M. mulatta,
ENSMMUP00000017380), mouse (M. musculus,
ENSMUSP00000026406), dog (C. familiaris,
ENSCAFP00000000084), cow (B. taurus,
ENSBTAP00000056512), cat (F. catus,
ENSFCAP00000012945), tetraodon (T. nigroviridis,
ENSTNIP00000022889), and round worm (C. elegans,
F35B12.2) were aligned using Vector NTI Advance™ 2011
to check the evolutionary conservation of the substituted
amino acid in RDH5.

RESULTS
Clinical studies: Initial symptoms of visual complaints in
patients from both families were observed from early
childhood. Fundus examination of affected individuals
revealed the presence of white dots typical of FA in the
midperiphery of the retina (Figure 2; Table 2). ERG responses
of cone and rod photoreceptors were diminished in affected
individual IV-1 of family A (Table 3). This individual had
daytime vision problems, which confirms that cone
photoreceptors were also affected. Macular degeneration was
also observed in individual IV-1 of family A and individual
IV-7 of family B. ERG results were not available for family
B. The visual acuity (VA) of affected individual IV-7 of
family B was different from the VAs of other individuals
(VI-2, VI-3) of this family, and the density of white dots was
also variable, which indicates intrafamilial phenotypic
variability. Affected individuals of family B had normal
daytime vision.

Genetic studies: In family A, three homozygous regions were
identified that were shared by the affected persons (Figure
3A). The largest homozygous region spanned 24.5 Mb (hg19:
3.3–27.8 Mb; flanked by SNPs rs4881131 and rs10764698)
on chromosome 10. The second and third homozygous
regions were 10.5 Mb (hg19: 46.4–56.9 Mb; flanked by
rs11183300 and rs7314300) and 8.1 Mb (hg19: 25.9–34.0 Mb;
flanked by rs9521585 and rs9555687) in length, and were
located on chromosomes 12 and 8, respectively. The second
largest region (10.5 Mb) on chromosome 12 harbored the FA-
associated gene RDH5. RDH5 sequence analysis identified a

TABLE 1. PRIMER SEQUENCES OF RDH5.

Exon Forward primer (5′-3′) Reverse primer (5′-3′) Amplified fragment length (bp)
1 CTAGGCAAATCTGGCCTCTG GGTCCACCTCAGAGTTGTGG 396
2 GGAAAGGGCTTGAGGGC GACTGTGGGGATCAGGACAC 450
3 CTCCCAGGAAGAAGAGGGAG CACCTCTGCTGGCCCAC 399
4 ATGTCCCTCAAAGTCCCCTC AGGCTTATGCAGGACTGGC 301
5 GGCCCCAGAAGACAGTACC CGTGCAGCTGTAGATGTGAG 589
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Figure 2. Fundus photographs of affected individuals from both families. A, B: Right and left eye, respectively, of affected individual IV-1
of family A (see arrow, Figure 1A). C, D: Right and left eye, respectively, of affected individual IV-7 of family B (see arrow, Figure 1B).
E, F: Right and left eye, respectively, of affected individual VI-2 of family B. G, H: Right and left eye, respectively, of affected individual
VI-3 of family B.
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novel homozygous 5 bp deletion (c.913_917delGTGCT;
p.Val305Hisfs*29) in family A (Figure 1C).

The mutation c.913_917delGTGCT (p.Val305Hisfs*29)
segregated in family A (Figure 1A) was consistent with an
autosomal recessive inheritance pattern. Both affected
individuals carried this mutation in a homozygous state, while
both parents and an unaffected brother carried this variant
heterozygously. The mutation causes a frameshift in the open
reading frame and results in the replacement of the last 14
amino acids of the RDH5 protein by 28 aberrant amino acids.
This mutation is predicted to affect part of the transmembrane
domain and elongate the cytosolic C-terminal tail. As this
deletion is located in the last exon of RDH5, nonsense-
mediated decay of the mutant mRNA is not predicted.

