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Abstract

In the context of the bioCADDIE challenge addressing information retrieval of biomedical

datasets, we propose a method for retrieval of biomedical data sets with heterogenous

schemas through query reformulation. In particular, the method proposed transforms

the initial query into a multi-field query that is then enriched with terms that are likely to

occur in the relevant datasets. We compare and evaluate two query expansion strategies,

one based on the Rocchio method and another based on a biomedical lexicon. We then

perform a comprehensive comparative evaluation of our method on the bioCADDIE data-

set collection for biomedical retrieval. We demonstrate the effectiveness of our multi-

field query method compared to two baselines, with MAP improved from 0.2171 and

0.2669 to 0.2996. We also show the benefits of query expansion, where the Rocchio

expanstion method improves the MAP for our two baselines from 0.2171 and 0.2669 to

0.335. We show that the Rocchio query expansion method slightly outperforms the one

based on the biomedical lexicon as a source of terms, with an improvement of roughly

3% for MAP. However, the query expansion method based on the biomedical lexicon is

much less resource intensive since it does not require computation of any relevance

feedback set or any initial execution of the query. Hence, in term of trade-off between effi-

ciency, execution time and retrieval accuracy, we argue that the query expansion method

based on the biomedical lexicon offers the best performance for a prototype biomedical

data search engine intended to be used at a large scale. In the official bioCADDIE chal-

lenge results, although our approach is ranked seventh in terms of the infNDCG evalu-

ation metric, it ranks second in term of P@10 and NDCG. Hence, the method proposed

here provides overall good retrieval performance in relation to the approaches of other

competitors. Consequently, the observations made in this paper should benefit the de-

velopment of a Data Discovery Index prototype or the improvement of the existing one.
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Introduction

Biomedical data include large datasets, with diverse types

of information, that are managed by a wide range of bio-

medical research centers. The data range from medical

imaging to bioinformatics sequences, and include research

articles, clinical trials, proteomic data, etc. A list of 64

repositories providing such biomedical data have been

integrated in the DataMed project by the bioCADDIE

team (1,2) (https://datamed.org/repository_list.php). This

represents a huge amount of heterogeneous data, primarily

used in research projects to achieve a variety of goals,

including drug discovery, disease study, gene identifica-

tion, etc. It is valuable to supply researchers with a unified

platform for aggregating, searching and retrieving these

biomedical data according to their needs.

However, knowing that these data are heterogeneous,

semi-structured, provided by different research centers with

different schemas, and are variably annotated with meta-

data, it is a challenge to develop an aggregation platform for

searching biomedical data, in terms of data integration and

information retrieval. Hence, we propose in this paper a

method for retrieving and searching biomedical data with

heterogenous schemas through query formulation.

A typical dataset available in, for instance, the gene ex-

pression repositories may contain a description, a list of key-

words, and a list of organisms. A typical dataset available in

the protein structure repositories contains, in addition, a list

of genes and a list of research articles. Hence, the dataset

schemas may vary from one repository to another. Hence,

inspired by the evaluation framework of the bioCADDIE

challenge (2) (https://biocaddie.org/biocaddie-2016-dataset-

retrieval-challenge), in this work, we consider only the fields

that we believe are the most relevant fields for that task.

These fields include (1) title, (2) description, (3) a list of key-

words, (4) a list of organisms, (5) the titles of the associated

research articles, (6) the abstracts of the associated research

articles, (7) a list of genes, (8) a description of a disease and

(9) a description of a treatment. These fields are explored in

detail this paper to show the importance of each for obtain-

ing the best retrieval performance.

To assess the difficulty of querying such biomedical

data, we refer to Figure 1. This figure shows the term over-

lap similarity (We use the overlap similarity to emphasize

the number of terms of a query that are in its relevant data-

sets. Here, OverlapðX1;X2Þ ¼ jX1 \X2j=minðjX1j; jX2jÞ.)
distribution between the queries and different fields of

their associated relevant datasets given in the bioCADDIE

challenge using box-plots. Several trends can be observed

here: (i) first, most of the fields of the relevant datasets

have very low term similarity with the queries; (ii) second,

the highest similarity with the queries is observed with the

description field followed by the title field; (iii) third, even

with the description field, the median is still low (<0.4);

and (iv) finally, for the genes and treatment fields, there is

almost no overlap similarity with the queries, even if some

queries do mention genes and diseases. This shows clearly

that the queries are quite general, and lack specificity to in-

dividual database records, posing a challenge for retrieval

of the most relevant datasets.

Given the observed low overlap similarity in Figure 1,

we suggest an investigation of query formulation (3)

methods as a means for improving the term overlap be-

tween queries and relevant datasets. This query formula-

tion includes identifying the correct terms in a query to

search specific fields using a multi-field query strategy,

and then enriching the multi-field query through a query

expansion process. We compare and evaluate two query

expansion strategies, one based on the Rocchio method

and another based on a biomedical lexicon. We demon-

strate the effectiveness of our multi-field query method

compared to two baselines, with MAP improved from

0.2171 and 0.2669 to 0.2996. We also show the benefits

of query expansion, where the Rocchio method allows us

to improve the MAP for our two baselines from 0.2171

and 0.2669 to 0.335.

In summary, in the purpose of building the best queries

to retrieve the most relevant datasets, we seek to answer

the following questions:

• What parts of the datasets should we query to achieve an

effective search in terms of retrieval performance?

• Which method works the best for query expansion, and

in which settings?

• What is the best source for term expansion? Do fields of

datasets serve as better sources of expansion terms, or is

an external biomedical lexicon a useful resource?

To answer these questions, we perform a thorough ana-

lysis of query formulation for biomedical search in the con-

text of the bioCADDIE challenge.

This paper presents exactly the system runs we have

submitted to the bioCADDIE Dataset Retrieval Challenge

2016, except that one run for the original challenge was

built using manual query construction with a biomedical

lexicon, and we present an automated version of that run

in this paper. Details are given later in the paper.

The rest of this paper is organized as follows: in the

next section, we discuss the related work; then, we describe

the bioCADDIE challenge dataset collection; next, we pro-

vide an architectural overview of our solution followed by

the query expansion strategy we use; then, we present the

experimental evaluation, followed by a discussion and a

summary of key observations.
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Related work

There is a substantial body of research related to query re-

formulation in the context of IR. Previous research has

focused mainly on query expansion and query reduction,

as reviewed below.

Query expansion

Query expansion has been widely explored in the IR litera-

ture and in various contexts (4). Hence, we will not review

all existing works but we simply provide an insight into

what has been done. We review the existing works based

on the data sources used to extract relevant terms to enrich

the initial query.

A first type of data source that has been used in query

expansion methods relies on external lexical semantic re-

sources, typically dictionaries, thesauri or other similar

knowledge representation sources such as WordNet (5).

For example, Fang (6) has demonstrated that global expan-

sion based on WordNet and co-occurrence based resources

can lead to performance improvement in an axiomatic

model of information retrieval. Similarly, Mahdabi et al.

