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Abstract: Diabetes mellitus (DM) has been associated with cognitive complications in the brain
resulting from acute and chronic metabolic disturbances happening peripherally and centrally.
Numerous studies have reported on the morphological, electrophysiological, biochemical, and
cognitive changes in the brains of diabetic individuals. The detailed pathophysiological mechanisms
implicated in the development of the diabetic cognitive phenotype remain unclear due to intricate
molecular changes evolving over time and space. This review provides an insight into recent
advances in understanding molecular events in the diabetic brain, focusing on cerebral glucose and
insulin uptake, insulin action in the brain, and the role of the brain in the regulation of glucose
homeostasis. Fully competent mitochondria are essential for energy metabolism and proper brain
function; hence, the potential contribution of mitochondria to the DM-induced impairment of the
brain is also discussed.
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1. Introduction

Diabetic encephalopathies are accepted complications of DM [1]. Area-specific struc-
tural changes in the brains of diabetic patients, e.g., significantly reduced volumes of the
hippocampus and prefrontal brain regions, higher rates of global cerebral atrophy, or the
loss of white matter volume in the temporal lobe and inferior frontal triangle region, are the
most significant changes reported by observational studies [2,3]. These changes co-occur
with moderate alterations in the neurochemical profiles of N-acetyl aspartate, glutamate,
myo-inositol, and choline in the white or grey matter of DM individuals and may be
associated with impaired cognitive functioning [4]. The extent of metabolic (Figure 1) and
cognitive alterations is determined by the interaction between disease and sensitivity of the
brain to either a developmental phase (type 1—T1DM) or age (type 2—T2DM). The most
evident decrement in T1DM patients is in the areas of general intelligence, psychomotor
speed, mental flexibility, memory, and poor school performance. A cognitive change across
the lifespan is greatest in those with an early onset of diabetes (under 6 years old) but
the rate of further cognitive decline is slow—at least during the first 10 to 15 years after
diagnosis [5]. Chronic hyperglycemia, microvascular complications, or recurrent episodes
of hypoglycemia increase the risk of poorer cognition in older (>50 old) adults [6]. In T2DM,
older adults most often show evidence of slowed information processing and poorer execu-
tive functions, and typically verbal and visual memory dysfunction, an impairment rarely
associated with T1DM [7]. In elderly patients (>65 old), T2DM is associated with more
severe forms of cognitive impairment. A recently published meta-analysis of 14 studies
comprising over 2.3 million individuals and 102,000 cases of dementia concluded that indi-
viduals with T2DM are at a 60% greater risk of developing dementia compared with those
without DM [8]. Whereas T2DM multiplies the risk of vascular dementia, the increased
risk of Alzheimer’s disease is still controversial [9,10].
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Figure 1. Key molecular events involved in the development of diabetic encephalopathy. Chronic
hyperglycemia induces vascular injury, mitochondrial dysfunction, oxidative stress, neuroinflam-
mation, dysfunction of the HPA axis, impairment of repair processes, reduced disposal of metabolic
waste products, and activates apoptotic processes. The processes culminate in damage to the cerebral
structure, neurodegeneration, and the manifestation of clinical symptoms. AGE, advanced glycation
end products; SOD, superoxide dismutase; KAT, catalase; GSH, glutathione; HPA, hypothalamic–
pituitary–adrenal axis.
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Likewise, the results of multivariate analyses scoring the impact of prediabetes and
metabolic syndrome on cognitive performance are controversial, but metabolic syndrome
or impaired fasting glucose may be a risk factor for cognitive dysfunction [11]. Despite
intensive research, detailed knowledge of factors and cellular mechanisms contributing to
the development of the diabetic cognitive phenotype remains extremely difficult because of
the multifactorial and chronic character of the disease and the biomedical and psychosocial
heterogeneity of diabetic individuals.

In this work, recent advances in understanding the pathophysiological mechanisms
of DM-linked impairment of the brain are reviewed. The work does not attempt to be
fully comprehensive; it is aimed at the most important and interesting aspects of cellular
processes that can progress to brain dysfunction and cognitive decline. Glucose is an
essential energy source for the brain; thus the first section deals with cerebral glucose
uptake and the participation of the brain in the regulation of glucose homeostasis. In the
next section, attention is given to insulin and its role in the brain. Proper mitochondrial
function is an inevitable prerequisite for the physiological functioning of the neurons, hence
a potential contribution of mitochondria to CNS damage under diabetes is also discussed.

