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Characterization of altered molecular mechanisms in
Parkinson’s disease through cell type–resolved
multiomics analyses
Andrew J. Lee1†, Changyoun Kim2†, Seongwan Park1, Jaegeon Joo1, Baekgyu Choi1,
Dongchan Yang1, Kyoungho Jun3, Junghyun Eom1, Seung-Jae Lee4,5, Sun Ju Chung6,
Robert A. Rissman7, Jongkyeong Chung3, Eliezer Masliah2*, Inkyung Jung1*

Parkinson’s disease (PD) is a progressive neurodegenerative disorder. However, cell type–dependent transcrip-
tional regulatory programs responsible for PD pathogenesis remain elusive. Here, we establish transcriptomic
and epigenomic landscapes of the substantia nigra by profiling 113,207 nuclei obtained from healthy controls
and patients with PD. Our multiomics data integration provides cell type annotation of 128,724 cis-regulatory
elements (cREs) and uncovers cell type–specific dysregulations in cREs with a strong transcriptional influence on
genes implicated in PD. The establishment of high-resolution three-dimensional chromatin contact maps iden-
tifies 656 target genes of dysregulated cREs and genetic risk loci, uncovering both potential and known PD risk
genes. Notably, these candidate genes exhibit modular gene expression patterns with unique molecular signa-
tures in distinct cell types, highlighting altered molecular mechanisms in dopaminergic neurons and glial cells
including oligodendrocytes and microglia. Together, our single-cell transcriptome and epigenome reveal cell
type–specific disruption in transcriptional regulations related to PD.
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INTRODUCTION
Parkinson’s disease (PD) is a chronic, progressive neurodegenera-
tive disorder accompanying both motor and nonmotor symptoms
including resting tremor, bradykinesia, rigidity, and other nonmo-
tor symptoms. Pathologically, PD is characterized by dopaminergic
neuronal loss, abnormal protein deposition of Lewy bodies and
Lewy neurites, and neuroinflammation in the substantia nigra
(SN) (1). With regard to its etiology, genetic studies for familial
forms of PD, which accounts for ~10% of patients with PD, have
identified critical causal genetic factors (2, 3). Large-scale
genome-wide association studies (GWAS) have further identified
up to 90 genomic loci associated with PD (4–8). However, the iden-
tified genetic risk factors explain only 30% of familial and 3 to 5% of
sporadic PD cases, ascribed to the complex genetic predisposition
associated with the disease susceptibility (8, 9). The interpretation
of these genetic variants is hindered because specific cell types in
which these genetic variants exert their function are unknown.
Further, the functional mechanism by which these variants contrib-
ute to disease susceptibility is still elusive, as most of them are
located in noncoding sequences. The disease risk variants located

in noncoding regions may disrupt transcription factor (TF)
binding and cause a perturbation in cis-regulatory activity (10).

The growing recognition that perturbations in cis-regulatory el-
ements (cREs) involve in disease-specific gene expression and co-
localize with many noncoding genetic variants provides a
rationale for in-depth investigation of epigenome associated with
PD (10, 11). Although a systematic examination of cREs in PD is
scarce, a global dysregulation of acetylated histone H3 lysine 27
(H3K27ac) landscape and a localization of PD GWAS genes prox-
imal to the dysregulated cREs have been reported in the prefrontal
cortex (12). Further, the advent of single-nucleus sequencing ap-
proach has allowed the investigation of epigenome landscape
across individual brain cell types. A recent study reported the asso-
ciation of genetic variants of Alzheimer’s disease (AD) and PD at
region- and cell type–specific cREs in healthy brains (13).
Another study has characterized AD-associated dysregulation in
chromatin accessibility at sub–cell type level, identifying cell type–
specific cRE candidates (14). In line with this, there is a tremendous
demand for cell type–resolved investigation of aberrant cis-regula-
tory regions in PD with respect to PD-specific gene expression.

