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Abstract
IkB kinase β (IKKβ) is a key signaling kinase for inflammatory responses, but it also plays

diverse cell type-specific roles that are not yet fully understood. Here we investigated the

role of IKKβ in the cornea using IkkβΔCSmice in which the Ikkβ gene was specifically deleted

in the corneal stromal keratocytes. The IkkβΔCS corneas had normal morphology, transpar-

ency and thickness; however, they did not heal well from mild alkali burn injury. In contrast

to the IkkβF/F corneas that restored transparency in 2 weeks after injury, over 50% of the

IkkβΔCS corneas failed to fully recover. They instead developed recurrent haze with

increased stromal thickness, severe inflammation and apoptosis. This pathogenesis corre-

lated with sustained myofibroblast transformation with increased α smooth muscle actin (α-

SMA) expression, higher levels of senescence β-Gal activity and scar tissue formation at

the late stage of wound healing. In addition, the IkkβΔCS corneas displayed elevated expres-

sion of hemo-oxygenase-1 (HO-1), a marker of oxidative stress, and activation of stress sig-

naling pathways with increased JNK, c-Jun and SMAD2/3 phosphorylation. These data

suggest that IKKβ in keratocytes is required to repress oxidative stress and attenuate fibro-

genesis and senescence in corneal wound healing.

Introduction
IκB kinase β (IKKβ) is a key catalytic subunit of the IKK complex [1]. It plays a crucial role in
the activation of NF-κB, which is a transcription factor that binds to κB elements in promoters
and enhancers of target genes [2]. Stress stimuli can activate the IKKβ-NF-κB cascade, leading
to either activation or repression of gene expression in a highly cell type-specific fashion. In
immune cells, i.e. neutrophils and macrophages, this cascade leads to induction of genes coding
for cytokines, chemokines, enzymes and molecules with microbicidal activity [3]. The immune
cell IKKβ, therefore, plays a crucial role in protection against dangerous environmental stimuli.
Although IKKβ is ubiquitously expressed in essentially all mammalian organisms, its role in
non-immune cells is less well understood.
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With the advent of genetic mutant mice in which the Ikkβ gene is deleted in specific cell
types, it has become evident that IKKβ has diverse roles in the regulation of homeostasis, stress
responses, survival and apoptosis [4]. Studies in mutant mice have shown that the IKKβ is
required to maintain homeostasis of the immune responses in skin [5,6], to inhibit sensory
excitability in neurons [7], to repress proliferation in hepatocytes [8], and to potentiate apopto-
sis in mammary epithelial cells, leading to mammary gland involution [9]. The physiological
effects of IKKβ could be the consequence of modulation of tissue homeostasis and cell-cell
interactions. The intestinal epithelial IKKβ, for example, protects the intestinal tract from bac-
terial infection via the suppression of local inflammation and improvement of epithelial cell
survival [10]. Similarly, the hepatocyte IKKβ prevents chemical carcinogenicity by reducing
hepatocyte ROS accumulation and apoptosis and alleviating the activation of liver macro-
phages [11].

The cornea consists of five distinct layers: a stratified non-keratinized epithelial cell layer,
the Bowman’s membrane, a highly organized collagenous stroma layer interspersed with kera-
tocytes, the Descemet’s membrane and a single endothelial cell layer [12]. Previously, we used
gene knockout approach and investigated the role of IKKβ in corneal epithelial cells [13]. We
showed that IKKβ is dispensable for pre- and post-natal corneal epithelium development, but
is required for optimal healing of corneal epithelial debridement wounds. Mechanistically,
IKKβ is required for activation of the NF-κB and p38 signaling pathways, which lead to corneal
epithelial cell migration for wound healing.

Here we have applied the similar approach to characterize the roles of IKKβ in keratocytes,
the residential cells of the corneal stroma. We show that the keratocyte IKKβ is also dispensable
for corneal development, but is required for wound healing. In response to mild alkaline burn
injury [14], IKKβ-deficient corneas exhibit defective healing associated with excess ROS, stress
signaling pathway activation, myofibroblast transformation and senescence. These results sug-
gest that the keratocyte IKKβmodulates multiple stress signaling pathways in corneal wound
healing responses.

Materials and Methods

Mouse strains, reagents and antibodies
The IkkβF/F mice were a gift from Dr. Michael Karin at the University of California at San
Diego and the Kera-Cremice were described before [15], The mice (n = 94) used in this work
were housed in the Experimental Animal Laboratory at the University of Cincinnati. The pro-
cedures carried out in this work are in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The
protocol (no. 06-04-19-01) approved by the Institutional Animal Care and Use Committee
(IACUC) of the University of Cincinnati. Euthanasia was done by carbon dioxide (CO2) to
effect followed by cervical dislocation.