2. Cerebral Glucose Uptake in Diabetes

In healthy individuals, the brain glucose level rises in a linear fashion with a rising
plasma glucose level [12]. Glucose uptake into the brain depends on two key factors: on the
concentration gradient between glucose in the blood–brain interstitium and the expression
of GLUT1, the key glucose transporter for transport across the blood–brain barrier (BBB).
Its endothelial protein concentration is regulated by circulating glucose concentrations,
and it is under both transcriptional and post-transcriptional control [13]. The largest
proportion of glucose enters astrocytes due to the release of a neurotransmitter, namely,
glutamate. According to the astrocyte–neuron–lactate shuttle model, astrocytes respond
to glutamatergic activation and Na+-dependent uptake of glutamate from the synaptic
cleft into astrocytes by increasing the rate of glucose uptake to meet the energy demands
of activated Na+/K+ ATPase. The increased glycolytic flux results in the production and
release of lactate from astrocytes, which is then available as a fuel for neurons [14]. Neurons
can also absorb glucose via the GLUT3 transporter and metabolize it in the process of
glycolysis and oxidative phosphorylation [15]. GLUT3 is often co-expressed with the
insulin-sensitive glucose transporter GLUT4 that is involved in local ATP production for
firing neurons [16]. Na+–glucose cotransporters SGLT are also of physiological importance
to cerebral glucose transport, e.g., SGLT1 in the BBB may be involved in the adjustment
of glucose concentration in the brain interstitium. High expression of SGLT1 was also
observed in brain areas involved in learning, memory formation, energy expenditure,
feeding behavior, and regulation of glucose homeostasis [17]. Furthermore, additional
transporters may also participate in glucose uptake into the brain.

In DM, blood glucose fluctuations are a typical feature that might affect glucose uptake
into the brain by modifying transporter expression, transport kinetics, or BBB permeability.
Adequate conclusions are currently lacking, as the studies struggle with controversial
results, probably due to the large heterogeneous cerebral microvascular bed. Generally,
the glucose transport to the brain is regulated in the endothelial capillary wall of the
BBB in response to neuronal activity and involves regulation of blood supply, adjustment
of driving forces for transport, and regulation of the expression of glucose transporters.
Some evidence suggests a key role for the transcription factor HIF-1α in normal glucose
metabolism [18]. Earlier animal studies have suggested that chronic hyperglycemia de-
creased glucose transport into the brain due to the downregulation of GLUT1 at the BBB,
while others indicated no changes. Some investigators have observed an apparent dis-
cordance between the abundance of GLUT1 mRNA and protein in the BBB, suggesting
a DM-induced defect in the transporter translation [19]. It is well known that obesity is
a risk factor for insulin resistance and DM. High-fat (HF) diet experiments showed that
short-term HF feeding led to the suppression of brain glucose uptake in mice due to the
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saturated fatty acid-induced impairment of GLUT1 activity and GLUT1 downregulation in
the BBB. Surprisingly, prolonged feeding restored the transporter expression parallel with
an increase in expression of vascular endothelial growth factor (VEGF) in macrophages
at the BBB [20]. Increased VEGF production may represent a compensatory effect aimed
at restoring cerebral glucose metabolism and preventing cognitive dysfunction and neu-
rodegeneration. This adaptive response probably involves multiple mechanisms, such as
inflammatory signals from perivascular macrophages or a reduction in parasympathetic
tone, which is well known to contribute to the activation of inflammation in obesity [21].

Reduced brain glucose uptake associated with impaired glucose tolerance and insulin
resistance has also been observed in mice with brain-specific knockout of the insulin-
dependent GLUT4 transporter, suggesting a role for the transporter in the homeostatic
regulation of glucose [22].

In humans, studies focusing on T1DM have observed similar glucose uptake and
cerebral concentrations under normo-, hyper-, and hypoglycemic conditions, indicating that
the glucose-dependent regulation of GLUTs seems to be intact [23]. Measurement of glucose
levels in the brain of obese individuals and T2DM by magnetic resonance spectroscopy
noticed an impaired cerebral energy gain upon a glucose load in these individuals [24].
Lower brain glucose increments were also noticed in the occipital lobe in participants
with obesity and poorly controlled T2DM in response to acute hyperglycemia invoked by
hyperglycemic clamp [25]. In view of these findings, a blunted rise in brain glucose levels
in T1DM, T2DM, and obese subjects might represent an adaptive response of the brain
aimed at decreasing glucose entry to prevent hyperglycemia-induced adverse effects.

Notably, there may be regional differences in cerebral glucose uptake due to heteroge-
neous brain architecture and area-specific functions. Thus, further studies focusing on brain
regions involved in energy homeostasis, food intake, or cognitive functions are needed to
gain more insight into brain glucose uptake under diabetes and other metabolic diseases.

3. Brain Role in Maintenance of Glucose Homeostasis

The islet-centered view of the control of glucose homeostasis via the insulin action
on insulin-sensitive tissues and the key role of the liver to govern blood glucose represent
the canonical explanation of regulatory mechanisms of glucose homeostasis in the body.
However, recent research brings growing evidence of more complex regulation of systemic
glucose. This regulation employs a highly coordinated interplay between the brain glu-
coregulatory system and pancreatic islets to set normal glucose levels. This circuit system
can modulate blood glucose levels by both insulin-dependent and insulin-independent
mechanisms [26,27].