As the function of cREs is dependent on the long-range chroma-
tin interaction with a target promoter located over large genomic
distances, the identification of cRE-to-promoter relationships is
challenging. To this end, high-throughput chromosome conforma-
tion capture methods, including chromatin interaction anaysis with
paired-end tag (ChIA-PET), Hi-C, promoter-capture Hi-C,
HiChIP, and proximity ligation-assisted ChIP-seq (PLAC-seq),
have allowed the investigation of genome-wide chromatin interac-
tions (11, 15–18) and substantially advanced our view on the regu-
latory role of cREs regulating distal target gene expression. Recent
integrative analyses of long-range chromatin interactome in healthy
brain tissues have identified putative target genes of AD and PD
genetic variants (13, 19). Nevertheless, the connection between
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cREs and altered gene expression in PD is largely unknown because
of the lack of high-resolution three-dimensional (3D) chromatin
contact maps available in the SN region of PD and control
individuals.

To determine how cell type–dependent dysregulation in cis-reg-
ulatory regions affects molecular mechanisms related to PD patho-
genesis in the context of 3D chromatin interactions, we conducted
integrative analyses using multiomics data generated from the SN,
the brain region most affected by PD. Single-nucleus sequencing of
RNA (snRNA-seq) and chromatin accessibility (snATAC-seq) es-
tablished cell type–resolved transcriptome and epigenome for
both PD and control SN. Analysis of global H3K27ac signals from
chromatin immunoprecipitation followed by sequencing (ChIP-
seq) identified a set of dysregulated cREs, which were annotated
on the basis of active cell type. By integrating PD GWAS variants,
we confirmed a strong association between the cell type–resolved
epigenome and the PD-associated genetic components and identi-
fied specific TF binding motifs that are disrupted by the genetic var-
iants. Furthermore, we generated high-resolution 3D chromatin
contact maps to effectively expand potential PD candidate genes
by inferring putative targets of dysregulated cREs and PD
GWAS–single-nucleotide polymorphisms (SNPs). Notably,
modular expression patterns of the putative target genes resolved
heterogeneous molecular pathways involved in PD, in which we an-
notated each cluster with a unique biological property and respon-
sible cell type. Our findings shed light on the complex molecular
characteristics of PD pathogenesis and expand candidate genes
through mapping the target genes of PD-specific noncoding se-
quences in a cell type–resolved manner.

RESULTS
Single-nucleus profiling of transcriptome and chromatin
accessibility in the human SN of control and PD cases
To dissect the disease-specific gene regulations in PD, we conducted
integrativemultiomics analysis on the transcriptome and chromatin
accessibility for individual cell types present in the human SN
(Fig. 1A). We performed snRNA-seq (10x Genomics v3) to charac-
terize PD-associated changes in transcriptome at single-nucleus res-
olution in 19 flash-frozen postmortem SN specimens (late-stage
PD = 6 and control = 6) and incorporated 7 raw snRNA-seq data
for control SN (table S1) (20). In parallel, we conducted snATAC-
seq (10x Genomics v1) on 13 postmortem SN specimens (late-stage
PD = 8 and control = 5) and integrated 2 additional SN samples (13)
to characterize cell type–resolved accessible chromatin (table S1).
The SN specimens used for the experiments were obtained from
Alzheimer’s Disease Research Center (ADRC) at the University of
California, SanDiego (fig. S1A). A rigorous quality control yielded a
final set of 57,270 nuclei (34,638 controls and 22,632 PD nuclei) for
snRNA-seq and 55,937 nuclei (26,074 controls and 29,863 PD
nuclei) for snATAC-seq (Fig. 1, B and C, and table S2).