The following antibodies were used in the study: anti-p-SMAD 2 (Ser-465, 467), anti-
SMAD 3 (Ser-423, 425) and anti-p-Jun (Ser 63, 73) were from Cell Signaling, anti-α-SMA
from Abcam, anti-β-actin from Sigma-Aldrich, anti-CD45 and anti-CD11b from Invitrogen,
anti-p-JNK (Thr-183, Tyr-185) from Promega, and anti-HO-1 from StressGen
Biotechnologies

In vivo alkali burn of the cornea
Alkali burn corneal injuries were done following protocols described before with minor modifi-
cations [14]. Briefly, animals were anesthetized by intraperitoneal injection of ketamine hydro-
chloride (80 mg/kg) and xylazine (10 mg/kg). Ocular surface alkali burns were produced by
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placing 3MM chromatography paper (Whatman) cut into 2-mm diameter circles previously
soaked in 0.05 N NaOH onto the central cornea for exactly 90 seconds. The eyes were continu-
ously washed with PBS for 1 min, terramycin ophthalmic ointment was topically administered
to the eyes, and the animals were placed on a warming pad. At least 8 mice were used under
each experimental condition.

Evaluation of corneal opacity, histological and immunohistochemical
analysis
Corneal opacity was evaluated by stereoscopic microscopy and slit lamp. The opacity was scored
as: 0, completely clear cornea, +1, slight opacity, +2, mild opacity with iris and lens visible, +3,
severe opacity with iris and lens invisible, but opacity was limited to the cauterized area, +4,
extensive opacity throughout the entire cornea. Cryosections of the eye tissues were subjected to
H&E staining following standard procedures. Immunohistochemical analysis was done as
described previously [13]. TUNEL was done using the ApopTag Plus In Situ Apoptosis Fluores-
cein Detection Kit in accordance to the manufacture’s instruction (Millipore). The SA-β-Gal
activities were measured at the pH 6.0 using Beta-Glo Assay system (Promega). Stained sections
were mounted and photographed using an Axio Observer Inverted Microscope (Carl Zeiss).

Statistical analyses
The data were analyzed by either two-tailed student t-test or ANOVA. � p< 0.05, �� p< 0.01
and ��� p< 0.001 were considered statistically significant.

Results

Generation of Ikkβ keratocyte knockout mice
The Kera-Cre transgenic mice carry Cre recombinase gene controlled by the Keratocan pro-
moter [16]. We crossed IkkβF/F and Kera-Cremice and identified the IkkβF/F and Kera-Cre
genes in the offspring by genotyping of tail genomic DNA (Fig 1A). To evaluate the efficiency
of Ikkβ ablation, we isolated corneal stromal cells from adult eyes, extracted genomic DNA,
and performed PCR using primers amplifying the IkkβF allele. While the products of PCR
amplification were detected in cells isolated from IkkβF/F corneas, they were absent in cells iso-
lated from IkkβF/F/Kera-Cre corneas, though Gapdh used as control was amplified in both cells
(Fig 1B). These data confirmed that IKKβ was successfully ablated in the corneal stroma of
IkkβF/F/Kera-Cre mice, henceforth referred to as IkkβΔCS.

Fig 1. Generation of IkkβΔCS mice. (A) Schematic illustration of the strategy for generating corneal stroma-
specific Ikkβ knockout mice, namely IkkβΔCSmice. The Kera-Cre transgenic mice, in which the Cre
recombinase gene was controlled by the Keratocan promoter, were crossed with IkkβF/Fmice. In the Kera-
Cre/IkkβF, i.e. IkkβΔCSmice, the Ikkβ floxed alleles were ablated specifically in the corneal stromal keatocytes.
(B) Genomic DNA of the corneal stroma isolated from the IkkβF and IkkβΔCSmice was genotyped by PCR
using primers specific for the IkkβF allele andGapdh.

doi:10.1371/journal.pone.0151869.g001
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Normal corneal development of IkkβΔCS mice
To assess if the keratocyte IKKβmight be required for corneal development, we used stereoscopic
examination of the eyes of IkkβF and IkkβΔCSmice from 1 month- up to 8 months-old. The gross
morphology and transparency of the eyes of IkkβΔCSmice were indistinguishable from those of
IkkβFmice (Fig 2A). IkkβF and IkkβΔCS adult eyes had also similar corneal thickness as deter-
mined by histological examination after H&E staining (Fig 2B). Neither the IkkβF nor the IkkβΔCS

corneas had obvious evidence of cell proliferation or apoptosis as shown by PCNA staining and
Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), respectively. Hence,
IKKβ expression in keratocytes is dispensable for corneal development and maintenance.