3.1. Insulin-Dependent Mechanism

In the direct mechanism (Figure 2), the brain can govern adaptive responses to modu-
late systemic glucose. As evidenced by animal experimental approaches, administration
of glucose either through the 3rd ventricle, the arcuate nucleus, or the brain vascula-
ture without changing systemic glycemia led to the activation of hypothalamo-hepatic
and hypothalamo–pancreatic axes and physiological responses, such as glycogenesis and
insulin secretion [28,29]. Alike, insulin infusion into the 3rd cerebral ventricle of rats
suppressed hepatic glucose production independent of circulating levels of insulin and
other glucoregulatory hormones [30]. However, insulin infusion into hypothalamic areas
with the knockdown of insulin receptors failed to suppress the glucose production in the
liver [31].
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Figure 2. Simplified overview of insulin and leptin signaling. Insulin triggers activation of
AKT in the metabolic arm, which modulates antioxidant defense, memory function, and growth-
or cytokine-induced inflammation. Leptin after binding to its receptor (LR, long isoform) acti-
vates gene expression via phosphoinositol 3 kinase (PI3K), an activator of transcription (STAT3),
and extracellular signal-regulated kinase (MAPK/ERK) pathways. IR, insulin receptor; IDE,
insulin-degrading enzyme; GLUTs, glucose transporters; GSK3, glycogen synthase kinase-3; PDK1,
3-phosphoinositide-dependent protein kinase; SHP2, sulfhydryl-domain containing protein tyrosine
phosphatase; TAU, tau protein.
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Non-hypothalamic brain regions also seem to be involved in the extrahepatic control of
glucose production because insulin-activated Erk1/2 signaling in the dorsal vagal complex
of the hindbrain resulted in the suppression of hepatic glucose production [32]. Brain
participation in hepatic glucose production was also assumed in the TLKO mice, the model
of the liver-specific deletion of key signal transduction molecules AKT and FOXO1. In
this model, hepatocytes are unable to respond to the direct effect of insulin, but systemic
administration of insulin constrained hepatic glucose production, thus pointing to an extra-
hepatic effect of insulin [33]. Another piece of evidence for a neuronal circuit regulating
blood glucose was added following experimental findings of unchanged glucose tolerance,
decreased insulin secretion, but increased insulin sensitivity in cold-exposed rats [34].

These findings support the hypothesis that pancreatic islets operate with a high degree
of autonomy under physiological conditions, so a brain intervention required to regulate
glucose homeostasis is minimal. As pathological inputs deviate the glucose level out of
normal range, the role of the brain becomes more evident, and activation of the brain’s
homeostatic function ensures glucose availability as the energy source.

3.2. Insulin-Independent Mechanism

In addition to direct insulin-dependent regulation, the brain appears to have the ability
to regulate blood glucose levels independently of insulin. The idea of insulin-independent
regulation of blood glucose came from observations of the antihyperglycemic action of
the adipocyte hormone leptin. The hormone is able to inhibit food intake and increase
energy expenditure and glucose uptake in muscle and brown adipose tissue to suppress
the production of glucagon and corticosterone or inhibit hepatic glucose output (for more
detail, see [35]). The pleiotropic effects of leptin on various tissues suggest that modulation
of a single pathway is insufficient to restore glucose homeostasis. Once bound to receptors,
the leptin effects may be inhibitory or stimulatory and may be partly mediated by direct
leptin signaling (Figure 2) within peripheral tissues. However, the ability of leptin to
lower blood glucose appears to be mediated primarily by neuronal pathways within the
CNS, particularly in the hypothalamus, as well CNS-mediated effects on the periphery.
Amelioration of glycemic control during four months of leptin therapy in patients with DM
and severe lipodystrophy has been reported [36]. In T1DM models, adenoviral-induced
hyperleptinemia corrected severe hyperglycemia, despite the absence of insulin, via sup-
pressing glucagon action in the liver and enhancing the insulinomimetic action of the
insulin-like growth factor in muscle [37]. The continuous infusion of leptin at supraphysio-
logical doses directly into the brains of T1DM rats led to blood glucose normalization [38].
When leptin administration was stopped, hyperglycemia was quickly reestablished in the
absence of changes in insulin, indicating the central effect of leptin on the modulation of
glucose metabolism [39]. Of note, severe insulin deficiency is associated with severe leptin
deficiency, whereas insulin treatment reverses hypoleptinemia [40]. Given the positive
insulin–leptin relationship, high levels of leptin are required to compensate for severe in-
sulin deficiency. Thus, central leptin infusion clearly points to the brain’s participation in the
maintenance of glucose homeostasis by activating brain leptin receptors and cellular signal
pathways. The detailed cellular mechanisms of the central antidiabetic effect of leptin are
still elusive. It was proposed that binding the hormone to its receptor activates three main
signaling pathways (Figure 2): (a) insulin receptor substrate 2/phoshatidylinositol 3-kinase
(IRS2/PI3K), (b) SH2-containing protein tyrosine phosphatase 2/MAPK (SHP2/MAPK),
and (c) signal transducer and activator of transcription (STAT3) pathways [41]. Stimulation
of the SHP2/MAPK pathway may be critical in modulating glucose metabolism because
SHP2 deficiency in proopiomelanocortin (POMC) neurons abolished leptin’s ability to re-
duce blood glucose levels [42]. Moreover, an intact brain melanocortin system, particularly
POMC neurons and melanocortin 4 receptors, is inevitable with the chronic antidiabetic
effects of leptin as well as counterregulatory responses to hypoglycemia [43]. The role of
the autonomic nervous system was also suggested since skeletal muscle denervation and
adrenergic receptor blockade significantly attenuated leptin-induced increases in peripheral
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glucose uptake [44]. The involvement of the hypothalamic–pituitary–adrenal (HPA) axis
was also investigated but hypophysectomy did not prevent or attenuate leptin’s anorexic
and antidiabetic effects in streptozotocin-diabetic rats [45].