(7) demonstrated the value of using a patent lexicon for

query expansion in the context of patent search. Also, Xu

et al. (8) proposed to explore the use of Wikipedia as an

entity repository as well as its internal structure for query

expansion; they show the effectiveness of this query-

dependent approach to improve over a baseline relevance

model.

In several common cases, terms for query expansion are

obtained from within the data source (typically, the docu-

ment collection itself). Terms are extracted using a Pseudo-

Relevance Feedback (PRF) set of top-k ranked documents

obtained usually after an initial execution of the query.

The Rocchio method (9,10) described later in this docu-

ment is the best known method of this type. Several meth-

ods based on a PRF set have been described and evaluated

[e.g. (11–15)]. In the same vein, several approaches are

based on preprocessing top retrieved documents for

filtering out irrelevant features prior to the utilization of a

term-ranking function (4). Hence, several methods for

finding more compact and informative document represen-

tations have been proposed, such as passage extraction

(14) and text summarization (16). In Chang et al. (17), the

document summaries go through a further process of clus-

tering and classification with the aim of finding an even

more reduced set of orthogonal features describing each

document (termed query concepts).

Several research works explored the use of the vocabu-

lary used in social networks as sources of terms for query

expansion (18–21). Almost all these approaches model the

social network vocabulary as a structured lexicon, and the

most related terms are selected by some method to enrich

the initial query. A number of these approaches are re-

viewed in (22).

Since query logs are a rich source of information about

users, they have been used for many tasks, one of which is

query expansion (23–27). Much of the previous work op-

erates at the level of the whole query, which is more com-

monly known as query recommendation. This class of

techniques first clusters similar queries based on commonly

clicked documents (23,26) or the similarity of vocabulary

used in clicked documents (27), and uses queries in the

same cluster as recommendations for one another.

Finally, in the case of lack of availability of query logs,

others researchers proposed to use anchor text (Anchor

text is the clickable text in a hyperlink.) to simulate the im-

portant parts of a log (28–30). For example, Kraft and

Zien (29) demonstrated that using anchor text to refine a

query works better than using the full document collection

itself.

Query reduction

While it is known that query length in operational inter-

active IR systems (in particular Web search engines) is ra-

ther short, typically between two and three terms long

(31,32), in other IR contexts queries may be longer,
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Figure 1. Box-plots of the overlap similarity between the queries and different fields of their associated relevant datasets.
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ranging from ten to thousands of terms (33,34). Therefore,

several researchers have investigated strategies for query

length reduction, for the purpose of removing ambiguous

and noisy terms.

Kumaran and Carvalho (34) developed an automatic

method for reducing long TREC description queries. Using

query quality predictors such as Clarity (35), they con-

verted the query reduction task into a problem of ranking

reduced sub-queries based on their predicted effectiveness.

Their results on TREC Robust 2004 showed the utility of

automatic query reduction. This idea has been further

enhanced by Arguello et al. (36), who proposed the follow-

ing procedures: (1) generate a candidate set of sub-queries

to consider, (2) predict the retrieval performance of each

candidate sub-query and (3) combine the retrievals from

the top-k sub-queries with the highest predicted perform-

ance. Also, Balasubramanian et al. (37) also studied how

to improve performance by reducing queries using quality

predictors; however, their system only removes up to one

term from the query. This approach is not viable when

dealing with very long and descriptive queries. Xue et al.

(38) focused on reducing TREC topic descriptions and

trained a sequential model to label each queryterm as ‘seryt

or ‘re not keepy using query performance predictors as fea-

tures in a Conditional Random Field model. The authors

found greater improvements by combining the predicted

sub-query with the original. Xue and Croft extended this

idea in (39) by combining sub-queries in a weighted fash-

ion, setting the mixing parameters based on the LTR out-

put. Zhao and Callan (40) trained a classifier to predict a

query termyc importance by combining performance pre-

dictors with features such as the query-term’s rareness,

abstractness, and ambiguity. Their results found greater

improvements for more verbose queries (i.e. TREC de-

scriptions vs. v titles).

In the context of patent prior art search which involves

finding previously granted patents that may be relevant to

a new patent application, the query is often an entire docu-

ment with hundreds or thousands of words organized into

several sections. In that context, the length of the queries

led several research groups to investigate query reduction.

In (41), the authors proposed a query reduction technique,

which decomposes a query (a patent section) into constitu-

ent text segments and computes Language Model (LM)

similarities by calculating the probability of generating

each segment from the top ranked documents (PRF set).

Then, the query is reduced by removing the least similar

segments to the query. In (33), the authors proposed to

study several query reduction techniques and their impact

on the task of patent prior art search. They have shown

that while query reduction techniques have a mitigated im-

pact on mid-length queries, they are very effective on long

queries such as an extended abstract or a description. Also,

in (42), authors have shown that a simple and minimal

interactive relevance feedback approach outperforms the

best result from the CLEF-IP 2010 challenge (43), which

was a sophisticated and very advanced system that utilized

a very important feature of patents. This suggested the

promise of interactive methods for term selection in patent

prior art search. For query reduction in medical search,

Luo et al. (44) built a search engine that performs query re-

duction by filtering non-important terms based on their tf-

idf score. Their system is designed for lay people perform-

ing health search on the Web and does not focus on med-

ical literature retrieval. Also, Soldaini et al. (45) studied the

impact of query expansion and reduction methods that

take advantage of medical domain knowledge, as well as

general purpose IR techniques. Then, they proposed an ap-

proach that combines both methods, and which achieved a

statistically significant improvement.

However, as the test queries provided are short with an

average of 12 terms, we have decided to not consider query

reduction in our experiments. Hence, in this paper, we con-

sider query reformulation as the transformation of the ini-

tial query to a multi-field query, and then explore the

application of query expansion techniques.

Description of the bioCADDIE dataset
collection

The collection of the bioCADDIE challenge contains struc-

tured and unstructured metadata from a set of 20 individ-

ual repositories (1) (https://biocaddie.org/biocaddie-2016-

dataset-retrieval-challenge). The collection contains a total

of 794 992 datasets that was frozen from the DataMed

backend on 24 March 2016, which are provided in both

XML and JSON format. Each dataset contains three main

parts: (i) DocID, which contains a unique number to iden-

tify the dataset in the collection; (ii) TITLE, which gives a

short summary of the dataset; and (iii) METADATA,

which provides a set of useful information related to that

dataset. These three parts given in an XML format are

common for all the datasets. However, given the fact that

the whole collection is built through the integration of 20

different repositories, the internal structure of the meta-

data section varies, and is specific for each repository.

Hence, we have implemented a specific parser for each re-

pository to extract the information provided within the

metadata section. Table 1 provides details of the informa-

tion extracted from the collection according to each reposi-

tory. Table 1 shows clearly the heterogeneous nature of the

collection; the information given in the metadata sections

is different for each repository. For example, the genes sec-

tion is only available in the PDB (46) (The Protein Data
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Bank (PDB) archive is the single worldwide repository of

information about the 3 D structures of large biological

molecules, including proteins and nucleic acids.) reposi-

tory, whereas the treatment section is only available in the

ClinicalTrials (47) (ClinicalTrials.gov is a registry and re-

sults database of publicly and privately supported clinical

studies of human participants conducted around the

world.), NeuroMorpho (48) (NeuroMorpho.Org is a cen-

trally curated inventory of digitally reconstructed neurons

associated with peer-reviewed publications.) and the

PeptideAtlas (49) (PeptideAtlas is a multi-organism, pub-

licly accessible compendium of peptides identified in a

large set of tandem mass spectrometry proteomics experi-

ments.) repositories. Moreover, as the data collection is an

integration of heterogeneous repositories with fundamen-

tally different data, they are grouped by category as shown

in Table 1 (https://datamed.org/datatypes.php).