IKKβ is required for optimal corneal wound healing
To evaluate whether keratocyte IKKβ was required for wound healing after environmental
insults [17], we performed mild alkali burn injury on the IkkβF and IkkβΔCS corneas and exam-
ined healing stereoscopically. Both IkkβF and IkkβΔCS eyes displayed haze at 1 day post-injury
and gradual resolution of the haze 4–7 days after injury (Fig 3A). However, while all of the
IkkβF corneas restored transparency at 2 weeks after injury, approximately half of the IkkβΔCS

corneas (4 out of 8) had recurrent haze and became cloudy. The opacity score was high at day
0–1 and reduced at 4–14 days after injury in all of the eyes examined. It remained low in IkkβF,
but became significantly higher in IkkβΔCS corneas at 4 weeks after injury (Fig 3B). Histological
examination showed that the IkkβF and IkkβΔCS corneas were not much different at 1 and 4
days after injury, but at 28 days, though the IkkβF corneas showed normal morphology (data
not shown), the cloudy IkkβΔCS corneas were swollen with increased stroma thickness (Fig 3C).
These IkkβΔCS corneas also exhibited severe epithelium disruption, epithelial cell protrusion
into stroma and scar tissue formation.

Inflammatory and stress responses in IkkβΔCS corneas
Alkali burn injury of the cornea evokes inflammatory responses and cellular stress. Inflamma-
tory responses facilitate tissue remodeling essential for wound healing, but if excessive, they

Fig 2. Role of IKKβ in corneal development andmaintenance. (A) The eyes of IkkβF and IkkβΔCSmice
were examined under a stereoscope and photographed. (B) The IkkβF and IkkβΔCS eyes were analyzed by
H&E staining, TUNEL assay and immunostaining using anti-PCNA. Blue: Hoechst for nuclei. Red: TUNEL
and PCNA positive signals, which were absent in the cornea of adult mice. ST: corneal stroma, EP, corneal
epithelium, labeled with arrows. Pictures represent results from at least 3 mouse corneas of each genotype.

doi:10.1371/journal.pone.0151869.g002
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obstruct healing and cause severe damage [18]. Given IKKβ’s role in inflammatory signaling,
we hypothesized that its ablation in keratocytes would perturb corneal inflammation. The
injured corneas were examined by immunohistochemistry using anti-CD11b that detects mac-
rophages and anti-CD45 that detects neutrophils. At the early phase of wound healing, the
IkkβF and IkkβΔCS corneas were similar, with massive macrophages and neutrophils at 1 day,
but no inflammatory cells detected at 4 days after injury (Fig 4A–4C). At the late phase, i.e. 28
days, the IkkβF corneas (eye 1 and eye 2) had a few detectable inflammatory cells; however, the
opaque IkkβΔCS corneas (eye 1) were filled with macrophages and neutrophils (Fig 4D). On the

Fig 3. Corneal wound healing in IkkβF and Ikkβ ΔCSmice. The IkkβF and Ikkβ ΔCSmice were subjected to
mild alkali burn corneal injury, and the eyes were examined under a stereoscope and slit lamp. (A)
Representative photos of the eyes at different days after injury, and (B) the average opacity score are
presented as mean±SEM of at least 8 eyes examined under each genotype/experimental conditions.
Significant differences between groups were calculated using 2-way repeated measures ANOVA followed by
post hoc multiple comparisons of means (Tukey method), and *p < 0.05 is considered statistically significant
between the genotypes on the given days of injury. (C) The wounded eyes were harvested at different days
after injury and examined by H&E. ST: corneal stroma, EP, corneal epithelium, labeled with arrows.

doi:10.1371/journal.pone.0151869.g003

Fig 4. Inflammation in the injured cornea. The IkkβF and Ikkβ ΔCS eyes were harvested at (A and B) 1 day,
(C) 4 days, and (D and E) 28 days after alkali burn injury. The tissues were processed and used for
immunohistochemistry using anti-CD11b and anti-CD45 for infiltrated leukocytes. Blue: DAPI (nuclei), Red:
leukocytes. (D) Of the two Ikkβ ΔCS eyes examined, only eye1 was opaque. The number of leukocytes in the
eyes at (B) 1 day and (E) 28 days after injury was quantified. Data represent average values from at least 5
slides/eye and 3 injured eyes examined. ST: corneal stroma, EP, corneal epithelium, labeled with arrows.
**p<0.01 was considered significantly different between IkkβF and Ikkβ ΔCS eyes.