An increased interest in the brain participation in glucose homeostasis regulation was
boosted by observations of the unexpected glucose-lowering effects of the fibroblast growth
factors FGF1, FGF19, and FGF21 in obese and diabetic animals. The ability of FGFs as
hormones with autocrine, paracrine, or endocrine effects to trigger signaling in the brain
depends on their local expression, the presence of their receptors, or their ability to cross
the blood–brain barrier. While FGF1 and the FGF receptors are differentially expressed
in several parts of the brain, no expression of FGF19 and FGF21 has been found in the
brain so far [46]. FGF19 is kept mainly in the circulation, but FGF21 can easily enter the
brain [47]. It was shown in T1DM rat models that intracerebroventricularly administered
FGF1 and FGF19 suppressed the HPA axis, resulting in a 60% reduction in hepatic glucose
production, hepatic acetyl CoA content, whole-body lipolysis, and a decrease in plasma
ACTH and corticosterone concentration. These effects were abrogated by an intra-arterial
infusion of corticosterone [48]. Another study [49] also reported that a low dose of FGF1
administered intracerebroventricularly resulted in sustained diabetes remission in mouse
and rat models of T2DM, but it did not reduce corticosterone levels, suggesting that the
role of the HPA axis in diabetes remission is questionable. Since FGFs can be induced by
multiple forms of mitochondrial dysfunction, they have been suggested to be mitokines [50].
Mitokines are hypothesized to be involved in the non-cell-autonomous signaling pathway
aimed at activating the mitochondrial unfolded protein response, part of the integrated
stress response directed to restore perturbed cell homeostasis. The role of FGFs in the
central regulation of glucose homeostasis is surely interesting, but full significance will
only become apparent in the future.

In summary, evidence suggests that glucose homeostasis is governed by a neuromodu-
latory circuit, in which the brain, islets, and peripheral tissues work in cooperation to adjust
and regulate glycemia. In order for the system to work properly, intact brain sensing of the
circulating glucose must be preserved [51]. A defect in the brain sensing of blood glucose
can alter the circuit balance and set higher blood glucose levels (hyperglycemia) to ensure
the energy requirements of the brain. It is likely that every part of the circuit disposes of
potential, partially compensating for the failure of the other; however, the capacity overload
of the system can result in its inability to maintain the physiological range of blood glucose,
leading to diabetes.

4. Insulin and the Brain

As mentioned in the previous section, the brain insulin-dependent mechanism governs
glucose homeostasis. To do this, insulin must enter the CNS and activate cellular signaling
pathways. Despite a debate regarding local synthesis in the brain, brain insulin originates
predominantly from the periphery, where its level fluctuates depending on physiological
or pathological states. The restricted permeability of the BBB and the size of the molecule
do not allow insulin to enter the CNS directly. It enters the brain mostly through receptor-
mediated transcytosis after binding to insulin-binding sites of the BBB endothelial cells [52].
The insulin transport is not uniform between brain regions but varies depending on
requirements and the number of insulin receptors (IRs) in these regions [53].

It is not clear whether the insulin transporter is a separate protein or a classic receptor.
The receptor can exist in A and B isoforms [54]. Both isoforms have a similar binding
affinity for insulin but insulin-like growth factor 2 (IGF-2) and proinsulin are bound only
by IR-A. IR isoforms can also form hybrid heterodimers with the IGF-1 receptor (IGF-1R)
and can have varying post-translational modifications leading to further diversity of in-
sulin action [55]. Brain neurons appear to predominantly express the IR-A isoform, which
mediates mostly non-metabolic effects, such as those implicated in motivating, rewarding,
learning, and memory [56]. In contrast, astrocytes express the IR-B isoform, which partic-
ipates in metabolic effects. Astrocytic IR ablation reduces glucose-induced activation of
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hypothalamic POMC neurons and impaired physiological responses to changes in glucose
availability, demonstrating that astrocytic IRs are required for glucose and insulin entry
through the BBB [57].