Regarding the PMIDs (PMID is the unique identifier

number used in PubMed.) obtained from the datasets of the

PDB, PeptideAtlas, and the YPED (50) (The Yale Protein

Expression Database (YPED) is an open source system for

storage, retrieval, and integrated analysis of large amounts

of data from high throughput proteomic technologies.)

repositories, we retrieved the corresponding research articles

using MEDLINE to gather additional information about

these datasets. MEDLINE is a bibliographic database,

which contains 27 million references for biomedical litera-

ture publications, and contains mainly the Title and the

Abstract of each research article.

A training set was provided for parameter tuning, which

includes six queries with retrieved results for which the

relevance judgments have been annotated. As for the test

set given for the challenge, it consists of 15 queries derived

from instantiations of competency questions from three

use cases collected from various sources as a part of the

bioCADDIE project [for more details on construction of

the collection see (2)].

Given this small number of queries in the test set com-

pared with other IR tasks, one can think that any method

developed on the top of this test set may overfit especially

during parameter tuning. However, given the diversity of

the queries, we believe that this should not be the case.

Indeed, the test queries given for the challenge span differ-

ent query types including: the search for genes, the search

for particular diseases, the search for proteomic data, the

search for gene expression data, etc. The test queries are

Table 1. bioCADDIE dataset collection details

Category Repository DocID Title Metadata Total

Description Keywords Organisms PMID Genes Diseases Treatment

Clinical trials 1 ClinicalTrials x x x x — — — x x 192 500

2 CTN x x x x x — — — — 46

Gene expression 3 ArrayExpress x x x — x — — — — 60 881

4 GEMMA x x x — x — — — — 2285

5 GEO x x x — x — — — — 105 033

6 Nursadatasets x x x x x — — — — 389

Imaging data 7 CVRG x x x — — — — — — 29

8 NeuroMorpho x x — — x — — — x 34 082

9 CIA x x — — x — — x — 63

10 OpenFMRI x x x — x — — — — 36

Phenotype 11 MPD x x x — x — — — — 235

12 PhenoDisco x x x — — — — x — 429

Physiological

signals

13 PhysioBank x x x — — — — — — 70

14 YPED x x x — x x — — — 21

Protein structure 15 PDB x x x x x x x — — 113 493

Proteomic data 16 PeptideAtlas x x x — x x — — x 76

17 Proteom

Exchange

x x — x x — — — — 1716

Unspecified 18 BioProject x x x x x — — — — 155 850

19 Dataverse x x x — — — — — — 60 303

20 Dryad x x x x — — — — — 67 455

Total 794 992 759 131 531 449 474 206 113 590 113 493 192 992 226 658

(x) means the information is provided, (—) means the information is not provided. These marks do not imply any ‘positive’ or ‘negative’ information except for

the presence or the absence of the considered information in the metadata section.
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described in Table A5. As for the relevance judgments

(often referred to as qrels—query relevance set) composed

of a list of qid/docid pairs, detailing the relevance of docu-

ments to topics, it consists into 142 805 datasets judged

using the following relevance degree scales: (2) relevant,

(1) partially relevant, (0) irrelevant and (�1) unjudged.

Architecture overview

The IR system we have developed to tackle the bioCADDIE

retrieval challenge is mainly based on the Lucene 6.4.0 IR

System (http://lucene.apache.org/). In particular, we re-used

the multi-field indexing engine of Lucene, which allows

indexing of individual fields associated with documents sep-

arately, such that each field can be queried independently

(title, description, keyword, etc.). We also re-used the

query-document matching mechanism provided in Lucene,

which allows retrieval of documents that match the query.

Finally, we reused the standard Lucene cosine-based similar-

ity function to score and rank documents accordingly.

Figure 2 shows the architecture of our solution, which is

composed of two complementary sub-processes, an off-line

and an online sub-process. We briefly describe each below.

Off-line sub-process

As illustrated in the right part of Figure 2, the Text

Management component parses each dataset in the collection

according to its repository structure to extract its fields (title,

description, keyword, etc.). Next, each field is processed by

reducing its full set of words to a set of tokens by (i) removing

the stop words such as articles and connections, and (ii) reduc-

ing distinct words to their common grammatical root by

applying a stemming algorithm. Then, the Indexer component

applies a specific organization to the whole extracted content

for each field (section), to create an inverted index per field

over the collection of datasets. This indexing strategy allows

us to query each field separately, and thus, allows boosting of

fields in the retrieval algorithm. Finally, the index obtained

contains 11 fields that we use in the rest of this paper.

On-line sub-process

This sub-process handles the userle query as illustrated in the

left part of Figure 2. The query is generally provided in the

form of keyword query or question, and is reduced by the

query-processing engine following the same strategy applied

to source repository data (except that no fields are available

to be extracted in a query). The resultant set of index terms

extracted from the user query is then transformed through

the Query expansion & Modification module.

First, as illustrated in Figure 2, this module processes

the query in parallel with four sub-components, Category

Identification, DNorm (51), GenNorm (52) and Linnaeus

(53). The category identification tools identifies what type

of data are targeted by the query, and the other tools tag

Figure 2. Architecture overview.
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mentions of biological entities including diseases, genes

and organisms using natural language processing methods.

The category identification step uses a simple rule-based

approach to relate specific keywords to the type of data

targeted (gene expression, clinical trials, protein structure,

etc.). This includes key phrases such as ‘search gene expres-

sion’, ‘search protein sequencing’ and ‘search proteomic

data’. Each such phrase is associated with a certain data

type, and the entity types are also related to specific data

fields. After this analysis, the resultant tagged query is then

processed by the Multi-field query builder sub component,

which builds a query that targets the fields corresponding

to the identified category and entity types.

Next, the Query expansion module enriches the query

with terms that are likely to occur in the relevant datasets

through a strategy that is discussed and evaluated in the

next sections. Finally, the query is processed by the re-

trieval algorithm component to obtain datasets related to

the query terms, ranked according to their relevance to the

query. In this step, we use a standard vector space model

(VSM) approach using TF-IDF weighting (54) and cosine

similarity as implemented in Lucene (55) (https://lucene.

apache.org/core/6_4_0/core/index.html). The top ranked

datasets are then formatted for presentation to the user.

Query expansion

In Information Retrieval, Query Expansion (QE) (3,33)

enhances a query with additional terms likely to occur in

relevant documents. Hence, given a query representation

Q, QE aims to select an optimal subset Tk of k terms,

which are relevant to Q, then build an expanded query Q0

such that Q0 ¼ Q [ Tk. Below, in Query expansion for bio-

medical search section, we describe the methods we use for

query expansion, and in Utility of query expansion section,

we provide an overview of the performance gain that is tar-

geted through query expansion methods.