doi:10.1371/journal.pone.0151869.g004
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other hand, if the IkkβΔCS corneas were transparent (eye 2) at 28 days, they were similar to the
IkkβF eyes with little, if any, detectable inflammatory cells. The number of inflammatory cells
in IkkβΔCS corneas was more abundant than that in IkkβF corneas (Fig 4E). These observations
suggest that IKKβmay prevent corneal opacity by facilitating resolution of inflammation at the
late phase of wound healing.

Besides its role in inflammatory signaling, the IKKβ is known to be involved in the modula-
tion of redox homeostasis; its ablation has been linked to severe oxidative stress and tissue injury,
which may in turn potentiate inflammation and cytotoxicity [11,19,20]. We therefore examined
whether IKKβ ablation affected the stress responses by measuring the expression of hemeoxygen-
ase-1 (HO-1), encoded by an oxidative stress-inducible gene. In contrast to the IkkβF corneas,
which did not have any detectable HO-1, the opaque, but not transparent, IkkβΔCS corneas had
abundant HO-1 expression at 28 days of injury (Fig 5A and 5B). It is known that elevated oxida-
tive stress can lead to the activation of stress-induced signaling pathways, such as the JNK-c-Jun
cascade [21]. Indeed, the expression of HO-1 is accompanied by the activation of stress markers,
e. g., p-JNK, p-C-Jun (Fig 5). In addition, the opaque IkkβΔCS corneas had increased phosphory-
lation of SMAD, markers of TGFβ signaling [22–24]. The IkkβF and transparent IkkβΔCS corneas,
in contrast, did not have any detectable p-SMAD. Taken together, the aberrant wound healing
responses in the IkkβΔCS corneas correspond to sustained inflammation with concurrent increase
of oxidative stress and activation of the stress signaling pathways.

Cellular activities affected by IKKβ ablation
TGFβ promotes myofibroblast transformation in corneal wound healing [25,26]. The finding
that TGFβ signaling was upregulated in the IkkβΔCS corneas prompted us to examine the
expression of α smooth muscle actin (α-SMA), a marker of myofibroblasts. There was indeed
abundant α-SMA expression in the opaque IkkβΔCS, but not in the IkkβF and transparent
IkkβΔCS corneas at 28 days after injury (Fig 6A and 6B).

Both TGFβ activation and sustained oxidative stress can induce, stabilize and amplify senes-
cence, leading to the detrimental effects of cell death [27,28]. The expression of senescence-

Fig 5. Oxidative stress and stress signaling in the injured cornea. The IkkβF and Ikkβ ΔCS eyes were
harvested at 28 days after alkali burn injury. The tissues were processed and used for immunohistochemistry
using anti-HO-1, a marker of oxidative stress, anti-pJNK and p-c-Jun, markers for the stress-activated JNK
pathway, and anti-p-SMAD, a marker for active TGFβ signaling. Blue: DAPI (nuclei), Red: leukocytes. ST:
corneal stroma, EP, corneal epithelium, labeled with arrows. (B) The number of positive cells was quantified
and **p<0.01 and ***p<0.001 was considered significantly different between IkkβF and Ikkβ ΔCS eyes.
Results represent at least 5 slides/eye and 3 injured eyes examined.

doi:10.1371/journal.pone.0151869.g005
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associated β-Galactosidase (SA-β-Gal) [29], although completely undetectable in the IkkβF cor-
neas, was detected in a few cells in the IkkβΔCS corneas at 4 days after injury (Fig 6C). While the
SA-β-Gal activity remained undetectable in the IkkβF corneas at 28 days after injury, it was
markedly amplified in the opaque IkkβΔCS corneas (Fig 6C and 6D). Concurrently, the opaque,
but not transparent IkkβΔCS corneas displayed increased apoptosis, detected by TUNEL stain-
ing (Fig 6A and 6B). Our data suggest that IKKβ expression in keratocytes is required for the
repression of fibrogenesis, senescence and apoptosis in corneal wound healing.