Different roles of the IR isoforms appear not to be exclusive determinants of in-
sulin/IGF actions. Evidence suggests that both the IR-A/IR-B ratio and hybrid receptors
may play an important role in final effects triggered by hormone binding. The IR expression
is tightly regulated at three molecular levels by mechanisms not to be fully understood
yet. IR regulation takes place at the promoter level in a developmental- and tissue-specific
manner [58] at a posttranscriptional level by translation regulation of internal ribosome
sites and alternative splicing of pre-mRNA and by microRNAs [59]. The relative protein
abundance of the IR isoforms is set by differences in maturation processes that engage
different convertases acting in the Golgi compartment [60]. Additional levels of complexity
in IR regulation incorporate, for example, mechanisms of internalization and degradation
of hormone-occupied receptors or binding of different proteins to IRs [61,62]. To illustrate,
an increase in the IR-A isoform due to increased endocytosis and degradation of total
IR protein or increase in hybrid receptors was observed at peripheral tissues in obesity,
diabetes, cancer, or aging [63,64]. In the brain, the highest distribution of the IRs and IGF-1R
was found in the olfactory bulb, hypothalamus, cortex, cerebellum, and hippocampus.
Experimental and clinical studies have already reported on reduced levels of IRs, IGF-1
receptors, and central insulin resistance in DM and AD subjects, but data on the shift in
the ratio of the IR-A/IR-B and hybrid receptors in the CNS are still missing [65]. Thus,
alterations in the IR-A/IR-B ratio and hybrid receptors may be assumed to contribute
to central insulin resistance, unbalanced insulin/IGF signaling, development of diabetic
cognitive phenotype, and neurodegeneration.

Endothelial IRs are considered to be a key entry point for insulin into the brain, hence
their role in insulin transport and signal cascade has been studied on several experimental
levels. The initial studies in brain capillaries have brought evidence of the reduced IRs in
obesity and hyperinsulinemia as well as increased endothelial binding and insulin transport
through the BBB in experimental-induced DM [66,67]. Later studies in several genetic
models with knockout receptors have found that the loss of IRs and IGF-1Rs on vascular
endothelial cells (VENIRKO, VENIFARKO mice) did not disturb the structural integrity of
the BBB [68]. In EndoIRKO mice, however, the loss of endothelial IRs led to delayed onset
of receptor activation in the periphery, in the hypothalamus, hippocampus, and prefrontal
cortex, suggesting impaired insulin delivery through the vascular barrier as well as central
insulin resistance. Intact insulin signaling was sustained in the olfactory region, suggesting
the hormone’s ability to circumvent the BBB and reach the brain [69]. It has been shown in
T1DM-rats or AD mouse models that both acute and chronic intranasal insulin treatment
reduces β-amyloid levels and repairs insulin signaling through the downregulation of tau
kinases and alleviates cognitive deficits [70]. Currently, the intranasal approach is being
used in short-term clinical trials to test improvements in brain energy levels, memory,
and cognition deficits, but its long-term effect on energy and systemic metabolism is
unclear [71,72].

Findings from endothelial cell cultures also indicate that IRs participate in insulin
transcytosis, but the transport may be affected by specific factors and conditions, e.g.,
L-glutamate, inhibition of NO-synthase, high-fat diet, hypertriglyceridemia, or elevated
plasma levels of the intestinal hormone cholecystokinin [73–75]. Some studies also point to
insulin transport by the IR-independent transport and by alternative routes [76,77].

Besides acting as insulin transporters, IRs can also operate as classical signal transduc-
tion receptors and affect the BBB permeability by modulating the expression/activity of
transmembrane proteins involved in the formation of brain endothelial junction complexes.
Increased BBB permeability has been reported in experimental diabetic animal models [78].
Insulin also impacts various transporters in the BBB, as the receptor for advanced glycation
end products, low-density lipoprotein receptor-related protein 1, ATP-binding cassette
transporter family members, and those regulating the efflux of β-amyloid peptide out of
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the cerebral tissue, suggesting its implication in the development of Alzheimer’s pathol-
ogy [79,80]. In AD patients, reduced insulin levels in the brain and cerebrospinal fluid
(CSF), despite elevated plasma insulin levels, insinuate impaired transport of insulin across
the BBB [81]. In those and DM patients, the decreased CSF insulin levels correlate with
poorer cognitive performance [82]. Of note, the levels of insulin in the CSF and circulation
are closely correlated with whole-body insulin sensitivity in insulin-sensitive humans but
not in insulin-resistant humans [83]. The CSF/plasma insulin ratio is reduced in obesity,
and age-dependent changes in the ratio are also observed in the elderly [84].

Fully functional astrocytic IRs are also required for appropriate insulin and glucose
entry into the brain. Proper insulin signaling in astrocytes plays a key role in effective
hypothalamic neuronal responses and regulation to appropriately counteract fluctuations
in systemic glucose availability. Insulin action in astrocytes also regulates gliotransmission
and modulates behavior [85].

Recent research has started to reveal the complex role of IRs in the CNS, though many
issues still need to be addressed. Deciphering the role of the brain IRs in detail will provide
the opportunity to modulate IR activity in a personalized and disease-specific context
and will open a new avenue in the treatment of diabetic encephalopathology and other
CNS pathologies.