Query expansion for biomedical search

We propose to use and evaluate two query expansion

methods. We describe them below.

The Rocchio Algorithm for Relevance Feedback: The

Rocchio algorithm (9) is a classic algorithm for relevance

feedback used mainly for query expansion. In brief, it pro-

vides a method for incorporating relevance feedback infor-

mation into the vector space model representing a query

(10). The underlying theory behind Rocchio is to find a

query vector ~Q0 , that maximizes the similarity of the query

with relevant documents while minimizing similarity with

irrelevant documents. Typically, a pseudo-relevance feed-

back (PRF) set of k top ranked documents obtained after

an initial run of the query is considered as the set of rele-

vant documents to build ~Q0 . The formula and variable def-

initions for Rocchio relevance feedback are shown in the

following equation:

~Q0 ¼ ða� ~QÞ þ b� 1

jDRj
�
X
~dr2DR

~dr

0
@

1
A

� c� 1

jDNRj
�

X
~dnr2DNR

~dnr

0
@

1
A (1)

where ~dr is a relevant document vector, ~dnr is an irrelevant

document vector, jDRj is the set of relevant documents, j
DNRj is the set of irrelevant documents and a, b, c are, re-

spectively, the weights of the original query, the relevant

documents and the irrelevant documents. We have fixed the

values of these parameters to: a¼ 1, b ¼ 0:5, and c ¼ 0:1 as

generally suggested for Rocchio Classification (3). We refer

to this method as Rocchio (We used the LucQE module,

which provides an implementation of the Rocchio method

for Lucene. http://lucene-qe.sourceforge.net/).

Biomedical Lexicon for Query Expansion: This method

is based on a biomedical lexicon. This lexicon is built from

(i) gene names extracted from the NCBI gene database (56)

(https://www.ncbi.nlm.nih.gov/gene), (ii) organism names

extracted from the NCBI taxonomy (56) (https://www.

ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi) and

(iii) disease terms taken from the Unified Medical

Language System (UMLS) (57) (https://www.nlm.nih.gov/

research/umls/). We use this lexicon in query expansion in

a two step process: (1) we match query terms to terms in

the lexicon and (2) access the corresponding database re-

cord for the matched lexical item to obtain associated

terms which are then added to the query. These associated

terms include synonyms, acronyms, common denomin-

ations, etc. Individual terms are selected for inclusion in

the query based on the idf score, following the intuition

that terms that occur frequently in the collection are of low

utility, and terms that occur rarely are of high utility.

Then, the top k terms are added to the original query in

order to enrich it with additional information. We refer to

this query expansion method as BioMedLexicon.

Utility of query expansion

To illustrate the utility of query expansion in the context

of biomedical search and in order to provide an insight

into upper-bound retrieval performance, we carry out a

qrels term selection analysis. Specifically, we enrich the ini-

tial query with the top terms obtained by applying the

Rocchio formula, given both the relevant and irrelevant

datasets provided in the qrels file.
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Table 2 provides insight into the utility of query expan-

sion for the Query 1, using different retrieval metrics.

When querying only the title field of our index, the base-

line query, which is the original query (provided in the

header row) after stemming and stop-word removal, has

an Average Precision (AP) of 0.042 and an inferred nor-

malized discounted cumulative gain (infNDCG) [The

infNDCG is a metric that incorporates graded relevance

judgments, which is estimated using incomplete relevance

judgments (58).] (59,58) of 0.209 (its performance is pro-

vided in the footer row). However, by adding the 15 top

terms obtained using the Rocchio formula one at a time to

the original query, we can measure the new performance

values to show the impact of these terms and the effect of

query expansion on the retrieval quality. The added terms

have been sorted in the order of decreasing infNDCG. We

can observe that there are nine terms (highlighted in bold-

face) that lead to increases in the infNDCG of the original

query when they are (individually) added to the original

query. For example, the term ‘CheY’ increases the

infNDCG value from 0.209 to 0.585, which represents

179% retrieval improvement. On the other hand, generic

terms like ‘Thermotoga’ decrease significantly the perform-

ance of the query (from 0.209 to 0.030). Therefore, the se-

lection of meaningful terms during the query expansion

process is critical for increasing the retrieval performance.

Figure 3 shows the summary upper-bound performance

for Precision, Recall, MAP, inferred AP (infAP) (60) and

infNDCG that can be achieved for the set of 15 queries

when querying both the title and description fields in the

index. ‘Baseline’ refers to a run that uses the vector space

model (VSM) approach using TF-IDF weighting (54) and

cosine similarity using the Lucene search engine (55) and

the original query. ‘Oracle’ refers to the situation where

the 10 top terms obtained using the Rocchio formula are

added to the original query. In this situation, we use both

the relevant and irrelevant datasets provided in the qrels

file to build the best possible query that pulls the most rele-

vant datasets. This gives us an upper-bound on the per-

formance that can be realized through query expansion for

this set of queries when querying only the title and descrip-

tion fields in the index. It is this statistically significant im-

provement in performance through query expansion that

we intend to target through query expansion.

Experimental evaluation

In this section, we discuss the retrieval performance of our

solution for biomedical search. The configuration options

and associated questions that were considered are the

following:

1. Queried fields: The datasets of the collections contain

several fields that were indexed, i.e. title, description,

keywords, organisms, etc. The question that we con-

sider is Are all fields useful for biomedical search? Are

certain fields more appropriate to query for certain

types of queries?

2. Query category filter: Each dataset is associated to a

given category of data, e.g. protein structures for the

PDB database. On the other hand, some queries may

target a particular type of data, e.g. Question 5 targets

Table 2. Sample of terms extracted from the qrels and added to the Query 1a

Query 1: Find protein sequencing data related to bacterial chemotaxis across all databases

Term added P@100 Recall infAP AP infNDCG

CheY 0.840 0.177 0.112 0.136 0.585

CheA 0.460 0.103 0.040 0.057 0.412

BeF3 0.370 0.111 0.040 0.058 0.354

Manihotis 0.410 0.124 0.060 0.056 0.332

MotB 0.480 0.105 0.037 0.065 0.328

Axonopodis 0.300 0.128 0.046 0.045 0.325

NOX 0.300 0.097 0.024 0.047 0.300

Structure 0.310 0.091 0.025 0.052 0.264

Crystal 0.220 0.089 0.028 0.039 0.256

Complex 0.160 0.086 0.026 0.036 0.208

Protein 0.320 0.087 0.027 0.059 0.206

Xanthomonas 0.200 0.128 0.020 0.019 0.191

Maritima 0.200 0.102 0.010 0.030 0.165

Domain 0.470 0.081 0.023 0.04 0.115

Thermotoga 0.200 0.102 0.010 0.030 0.030

Baseline 0.450 0.086 0.017 0.042 0.209

aValues in bold are improvements over the baseline.
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gene expression data. Hence, we consider the effective-

ness of a category-based filter.