In family B homozygosity mapping revealed an 8.9 Mb
(hg19: 52.6–61.5 Mb) homozygous segment (Figure 3B)
flanked by SNPs rs1894035 and rs1395538, encompassing the
RDH5 gene. RDH5 sequence analysis revealed a novel
homozygous missense mutation (c.758T>G; p.Met253Arg) in
this family. Segregation analysis confirmed that all affected
individuals were homozygous for the mutation c.758T>G
(p.Met253Arg; Figure 1B), suggesting that this variant may
be disease causing. The methionine at position 253 is a highly
conserved amino acid residue among different species (Figure
4), and c.758T is an evolutionarily highly conserved
nucleotide with a phyloP score of 4.40. SIFT predicted
p.Met253Arg to be a deleterious (score: 0.05) mutation,
Polyphen classified this mutation as probably damaging
(score: 0.992), and Mutation Taster predicted this mutation to
be disease causing. Structural analysis showed that there was
a difference in charge and size of the wild-type Met253 and
the mutant Arg253. The wild-type residue is uncharged,
whereas the mutant residue is positively charged. The wild-
type residue is buried in the alpha helix and the mutant residue
introduces a charge in this buried residue in the core of the
protein or protein complex, which can lead to misfolding of
the protein. The mutant residue is bigger and probably will
not fit in the core of the protein. The hydrophobicities of the
wild-type and mutant residue also differ, and therefore, this
mutation is likely to cause the loss of hydrophobic interactions
in the core of the protein.

Ethnically matched control samples were not tested for
these mutations; however, neither variant was found in dbSNP
nor in 1000 Genomes.

DISCUSSION
In this study, we have identified two novel disease-causing
mutations in RDH5 in two unrelated consanguineous families
with FA. Both families exhibited typical FA, as was evident
from the presence of typical white dots in the midperipheral
regions of the retina. In both families, the older patients–IV-1
in family A and IV-7 in family B–had macular degeneration,
which might suggest a progressive disease course in these
families.

Including our findings, 36 different mutations in RDH5
associated with FA have been identified to date [7,27-48]. FA
patients carrying RDH5 mutations exhibit high phenotypic
variability, ranging from nonprogressive to progressive
disease, a variable VA, variation in the density of white dots,
and occasionally macular involvement. FA with or without
cone dystrophy has also been reported with varying degrees
of severity [30,37,48]. A total of 85 FA patients from 68
different families carrying RDH5 mutations have been
identified globally (Table 4, Table 5, and Table 6). These
persons were found to exhibit a high variability in phenotype,
but the presence of white dots was a common feature. In
comparing the different phenotypes and genotypes associated
with RDH5, it is difficult to establish a valid and clear-cut
genotype-phenotype correlation.

RDH5 is a transmembrane enzyme with a membrane-
embedded N-terminal domain, a catalytic ectodomain, a C-
terminal transmembrane domain, and a cytosolic tail [16]. The
topology of retinol dehydrogenases has been controversial as
human retinal reductase 1 [49] and mouse retinol
dehydrogenase 1 [50] have been reported to have a membrane-
embedded N-terminal domain but no C-terminal
transmembrane segment, which supports the presence of a
cytosolic ectodomain. RDH5 was suggested to have a
cytosolic ectodomain without any C-terminal transmembrane
domain [50]. However, another retinol dehydrogenase, cis-
retinol/androgen dehydrogenase 1 (CRAD1), has been
described in detail to have a RDH5-like structure with both a
luminal ectodomain and cytosolic C-terminal domain, and a
similar topology has been suggested for most of the retinol

TABLE 2. CLINICAL FEATURES OF AFFECTED INDIVIDUALS IN BOTH FAMILIES.