5. Insulin–Mitochondria–ROS Interplay

Insulin action is inevitably linked to proper mitochondrial function, and, not surpris-
ingly, aberrant mitochondria in the brain are connected to insulin resistance, metabolic
syndrome, diabetic encephalopathies, neurodegenerative diseases, and aging. Alterations
in electron transfer chain (ETC) function, energy metabolism [86], mitochondrial biogen-
esis, and fission [87], or an evident positive effect of insulin sensitizers on mitochondrial
functions [88], are the most reported observations in many diabetic, obesity, or neurode-
generative studies and point to insulin–mitochondria interplay. One insulin–mitochondria
interaction is “redox priming” as an intermediate phase in which oxidative modifications
of sensitive cysteine residues facilitate insulin-induced receptor autophosphorylation. In
neurons, insulin stimulation has been shown to generate a spike in mitochondrial H2O2
and this signal preceded activation of the IRs [89]. Although IR autophosphorylation
seems to be insulin-dependent in nature, it did not occur until the H2O2 signal exceeded
the threshold, even in the presence of high insulin concentrations. Moreover, the signal
was ultra-sensitive to H2O2 scavenging, suggesting that a pathological increase in H2O2
scavenging antioxidant enzymes may also limit insulin signaling in the brain. Since IRs
are concentrated at synapses that become enriched with mitochondria in the period of
synaptic activity, a disturbance in the redox activation of IRs may represent another factor
contributing to insulin resistance and cognitive impairment.

Any exogenous or endogenous stresses can perturb mitochondrial function, ROS
production and ultimately impact brain energy metabolism. Neurons are especially vulner-
able to mitochondrial stress since the energy stress-induced diversion of the physiological
metabolic program of preferential utilization of glucose for regeneration of glutathione
in the pentose phosphate cycle to the glycolytic pathway can weaken the antioxidant
defense of neurons [90,91]. The hypothesis of excessive ROS production in DM is widely
supported by evidence of damage to proteins, lipids, and DNA [92–94]. However, a signifi-
cant decrease in mitochondrial membrane potential (∆ψm), mitochondrial respiration, the
enzymatic activities of the respiratory chain, and energy levels were reported in the cortex
and hippocampus of diabetic rodent models [86,93,95], diabetic sensory neurons [96], or
diabetic islets from humans and rodent models [97,98]. On the contrary, increased ROS
signaling and membrane hyperpolarization have been found in peripheral diabetic cell
cultures [99]. Considering a widely accepted idea of a positive correlation between mito-
chondrial ROS production and ETC activity/∆ψm, published experimental data appear to
be less conclusive. Besides numerous variations in experimental design, this inconsistency
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probably reflects many pitfalls of ROS measurement, especially in clearly assigning their
origin to mitochondria [100].

Mitochondria are an integral part of the cellular network of adaptive and defensive
responses aimed at sensing and adapting to alterations in nutrient supply or at limiting
oxidative damage. In the brain, the expression and distribution of uncoupling proteins
(UPCs) UCP2, UCP4, and UCP5 were induced by metabolic and oxidative challenges,
suggesting the relevance of mitochondrial uncoupling to the control of neuronal, neu-
roendocrine, and autonomic responses [101]. Within these proteins, UCP2 is expressed
abundantly in various brain areas and its key role in neuroprotection, the development
of cognitive ability, resistance to anxiety, or hippocampal monoamine transmission, has
been suggested [102,103]. The UCP2 uncoupler appears to be an important negative regu-
lator of β-cell insulin secretion on the periphery, suggesting its role in the loss of glucose
responsiveness in obesity-related T2DM [104]. Interestingly, the allele combination of
IGF1R/IRS2/UCP2 was associated with a decreased all-cause mortality risk and with in-
creased longevity, suggesting the combined effect of these genes on energy metabolism and
the age-related metabolic remodeling capacity [105]. Observation of the downregulated
UCP2 expression in rat T2DM hippocampus also indicates that its neuroprotective effect
might be absent from the diabetic brain [106]. Genipin-induced inhibition of UCP2 activity
not only downregulated its protein expression and enhanced ROS production in mice’s
primary cortical neurons exposed to glucose fluctuation but also reduced mitochondrial
biogenesis and led to the loss of neuronal synaptic integrity and cell viability. Concomi-
tantly, inhibition of UCP2 function and the increase in metabolic and oxidative stress were
compensated for with increased UCP4 expression, pointing to activated mitochondrial
hormetic responses to uphold cell survival [107].

The insulin–mitochondria interplay is apparently observable in the processes of acti-
vating the mitochondrial stress response, as described in the next section.