3. Query expansion source: The title field, the description

field, and the biomedical lexicon are different possible

sources of terms. We consider what is the best source of

expansion terms. For instance, are words in the title of

particularly high value as expansion terms? We omit

the use of the other fields in the datasets as a source of

expansion terms, noting that not all fields are available

in all the datasets as shown in Table 1.

4. Term selection method: We consider the two different

query expansion methods described above, i.e. Rocchio

and BioMedLexicon and ask, what is the best QE

method for biomedical search?

Retrieval performance metrics

To assess the retrieval performance, in addition to the

inferred performance measures of the official challenge, we

also consider standard IR measures including Precision,

Recall and Mean Average Precision (MAP). These are the

most commonly used, and well understood, performance

measures in IR. Moreover, as the number of datasets

judged per query ranges from 836 to 1734, the relevance

judgments are not particularly sparse, and hence Precision,

Recall and MAP can be consistent metrics. The use of

inferred measures does not seem necessary given these suf-

ficient numbers of judgments (58,60).

Analysis of the index fields

Before discussing the effectiveness of the multi-field query

strategy that we propose, we first analyze the impact of

querying the different fields of the index we have built. Table

4 shows the retrieval performance we obtain by querying one

field of the index, or two fields simultaneously. We only

show the possible combinations of querying two fields, as

showing the results of querying more than two fields requires

to draw a complex table of multiple dimensions.

The main diagonal of Table 4 represents a search con-

ducted over only the record field in the corresponding row/

column. For example, the values given in the first line and

first column represent the retrieval performance obtained

when querying only the title field of each record, the values in

the second line and the second column are those obtained

when querying only the description field, and so on. The val-

ues off the diagonal in Table 4 represent the retrieval per-

formance obtained when querying two fields simultaneously.

For example, the values given in the first line and second col-

umn represent the retrieval performance obtained when

querying both the title field and the description field, the val-

ues in the first line and the third column are those obtained

when querying both the title field and the keywords field, etc.

Overall, several lessons can be drawn from Table 4:

1. Among all fields, the title and the description provide

the best retrieval performance. This is quite expected

since these two fields are the most common across the

repositories (see Table 1).

2. Even if the keywords field is available in several reposito-

ries which contain many relevant datasets, it seems to

provide poor retrieval performance. Also, when com-

bined with the title or the description fields, the keywords

field drastically decreases the retrieval performance.

3. Querying the organisms field alone, which is the third

most common field for all the repositories, leads to very

poor performance (0.01% MAP and 0.7% infNDCG).

This is mainly due to two reasons: first, as shown in

Table A5, not all queries mention organisms, and se-

cond, the repositories are biased toward the most popu-

lar organisms (https://www.ncbi.nlm.nih.gov/Taxono

my/Browser/wwwtax.cgi).

4. Querying both the description field and the organisms field

slightly improve the performance, as the P@10 increases

from 0.6 to 0.633, the MAP increases from 0.2165 to

0.2362, and the infAP increases from 0.2075 to 0.2276.

5. All other fields seem to have little value for retrieval,

since when queried alone or combined with other fields,

the retrieval performance sometimes decrease or in-

crease insignificantly. Again, this is due to the fact that

most of them are not common to all repositories as

shown in Table A5.

Figure 3. The utility of query expansion for the 15 queries.
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(a) (b)

Figure 4. The utility of the literature-based fields.

Table 3. Multi-fields query retrieval performance when querying one field (on the diagonal) or two fields simultaneously (off the

diagonal) on the set of 15 bioCADDIE queriesa

Fields

Title Description Keywords Organisms Art. Title Art. Abstract Genes Diseases Treatment Metric

Fields Title 0.5667 0.7467 0.5200 0.4400 0.3667 0.3933 0.5600 0.4000 0.2067 P@10

0.1509 0.2669 0.0982 0.1283 0.1108 0.0864 0.1543 0.0995 0.0644 MAP

0.1438 0.2348 0.0999 0.1088 0.1136 0.1024 0.1461 0.0903 0.0624 infAP

0.2615 0.3575 0.2361 0.2438 0.2346 0.1977 0.2609 0.1778 0.1510 infNDCG

Description – 0.6067 0.5733 0.6333 0.6867 0.4933 0.6067 0.4867 0.4133 P@10

– 0.2171 0.1792 0.2362 0.2297 0.2034 0.2171 0.1676 0.1422 MAP

– 0.2088 0.1822 0.2276 0.2171 0.2074 0.2083 0.1688 0.1306 infAP

– 0.3609 0.3241 0.3525 0.3607 0.3191 0.3604 0.3098 0.2702 infNDCG

Keywords – – 0.2267 0.2667 0.3067 0.3533 0.3133 0.2600 0.1533 P@10

– – 0.0322 0.0321 0.0314 0.0343 0.0344 0.0316 0.0168 MAP

– – 0.0407 0.0391 0.0447 0.0469 0.0437 0.0397 0.0256 infAP

– – 0.1462 0.1470 0.2207 0.1627 0.1404 0.1246 0.0996 infNDCG

Organisms – – – 0.0067 0.1467 0.2000 0.1867 0.1267 0.0400 P@10

– – – 0.0001 0.0081 0.0123 0.0071 0.0145 0.0007 MAP

– – – 0.0001 0.0130 0.0211 0.0072 0.0136 0.0011 infAP

– – – 0.0076 0.1598 0.0923 0.0163 0.0439 0.0099 infNDCG

Art. Title – – – – 0.1733 0.2133 0.2400 0.2267 0.1267 P@10

– – – – 0.0113 0.0164 0.0153 0.0258 0.0057 MAP

– – – – 0.0230 0.0360 0.0237 0.0346 0.0092 infAP

– – – – 0.1136 0.1188 0.1189 0.1125 0.0545 infNDCG

Art. Abstract – – – – – 0.1667 0.2800 0.2133 0.2067 P@10

– – – – – 0.0149 0.0201 0.0263 0.0125 MAP

– – – – – 0.0266 0.0294 0.0362 0.0197 infAP

– – – – – 0.1035 0.1053 0.1033 0.0906 infNDCG

Genes – – – – – – 0.1933 0.1600 0.0467 P@10

– – – – – – 0.0088 0.0175 0.0015 MAP

– – – – – – 0.0091 0.0165 0.0025 infAP

– – – – – – 0.0096 0.0459 0.0148 infNDCG

Diseases – – – – – – – 0.1200 0.1000 P@10

– – – – – – – 0.0152 0.0117 MAP

– – – – – – – 0.0140 0.0119 infAP

– – – – – – – 0.0394 0.0436 infNDCG

Treatment – – – – – – – – 0.0333 P@10

– – – – – – – – 0.0006 MAP

– – – – – – – – 0.0012 infAP

– – – – – – – – 0.0099 infNDCG

aValues in bold are improvements over the baseline. (–) is used to avoid duplicating the results as the table is symmetric.
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At this point, we consider the following question: ‘Can

we use the specific fields (i.e. genes, PMID, diseases, and

treatment, etc.) to effectively improve the retrieval per-

formance?’ To answer this question, we carry out a per

field analysis in what follows.

Literature-based fields analysis

Since the literature-based fields (Art. Title and Art.