Individual Age (years) VA (RE, LE) Fundus phenotype RPE degeneration Retinoscopy
Family A, IV-1 35 6/12, 6/12 White dots, macular degenerative

changes
Yes Not determined

Family B, IV-7 45 6/18, 6/12 White dots, macular degenerative
changes

Yes Hypermetropia

Family B, VI-2 17 6/6, 6/6 White dots, macula healthy No Low hypermetropia
Family B, VI-3 10 6/6, 6/6 White dots, macula healthy No Low hypermetropia

          LE, left eye; RE, right eye; RPE, retinal pigment epithilium; VA, visual acuity.
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dehydrogenases [51]. The frameshift mutation
p.Val305Hisfs*29 identified in family A is located in the C-
terminal transmembrane domain, while the missense mutation
p.Met253Arg is located in the catalytic ectodomain of RDH5
(Figure 5). As the C-terminal transmembrane region is
necessary to retain CRAD1 in the endoplasmic reticulum
[51], the RDH5 mutation p.Val305Hisfs*29 might affect the
endoplasmic reticulum localization of RDH5. Moreover, an
elongated C-terminal cytosolic tail might also create problems
in the proper functioning of RDH5, as the C-terminus is

thought to play a role in enzymatic activity and localization
of CRAD1 and RDH5 [51].

Structural analysis of RDH5 performed with Project
HOPE suggests that the missense mutation p.Met253Arg may
cause misfolding of the RDH5 protein because of the loss of
hydrophobic interactions in the core of the mutant protein.
Misfolding of the mutant protein may cause it to degrade
[52-54]. Absence of RDH5 leads to the accumulation of 11-
cis retinol [20] in the RPE, and a reduction of 11-cis retinal in

Figure 3. Homozygosity mapping
results. A: Plot of homozygous regions
identified in affected individuals in
family A using Homozygosity Mapper
analysis. B: Plot of homozygous regions
identified in affected individuals in
family B using Homozygosity Mapper
analysis. The red lines indicate
homozygous regions shared by affected
individuals in each family. The arrows
indicate the homozygous regions that
harbor RDH5.

Figure 4. Amino acid conservation of
amino acids 245–260 of RDH5 in
different species. Gray shading
indicates amino acids that are identical
to human RDH5 amino acids.
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the photoreceptors, which in turn might result in the
malfunctioning of rod and cone photoreceptor cells.

RDH5-associated disease can be prevented with proper
genetic counseling of carriers of RDH5 mutations, and
persons with this disease can be treated with 9-cis-β-carotene
supplementation. Rdh−/− mice were successfully treated with
9-cis retinal [55], and 9-cis-β-carotene was given to FA
patients leading to major visual improvements [56]; 9-cis-β-
carotene is converted to 9-cis retinal [57,58], which is more
stable than 11-cis retinal [59]. The higher stability of opsin
bound to 9-cis retinal slows down the visual cascade and thus
minimizes the toxicity of accumulating by-products in the
visual cycle [55,60,61]. In the rod-photoreceptor outer
segments 9-cis retinol will be converted to all-trans retinal
during bleaching. This is subsequently reduced to all-trans
retinol and, in the RPE, all-trans retinol is isomerically
converted to 9-cis, 11-cis, and 13-cis retinol. A stereospecific
enzyme, 9-cis retinol dehydrogenase, is reported to be
involved in the synthesis of 9-cis retinoic acid by oxidizing 9-
cis retinol [62], and 9-cis retinal treatment is suggested to
induce the endogenous synthesis of 11-cis retinal by its
interaction with the retinoid X nuclear receptor [56,59,63].

Based on our and other studies, we estimate that FA
contributes to approximately 2% (4/208) of families with
retinal dystrophy in Pakistan and a total of 17 patients have
been identified with FA [9]. Two FA families have been
reported to carry RLBP1 mutations [9], while two other
families with FA have RDH5 mutations (this study). In the
current study, we have identified seven additional FA patients
who are candidates for 9-cis-β-carotene therapy.

In conclusion, we have identified two novel disease-
causing mutations,   c.913_917delGTGCT
(p.Val305Hisfs*29) and c.758T>G (p.Met253Arg),  in   two
Pakistani families with FA. Our study expands the current
mutation spectrum of RDH5 and contributes to the existing
body of knowledge. In addition, this study will help clinicians
to improve the diagnosis of FA by differentiating FA from
retinitis punctata albescens, providing genetic counseling and
prescribing the correct treatment to patients.
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