6. Mitochondrial Proteostasis in the Diabetic Brain

Metabolic disturbances in DM, such as ETC dysfunction, ROS-mediated oxidative
stress, or neuroinflammation invade cellular and mitochondrial proteomes. When the pro-
teome alters its properties, damaged and misfolded proteins and unassembled precursors
can accumulate and provoke proteotoxic stress. In response to mitochondrial proteotoxic
stress, the cell activates an adaptive program referred to as the mitochondrial unfolded
response (UPRmt). The program, as a component of the cellular stress response pathways,
represents the signaling pathway where various stress stimuli, such as misfolded and
accumulated proteins, mitochondrial DNA mutations, inhibition of mitochondrial chap-
erones and proteases, alterations in mitochondrial dynamics, or metabolic and oxidative
stress, elicit a nuclear transcriptional response to reestablish cellular and mitochondrial
homeostasis [108]. Of note, several mitochondrial stress responses can be induced by other
factors without any apparent connection with mitochondrial protein misfolding. A certain
degree of similarity to the UPRmt can be present in these responses due to overlapping
pathways, suggesting the complex nature of stress response regulation [109]. Transcription
of stress-induced target genes seems to be epigenetically modulated by histone 3-specific
methylation and since DNA methylation and histone posttranslational modifications differ
in specific brain regions, the UPRmt may also differ in distinct types of neuronal cells [110].
Proper activation of the UPRmt supports metabolic health and increases the lifespan;
however, if sustained chronically it can lead to disease, including obesity, T2D, and neu-
rodegenerative disorders. The coordinated action of the three UPRmt axes, the canonical
ATF4/5, Erα, and SIRT3 axis (Figure 3), after activation leads to increased production of
chaperons, protein folding, antioxidant capacity, and protein quality control [111].
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Figure 3. The mammalian UPRmt axes. Various UPRmt activators initiate gene expression via the
ATF4/5, Erα, and SIRT3 branches. Triggered signaling pathways lead to a number of mitoprotective
outcomes aimed at restoring mitochondrial homeostasis. ATF4/5, activating transcription factor 4/5;
ERα, estrogen receptor alpha; DRP1, dynamin-related protein 1; FIS1, mitochondrial fission 1 protein;
FOXO3, forkhead box protein O3; HTRA2, HtrA serine peptidase 2; MFN2, mitofusin 2; NRF1, nuclear
respiratory factor 1; OPA1, mitochondrial dynamin-like GTPase; PGC1α, peroxisome proliferator-
activated receptor-gamma coactivator-1 α; SIRT3, sirtuin 3; TFAM, mitochondrial transcription
factor A.

The upregulation of mitochondrial chaperones and co-chaperones, mainly the group
of heat shock proteins (e.g., Hsp60, Hsp70, Hsp10, HSC20, DNAJA3) and proteases (e.g.,
HtrA2, ClpP, Lonp1), constitutes the strongest cell response to stress. The Hsp response is
predominantly cytoprotective because chaperones have the potential to attenuate pathology
by the clearance of aggregated proteins, e.g., amyloid proteins. They also prevent further
aggregation by inhibiting the nucleation and elongation processes of cross-seeding and
facilitating cellular repair and defense mechanisms [112]. In DM, the Hsp-response is weak-
ened and was shown to positively correlate with dysfunctional insulin signaling. In this
mechanism, DM-associated increases in glucose synthase kinase-3 activity lead to abnormal
phosphorylation of heat shock transcriptional factor 1 (Hsf1). Phosphorylated Hsf1 is less
efficient at binding to the Hsp-transcription element and quenching the stress-induced
transcriptional activity, decreasing the level of Hsp proteins [113]. The downregulation of
the mitochondrial chaperone Hsp60 due to a lack of leptin signaling has been shown to
be sufficient to induce hypothalamic insulin resistance in a T2DM murine model [114]. In
the model of high fat diet-induced hypothalamic insulin resistance, a disrupted mitochon-
drial stress response led to mitochondrial dysfunction, excessive autophagy, and increased
weight gain. Short-term intranasal insulin application restored expression of Atf4, Chop,
Hsp60, Hsp10, ClpP, and Lonp1, suggesting that hypothalamic insulin/IGF1 signaling
regulates mitochondrial stress response and ensures proper mitochondrial function [115].
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Reduction in co-chaperone Hsp10, which modulates Hsp60 activity, was also sufficient
to cause hypothalamic insulin resistance with acute liver insulin resistance, decreases in
subunit protein levels of the ETC complexes, and mitochondrial dysfunction in T2DM mice.
Interestingly, Hsp10 knockdown in murine hypothalamic cells increased saturated fatty
acids (FA) and decreased monounsaturated FA content [116]. The shift from unsaturated
FAs to saturated FAs in cardiolipin, the inner mitochondrial membrane phospholipid es-
sential for the proper function of the respiratory enzymes and the assembly of the ETC into
supercomplexes, was also observed in the brain cortex of streptozotocin-rats [93]. Elevated
saturated FAs were also reported in patients with Hsp60 deficiency, metabolic syndrome,
and in the cerebrospinal fluid of humans with obesity [117,118]. It is currently unclear how
Hsp interferes with FA metabolism.

Several studies have also suggested a link between mitochondrial stress and neu-
roinflammation via Hsp60′s interaction with Toll-like receptors, which leads to the pro-
duction of proinflammatory mediators, such as TNF-α, IL-1β, IL-6, and IL-8 [119,120].
Hyperglycemia-linked neuroinflammation in the CNS plays a key role in the development
of vascular dementia in diabetic patients. Of note, Hsp60 holds many functions and occurs
not only inside mitochondria but also in other intracellular locations, and it may be released
from a cell too. Extracellular secretion of Hsp60 via exomes, which play an important
role in cell-to-cell communication, has been documented in various inflammatory diseases
including DM, suggesting that neuroinflammation could spread to neighboring neuronal
cells, such as astrocytes [121,122].