Abstract) are only available into the PDB, YPED, and

PeptideAtlas repositories, we shortened the list of queries

to assess (in this subsection) to those for which there exist

several relevant datasets in these repositories. This is done

to highlight the impact of the literature-based fields on the

retrieval performance. This list includes seven queries:

Query 1, Query 2, Query 3, Query 6, Query 8, Query 11

and Query 13 (see Table A5).

Figure 4 shows the results obtained for this analysis.

Specifically, Figure 4a shows the results obtained when

querying the title field combined with the literature-based

fields, and Figure 4b shows the results obtained when

querying the description field combined with the literature-

based fields. Overall, when combined with either the title

or the description fields, the literature-based fields signifi-

cantly improve the retrieval performance for MAP, infAP

and infNDCG. For example, comparing querying the de-

scription field alone and the description field plus the title

of the research articles field, the MAP is boosted from

0.2304 to 0.2824 (22.56% improvement), and the infAP is

boosted from 0.2025 to 0.248 (22.46% improvement).

However, regarding the Precision/Recall curves, the im-

provement is not really clear.

Finally, we conclude here by saying that the literature is

clearly a useful source of information for retrieval by provid-

ing a detailed description of a given dataset. The literature

has also proven its utility in other contexts including data

quality assessment (61,62,63). This should encourage re-

search centers to link the research literature to their datasets.

Gene field analysis

Since only a few queries mention genes (see Table A5), we

again shortened the list of queries to assess (in this subsec-

tion). This is done to focus on the impact of the gene fields

on the retrieval performance. This list includes eight

queries: Query 2, Query 3, Query 5, Query 6, Query 9,

Query 11, Query 13 and Query 15.

Figure 5 shows the results obtained for this analysis.

Specifically, Figure 5a shows the results obtained when

querying the title field combined with the gene field, and

Figure 5b shows the results obtained when querying the de-

scription field combined with the gene field. Overall, when

combined with either the title or the description fields, the

gene field significantly improves the retrieval performance

(a) (b)

Figure 5. The utility of the Gene fields on the queries that mention genes.

(a) (b)

Figure 6. The utility of the disease-based fields on the queries that mention diseases.

Table 4. Retrieval performance summary of the baselinea

Metric Queried fields

Description Title and description

Baseline 1 Baseline 2

Precision@10 0.6067 0.7467

MAP 0.2171 0.2669

infAP 0.2088 0.2348

infNDCG 0.3609 0.3575

aValues in bold are improvements over the baseline.
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for all metrics (Precision, Recall, MAP, infAP and

infNDCG). For example, comparing querying the title field

alone and the title field plus the gene field, the MAP is

boosted from 0.1467 to 0.1601 (9.13% improvement),

and the infNDCG is boosted from 0.2641 to 0.2737

(3.63% improvement). Therefore, given the results shown,

it is clear that querying the gene field for queries that men-

tion genes is an effective strategy, which results in im-

proved retrieval performance.

Disease-based fields analysis

The disease-based fields include both the diseases field and

the treatment field. Again, to effectively study the utility of

these two fields, we have shortened the list of queries to

those that are mentioning diseases (see Table A5). This list

includes seven queries: Query 2, Query 4, Query 6, Query

11, Query 12, Query 13 and Query 15. The results ob-

tained are shown in Figure 6. Specifically, Figure 6a shows

the results obtained when querying the title field combined

with the disease-based fields, and Figure 6b shows the re-

sults obtained when querying the description field com-

bined with the disease-based fields.

At first glance, the retrieval performance drastically de-

creases when associating the disease-based fields with the

title or description fields. After a brief failure analysis, we

believe that this is mainly due to three reasons: (i) among

the three repositories that provide the diseases field,

roughly 30% of their datasets donas contain any informa-

tion in this field; (ii) among the three repositories that pro-

vide the treatment field, roughly 62% of their datasets

Figure 7. Analysis of the query qrels with respect to the repository categories for Query 1, Query 5, Query 7 and Query 8.

(a) (b)

Figure 8. The utility of the category-based filter on the queries that mention specific type of biomedical data.
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donas contain any information in this field; and (iii) for the

diseases field, usually general terms like ‘cancer’ or ‘tumor’

are used in the datasets, which may bias the search.

Therefore, the disease-based fields are not helpful for re-

trieval since they contribute to drastically reducing the re-

trieval performance.

Category-based filter analysis

Another field that is indexed but we have not used for re-

trieval in our experiments is the category field. This infor-

mation may be useful as a filter for selecting certain types

of data. Indeed, as the dataset collection is an aggregation

of various types of biomedical data, queries may target a

specific kind of dataset. The Query expansion &

Modification module is responsible for guessing what type

of data are targeted by identifying specific keywords in the

query in order to target the corresponding repositories.

This list of keywords includes: gene expression, clinical tri-

als, protein structure, etc.

As shown in Table A5, Query 1, Query 5, Query 7 and

Query 8 target, respectively, protein data, gene expres-

sion data, again gene expression data and proteomic data.

Hence, intuitively, we can imagine restricting a query to

target its specific category of biomedical data through a

filter. To assess this simple intuition, we refer to Figure 7.

Here we show an analysis of these four queries with re-

spect to the categories of their relevant datasets as pro-

vided in the qrels file. There are two notable trends in this

figure: (i) first, the four queries have a high number of

relevant datasets in the category of biomedical data they

are targeting, e.g. Query 1, which targets protein data,

has a high number of relevant datasets in repositories of

gene expression and protein structure, and (ii) second, for

the four queries, there are a high number of relevant data-

sets in the ‘unspecified’ repository category. Hence, it is

clear that when the category of a repository is ‘unspeci-

fied’, the repository should always be targeted.

The effect of this category-based filter is shown in

Figure 8 for the four queries that mention specific types of

biomedical data. Specifically, Figure 8a shows the results

obtained when querying the title field combined with the

category-based filter, and Figure 8b shows the results ob-

tained when querying the description field combined with

the category-based filter. The results obtained show that

when querying the title field only, applying the category fil-

ter has no impact or may slightly decrease the retrieval per-

formance. However, when querying the description field

and applying the category filter, the retrieval performance

is considerably improved, boosting the MAP from 0.0826

to 0.1074, infAP from 0.1097 to 0.1345, and infNDCG

from 0.3727 to 0.4325. For infNDCG, this represents an

improvement of 16.04%. Hence, a category-based filter

can improve the retrieval performance in this context of

biomedical data search.

Choosing the baseline

For our comparison baseline, we chose the configuration

that gives the best retrieval performance from Table 3. It

consists in a straightforward approach, in which we query

only the most common fields in our index, namely the title

and description fields. This baseline retrieves datasets that

contain the query terms in their title or description. We be-

lieve this is a reasonable approach as it ensures a search for

relevant datasets in almost all the repositories, given that

these two fields are common to all repositories (except

NeuroMorpho, CIA (64) (The Cancer Imaging Archive is a

large archive of medical images of cancer accessible for

public download.), and ProteomeXchange (65) (The

ProteomeXchange consortium provides a single point of

submission of MS proteomics data to the main existing

proteomics repositories.) where the datasets do not contain

the description field).