Discussion
In the present work, we show that IKKβ expression in keratocyte is dispensable for corneal
development, but required for optimal wound healing. We and others have previously shown
that IKKβ expression in fibroblasts is essential to maintain redox homeostasis, and it does so
through NF-κB, which regulates anti-oxidant gene expression [20,30–32]. Data presented here
suggest that IKKβ has a similar role in keratocytes, the cornea-specific fibroblasts [17]. IkkβΔCS

corneas exhibit elevated oxidative stress and activation of stress signaling pathways after stro-
mal injury. In contrast to wild type corneas, which eventually recover from mild alkaline burn
injury, many of the IkkβΔCS corneas become cloudy and swollen with scar formation. Our data
are consistent with the notion that excessive oxidative stress impede the healing of corneal stro-
mal wounds [33,34].

The corneal keratocytes are quiescent in the absence of external insults, but enter cell cycle
and become active under pathologic conditions [35,36]. In response to injury, the keratocytes
differentiate to myofibroblasts essential for contraction and wound closure; excessive myofi-
broblast transformation, on the other hand, will result in fibrosis and scars [37,38]. The IkkβΔCS

corneas have sustained myofibroblast activation defined by the expression of α-SMA, and cor-
respondingly, they exhibit strong activation of the TGFβ pathway, a potent inducer of myofi-
broblast differentiation [39]. Interestingly, Ikkβ-/- fibroblasts display similar phenotype (Chen,
et. al., data not shown). Studies in fibroblasts have shown that loss of IKKβ leads to oxidative
stress, which induces c-Jun binding and activation of the Tgfβ promoter and gene expression;

Fig 6. Myofibroblast transformation, senescence and apoptosis of the injured cornea. (A) The IkkβF

and Ikkβ ΔCS eyes were harvested at 28 days after alkali burn injury. The tissues were processed and used for
immunohistochemistry using anti-α-SMA, a marker for myofibroblast and TUNEL assays for the detection of
apoptotic cells. Blue: DAPI (nuclei), Red: leukocytes. (B) The IkkβF and Ikkβ ΔCS eyes were harvested at 4
days and 28 days after alkali burn injury. The tissue sections were examined by SA-β-Gal staining. The SA-β-
Gal positive cells are stained with blue color. ST: corneal stroma, EP, corneal epithelium, labeled with arrows.
(B and D) The number of staining positive cells was quantified and **p<0.01 and ***p<0.001 was
considered significantly different between IkkβF and Ikkβ ΔCS eyes. Data represent at least at least 5 slides/
eye and 3 injured eyes examined.

doi:10.1371/journal.pone.0151869.g006
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TGFβ in turn potentiates myofibroblast transformation and senescence (Chen, et. al., data not
shown). It is possible that oxidative stress also serves as a molecular link between IKKβ and
TGFβ signaling in the IkkβΔCS corneas.

Corneal wound healing involves an early inflammatory phase followed by a late remodeling
phase. In the early phase, tissue damage triggers neutrophil infiltration and macrophage inva-
sion. These inflammatory cells produce cytokines, chemokines and molecules with microbici-
dal activity important for protecting the cornea from infection and environmental insults.
Previous studies by Saika, et. al. have shown that activation of the IKK-NF-κB pathways in the
neutrophil and macrophage makes the major contribution to the inflammatory responses in
corneal wound healing [40]. Consistent with this notion, we show that IKKβ in keratocytes is
not required for early phase inflammatory responses, but instead seems to be involved in the
maintenance of tissue homeostasis. In fact, IKKβ exhibits similar functions in other non-
immune cells [41], such as hepatocytes [11], keratinocytes [5] and intestinal epithelial cells
[42].

The mechanisms through which IKKβ regulates redox homeostasis and TGFβ signaling
have been investigated in fibroblasts. In essence, IKKβ is required for optimal expression of
redox scavengers, and IKKβ-null cells have decreased capacity to counteract oxidative stress
elicited by environmental insults. When oxidative stress increases to a threshold level, it acti-
vates the JNK-c-Jun pathway, which induces TGFβ expression and activity; TGFβ in turn can
act through NADH oxidase to further potentiate oxidative stress. Due to activation of the auto-
crine amplification of the ROS-TGFβ-NOX loop, IKKβ ablation in fibroblasts leads to a pro-
gressive increase of oxidative stress and TGFβ signaling, and a gradual myofibroblast
transformation and premature senescence (Chen, et. al. unpublished data). It is possible that
IKKβ also regulates redox homeostasis in keratocytes, where the activation of the ROS-TGFβ-
NOX loop leads to the more severe wound healing defects observed in the IkkβΔCS corneas.
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