Neuroinflammatory processes, a result of mitochondrial impairment, were also no-
ticed in the model of metabolic syndrome (MS), a precondition for obesity, DM, and
cardiovascular diseases. An important feature of MS is the deficiency of silent information
regulator sirtuin 3 (Sirt3), the mitochondrial member of the group of NAD+-dependent
lysine deacetylases. Deacetylases control a wide range of cellular processes, among them,
Sirt3 controls energy metabolism processes, antioxidant defense, and mitochondrial dynam-
ics [123]. The importance of sirtuins for cell homeostasis is highlighted by their engagement
in the UPRmt stress response axis. In the brain of mice with MS, Sirt3 deficiency led to im-
paired mitochondrial respiration, downregulation of mitochondrial fission proteins Mfn1,
Mfn2, elevated levels of brain IL-1β, and inflammasome formation [124]. Sirt3 deficiency-
induced hyperacetylation of the mitochondrial proteome was also shown to spoil glucose
metabolism, preferentially at the Krebs cycle, disarrange metabolic coupling between neu-
rons and astrocytes, and decrease neurotransmitter synthesis [125]. In the mouse model of
comorbid Alzheimer’s disease with amyloid pathology and MS, Sirt3 deficiency aggravated
insulin resistance, glucose intolerance, amyloid plaque deposition, neuroinflammation, and
microgliosis, suggesting that MS may interact with amyloid pathology during the early
cellular phase of Alzheimer’s disease [126]. Thus, SIRT3 decline induced mitochondrial
dysfunction and neuroinflammation in chronic metabolic diseases, such as DM, may be
important participants in the cascade of molecular processes resulting in proteotoxic stress,
neuronal cell damage, and late-life cognitive decline.

Healthy and fully functional mitochondria are maintained by unique equilibrium
among the processes of mitochondrial biogenesis, removal of damaged mitochondria
by mitophagy, and mitochondrial dynamics, which are regulated by mitofusins Mfn1,
Mfn2, Drp1, and OPA1. Mitochondrial dynamics in the brain are associated with feed-
ing, glucose homeostasis, and whole-body metabolism, and disorders of mitochondrial
fission–fusion proteins are observed in obesity, DM, and neuroinflammation [127]. Mfn1
has recently emerged as a nutrient sensor in POMC neurons that influences whole-body
glucose metabolism as it plays a key role in the central control of insulin release [128].
Drp1-mediated mitochondrial abnormalities have been linked to synaptic injury in the
diabetic hippocampus [129]. A clinical trial in patients with T2DM-related cognitive decline
observed a decrease in mitochondrial copy number, indicating that decreased mitochon-
drial biogenesis occurs in DM patients [130]. A decrease in the expression of PGC-1α
(peroxisome proliferator-activated receptor-gamma coactivator), TFAM (mitochondrial
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transcription factor A), and NRFs (nuclear respiratory factors) in diabetic rat brains also
corroborates dysfunctional mitochondrial biogenesis [131]. As a result, DM-linked attenua-
tion of mitochondrial biogenesis does not restore decreased mitochondrial mass following
the autophagosomal degradation of damaged mitochondria by mitophagy and leads to
exacerbation of cellular damage and decline in brain functional ability.

7. Conclusions

Fuel and energy homeostasis is maintained by the intricate synchronization of affer-
ent and efferent signals from the periphery and CNS. While the canonical explanation
of systemic glucose regulation is founded on the function of exocrine in the pancreas,
the homeostatic role of the brain is less clear, particularly in view of insulin-independent
regulation of blood glucose. Recent evidence, however, suggests that the pancreas is not
a stand-alone regulator but a component of a larger regulatory system integrating other
critical homeostatic regulators governed by the brain [26]. The failure of tight cooperation
between homeostatic regulators may progress to the pathogenesis of diabetes and con-
tribute to accelerated brain damage, cognitive impairment, and neurodegeneration. As a
consequence of the glucoregulatory failure, deregulated energy fluxes affect mitochondria
and their functions. During the initial period of DM, the mitochondrial quality program
ensures cellular homeostasis through the coordination of the processes of mitochondrial
biogenesis, dynamics, mitophagy, and proteasome degradation. However, an inevitable
outcome of the chronic nature of diabetes is the failure of adaptive cell programs, result-
ing in the persistence of oxidative and proteotoxic stress and irreparable alterations in
mitochondrial proteome. Proteotoxicity and modified mitochondrial proteomes represent
aggravating factors that compromise neuronal cell functions and survival.

Even if intensive research is still warranted to fully understand the impact of diabetes
on the brain, the decipherment of the cooperative and controlling mechanisms and molecu-
lar mediators implicated in DM-linked brain impairment and neurodegeneration will be of
great use for the development of new therapeutic strategies. It is reasonable to assume that
effective treatment strategies will be aimed not at one particular target but at a complex
interdependent network of targets that will alleviate multiorgan damage in diabetes.
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