Table 4 summarizes the performance of our simple

strategy when querying the description field (Baseline 1),

and both the title and the description fields at a time

(Baseline 2). Although Baseline 1 slightly outperforms

Baseline 2 in term of infNDCG, Baseline 2 shows signifi-

cant improvement for the other metrics. However, due to

this higher value obtained for infNDCG by Baseline 1, we

have included it for comparison. Overall, we have selected

strong baselines, which will be used in evaluating the per-

formance of our proposed solution in the remainder of the

paper.

Multi-field query builder analysis

The results obtained in the previous subsection gave us the

intuition that led us to propose our strategy for a multi-

field query builder. Recall that the query is processed by

three sub-components, DNorm, GenNorm and Linnaeus,

which, respectively, identify diseases, genes and organisms

mentioned in the query. Once done, a new query is built as

follows:

1. The title, description and article title fields are always

targeted with the full set of query terms.

2. If organisms are identified in the query, the organism

field is targeted with the organism names.

3. If genes are identified in the query, the emphgene field

is targeted with the gene names.

In addition, we also boost the concepts identified in the

query by a factor of 2 in order to emphasize these concepts
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in the datasets. This parameter value was adjusted upon

the training set given for the challenge. Figure 9 shows the

example of Query 2 transformed into a Lucene query syn-

tax (https://lucene.apache.org/core/6_4_1/queryparser/org/

apache/lucene/queryparser/classic/package-summary.html)

by the multi-field query builder.

Figure 10 shows the retrieval performance of the

multi-field query builder compared with the two base-

lines. At first glance, clearly the multi-field approach

outperforms the two baselines for all the metrics.

Compared with Baselines 1 and 2, MAP is improved

from 0.2171 and 0.2669, respectively, to 0.2996, infAP

is improved from 0.2088 and 0.2348, respectively, to

0.2703, and infNDCG is improved from 0.3609 and

0.3575, respectively, to 0.3809. The results obtained

here clearly demonstrate that a multi-field query ap-

proach, which identifies concepts and queries specifically

the relevant fields for those concepts, is an effective ap-

proach for biomedical data search. In this way, genes

identified in a query are used to query the gene field, or-

ganisms identified in a query are used to query the organ-

isms field, and so on.

Query expansion results

To summarize all the results obtained over all the possible

configurations for the query expansion, Figure 11 shows

the retrieval performance obtained for all the QE methods,

while enriching the initial queries with the top five terms

returned for each method. Selecting the top five terms to

enrich the initial queries is not the optimal number that

maximizes the retrieval performance, but we believe it is a

reasonable number that maintains the queryai original

sense. From these results, we make the following

observations:

i. The best query expansion method is the Rocchio

method while using the description field as source of

query expansion, followed by the query expansion

method based on the biomedical lexicon, and then the

Rocchio method while using the title field as source of

query expansion.

ii. The description field contains terms of high quality for

query expansion compared with those of the title field.

iii. The three query expansion methods allow us to out-

perform the two baselines.

Overall, the Rocchio method using the description field

as source of query expansion allows us to improve the

MAP for Baselines 1 and 2 from 0.2171 and 0.2669, re-

spectively, to 0.3351, the infAP for Baselines 1 and 2 from

0.2088 and 0.2348, respectively, to 0.3062, and the

infNDCG from 0.3609 and 0.3575, respectively, to

0.4219.

Comparing the two methods of query expansion, where

the QE method based on the description field as source of

terms slightly outperforms the one based on the biomedical

lexicon as source of terms (roughly a marginal

Figure 9. Example of Query 2 transformed into the Lucene query syntax targeting multiple fields. Note that concept terms identified in the query are

boosted with a factor of 2.

Figure 10. Performance of the multi-field query method with respect to the baselines.
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improvement of 3%, 7% and 5% for, respectively, MAP,

infAP and infNDCG), we believe it is mainly due to the

fact that overall, we observe a high value for P@10

(roughly 0.78 in Figure 10). Indeed, as the Rocchio query

expansion method is based on a pseudo-relevance feedback

set of the top-k ranked datasets obtained after an initial

run of the query (we have chosen k¼ 10 as this value has

proven to be reasonable in other applications), this set is

likely to contain roughly 7 out of 10 relevant datasets.

Hence, the Rocchio formula is likely to expand the query

with terms that are likely to be common to the other rele-

vant datasets. This may partly explain the superiority of

this approach.

On the other hand, despite the fact that the query ex-

pansion method based on the biomedical lexicon is pro-

viding decent retrieval results, it is much less

computationally intensive since it does not require to

compute any relevance feedback set or to make any initial

execution of the query. Therefore, in terms of trade-off

between efficiency, execution time and retrieval accuracy,

the query expansion method based on the biomedical lexi-

con offers the best performance for a prototype biomed-

ical data search engine that is devoted to be used at a

large scale.

Discussion of the results of the bioCADDIE
dataset retrieval challenge

In the bioCADDIE Dataset Retrieval Challenge 2016, 10

participants submitted 45 runs (maximum five runs per

team) for the official evaluation (2) (https://docs.google.

com/spreadsheets/d/1z9v053gC7CBhtKYEWP-ZLglAROB

Mwyjp5ellTZ1qZnk/). Our team named BioMelb submit-

ted the following five runs:

• Run 1: The first run has been used as a baseline, where

we only queried the repository, the title and the descrip-

tion fields of the index. This is similar to Baseline 2 that

we have described.

• Run 2: In the second run, we simply queried the follow-

ing fields of the index using the specific terms identified

by the parser: the repository, the title, the description,

the keywords, the genes, the diseases and the organisms.

• Run 3: In the third run, we used exactly the same queries

strategy as in Run 2, except that we also queried the

Titles of the literature extracted from Medline.

• Run 4: In the fourth run, we used exactly the same

queries strategy as in Run 3, except that we also queried

the Abstracts of the literature extracted from Medline.

• Run 5: In the fifth run, we used a query expansion strat-

egy. We used the same strategy as in Run 1, except that

we manually expanded some query terms with synonyms

or associated terms, extracted mainly from Wikipedia

and the NCBI taxonomy. This includes expanding gene

names, diseases names and organism names with related

terms.

In terms of comparison of official runs with what has

been presented in this paper, Run 1 corresponds to

the Baseline 2 that we have described, and Run 3 uses the

multi-field query we have described. Run 5 is similar to

the multi-field query expansion using the biomedical lexi-

con we have presented above; the only difference is that

during the official challenge, Run 5 utilized a manual

query building strategy, whereas in this paper, we have

described an automated version of that strategy.

The submitted runs were formally evaluated using the

following four IR metrics: infAP, infNDCG, NDCG@10

and P@10, while emphasis was placed on the infNDCG

metric. The infNDCG values of the submitted runs ranged

from 0.2539 to 0.5132, and the P@10 values ranged from

0.1467 to 0.8267.

Considering the infNDCG metric, the UCSD team’s

method achieved the best performance with an infNDCG

of 0.5132, followed by the UIUC GSIS teamow method

with an infNDCG of 0.4502 which represents a big gap

(an improvement of 14% in a relative term). Then, the

other teams obtained infNDCG values that are close to

each other, where our team BioMelb ranked seventh with

Run 4 which achieved an infNDCG of 0.4017.

As for the P@10 metric, the Elsevier team’s method

achieved the best performance with a value of 0.8267,

Figure 11. Performance of the query expansion methods compared with the baselines.
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followed by our teamow Run 5 with a P@10 value of

0.7733. Hence, the method proposed in this paper

achieved the second best result in terms of precision com-

pared with the other competitors.

At this point, comparing all runs based on the

infNDCG and P@10, it is interesting to notice that the run

that achieved the best performance in term of infNDCG

would be ranked 9th in the ranking based on P@10. The

same observation is made for the second best run based on

infNDCG, which would also be ranked nineth in the rank-

ing based on P@10. This clearly indicates that the

infNDCG metric is not always correlated with the P@10

metric. Furthermore, it is interesting to notice that the

infNDCG metric is also not correlated with the classic

NDCG metric. Indeed, the run that allowed the UCSD

team to be ranked first in term of infNDCG would rank

the UCSD team ninth in the ranking based on the classic

NDCG metric. In term of NDCG, our best run is ranked

second.

Last but not least, it is important to note that the

bioCADDIE test query set is extremely small, with just 15

queries. Typical IR challenges such as the TREC challenges

include at least 50 test queries (66–68). This may be con-

sidered to be a low number of test queries for providing

consistent and robust evaluation results. We believe that

this explains why the performance based on the inferred

metrics does not correlate with the performance based on

the conventional metrics across all participants (e.g. the

UIUC-GSIS team ranks second in term of inNDCG but

10th in term of NDCG). Indeed, the robustness and con-

sistency of most of the inferred measures with respect to

conventional measures has only been demonstrated on a

larger number of queries (58–60,69). As discussed in

Retrieval performance metrics section, this also drives our

choice to present our results in terms of the conventional

metrics.

Conclusion

In this paper, we presented a method for retrieving and

searching biomedical data through query formulation. In

particular, the method proposed transforms the initial

query into a multi-field query that is then enriched with

terms that are likely to occur in the relevant datasets, using

query expansion. We compared and evaluated two query

expansion strategies, one based on the Rocchio method

and another based on a biomedical lexicon. We performed

a comprehensive comparative evaluation of our method on

the bioCADDIE dataset collection for biomedical retrieval.

We have demonstrated the effectiveness of our multi-

field query building method compared to baseline methods

which consist of a straightforward approach of querying

the title and/or the description fields (for Baselines 1 and 2,

MAP is improved from 0.2171 and 0.2669, respectively, to

0.2996, infAP is improved from 0.2088 and 0.2348, re-

spectively, to 0.2703, and infNDCG is improved from

0.3609 and 0.3575, respectively, to 0.3809.). We have also

shown the benefits of query expansion, where the Rocchio

method using the description field as source of query ex-

pansion allows to improve the MAP for Baselines 1 and 2

from 0.2171 and 0.2669, respectively, to 0.3351, the

infAP for Baselines 1 and 2 from 0.2088 and 0.2348, re-

spectively, to 0.3062, and the infNDCG from 0.3609 and

0.3575, respectively, to 0.4219.

We observed that the Rocchio QE method based on the

description field as source of terms slightly outperforms

the approach based on the biomedical lexicon as source of

terms (roughly a marginal improvement of 3%, 7% and

5% for, respectively, MAP, infAP and infNDCG). The

Rocchio query expansion method expands the query with

terms that are likely to occur in relevant datasets, as evi-

dence by high value for P@10 obtained. We also high-

lighted the fact that the query expansion method based on

the biomedical lexicon is providing decent retrieval results,

but is computationally much lighter since it doesner re-

quire computation of any relevance feedback set or any ini-

tial execution of the query. Hence, in terms of trade-off

between efficiency, execution time and retrieval accuracy,

the query expansion method based on the biomedical lexi-

con offers strong performance and should be considered

for a biomedical data search engine to be used at a large

scale.

In conclusion, although our approach is ranked seventh

in term of infNDCG in the official bioCADDIE results, it

ranks second in term of P@10 and NDCG. Hence, we be-

lieve that the proposed method provides good retrieval per-

formance and warrants further exploration of query

expansion strategies in this context. For instance, we plan

to explore a hybrid approach based on Rocchio and the

biomedical lexicon methods presented in this paper.

Consequently, the conclusions and observations drawn in

this paper should be benefit for the development of a Data

Discovery Index prototype or the improvement of the

existing one (DataMed).

Finally, although the methods in this work were de-

veloped in the particular context of the DataMed project,

the conclusions derived from our investigation may have

broader application for search over repositories containing

diverse data collections. Indeed, depending on the nature

of a given query, the type of targeted data and the set of

targeted repositories, the query can be reformulated fol-

lowing the methodology suggested in this paper to better

take advantage of the semantic structure of the query. In

particular, the insight that different fields may contribute
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differently to retrieval and query expansion performance is

likely to generalize. Future work includes the exploration

of re-ranking and the improvement of IR model using ex-

ternal sources of data such as the literature (70,71).
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Appendix

The list of the queries given as test for the bioCADDIE

challenge is given inTable A5.

Table A5. Details of the queries

Queries Organisms Genes Diseases Category

Query 1: Find protein sequencing data related to bacterial chemotaxis

across all databases

— — — þ

Query 2: Search for data of all types related to MIP-2 gene related to biliary

atresia across all databases

— þ þ —

Query 3: Search for all data types related to gene TP53INP1 in relation to

p53 activation across all databases

— þ — —

Query 4: Find all data types related to inflammation during oxidative stress

in human hepatic cells across all databases

þ — þ —

Query 5: Search for gene expression and genetic deletion data that mention

CD69 in memory augmentation studies across all databases

— þ — þ

Query 6: Search for data of all types related to the LDLR gene related to

cardiovascular disease across all databases

— þ þ —

Query 7: Search for gene expression datasets on photo transduction and

regulation of calcium in blind Drosophila melanogaster

þ — — þ

Query 8: Search for proteomic data related to regulation of calcium in blind

D. melanogaster

þ — — þ

Query 9: Search for data of all types related to the ob gene in obese Mus

musculus across all databases

þ þ — —

Query 10: Search for data of all types related to energy metabolism in obese

M. musculus

þ — — —

Query 11: Search for all data for the HTT gene related to Huntingtoner dis-

ease across all databases

— þ þ —

Query 12: Search for data on neural brain tissue in transgenic mice related to

Huntingtoner disease

þ — þ —

Query 13: Search for all data on the SNCA gene related to Parkinsonne dis-

ease across all databases

— þ þ —

Query 14: Search for data on nerve cells in the substantia nigra in mice across

all databases

þ — — —

Query 15: Find data on the NF-kB signaling pathway in Myasthenia gravis

(MG) patients

— þ þ —

(x) means the concept is present in the query, (—) means the concept is not present in the query. These marks do not imply any ‘positive’ or ‘negative’ informa-

tion except for the presence or the absence of the considered concept in the query.
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