We followed a standard Seurat (21) and Signac (22) framework
to process snRNA-seq and snATAC-seq data, respectively. Unbi-
ased clustering of the nuclei and projecting them on the Uniform
Manifold Approximation and Projection (UMAP) dimensions did
not show particular segregation by potential confounders (sex, age
of death, postmortem interval, and doublet score) in both snRNA-
seq and snATAC-seq clusters (figs. S1, B and C, and S2). On the
basis of known marker genes, we profiled all major cell types in

the SN, including neurons (SYT1), oligodendrocytes (Oligo; MAG
andMOBP), oligodendrocyte precursor cells (OPCs; PDGFRA), as-
trocytes (Ast; AQP4 and GFAP), microglia (Micro; CD74 and
RUNX1), endothelial cells (Endo; CLDN5), and pericytes (Peri;
PDGFRB) (figs. S3A and S4A). Subclustering of neuronal popula-
tions allowed the annotation of dopaminergic neurons (DopaNs;
TH and SLC6A3) as a distinct cluster from GABAergic neurons
(GabaNs; GAD1 and GAD2) (figs. S3B and S4B). Cellular composi-
tion analysis between PD and control groups indicated that PD
cases present a more prominent reduction in AGTR+ DopaNs
(one-sided Welch t test, P = 0.035) compared to the AGTR− popu-
lation (one-sidedWelch t test, P = 0.104), in linewith a recent report
(23) that PD-associated neuronal degeneration is more actively as-
sociated in specific sup-DopaNs expressing AGTR (Fig. 1D and fig.
S4, C and D).

Further, we identified 3830 PD-associated differentially ex-
pressed genes (DEGs; down-regulated = 1876 and up-regulat-
ed = 1954) (table S3) by iteratively performing a differential
analysis in individual cell types based on donor-based pseudo-
bulk (Fig. 1E). The correlation analysis of PD and control SN at
the individual level showed that our samples are generally well clus-
tered together on the basis of PD diagnosis (fig. S5A) and DEGs are
consistently represented by all PD donors without a sample bias
(figs. S5B and S6A). The majority (65.1%) of the identified DEGs
was found to be SN specific, when matched with differential
genes obtained from comparing with other brain parts (hippocam-
pus and frontal cortex), by incorporating 545 bulk brain RNA-seq
results from GTEx portal (v8).

Down-regulated DEGs were overrepresented by cell type–specif-
ic Gene Ontology (GO) pathways relevant to PD, as exemplified by
mitochondrial function in DopaNs, neurogenesis regulation in
OPCs and astrocytes, and immune responses in microglia (fig.
S6B). Enriched biological processes in up-regulated DEGs exhibited
recurrent cellular processes in multiple cell types, including macro-
autophagy (DopaN and Micro), protein folding and stabilization
(Oligo and Endo), and cellular differentiation (OPC and Ast) (fig.
S6B). We found that 12 of 20 well-known PD risk genes (24) were
included in DEGs, which were concentrated in DopaNs (UCHL1,
PARK7, CHCHD2, VPS13C, and GAK), microglia (SNCA, LRRK2,
VPS13C, and GAK), and oligodendrocytes (MAPT and FBXO7)
(Fig. 1E and fig. S6C). The results indicate that our transcriptomic
profiling of PD and control SN at the single-nucleus level effectively
recapitulates PD biology and highlight the pathogenic association of
these cell types in PD.

We established cell type–resolved cis-regulatory landscape in PD
and control SN by decomposing the snATAC-seq reads according to
cell type annotation. Seurat’s label transfer algorithm based on gene
expression and gene activity score using cell type marker genes in-
dicated a close linkage between identical clusters of snRNA-seq and
snATAC-seq nuclei (fig. S7A). We also confirmed that the snRNA-
seq and snATAC-seq showed a high correlation across the cell types
(Fig. 1F) and across individual samples (fig. S7B). In total, 128,724
cREs were identified from pseudo-bulk snATAC-seq chromatin ac-
cessibility, which were assigned to the corresponding cell type
(Fig. 1G and fig. S7C). A small fraction of cREs (1.12%) was com-
monly annotated by all cell types, which suggests that a high degree
of cell type specificity was captured by the dynamic cRE repertoire
(fig. S7D).
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Fig. 1. Single-nucleus profiling of transcriptomic and epigenomic landscape in the human SN. (A) A schematic of the study design, illustrating the preparation of
sequencing-based omics data and downstream computational analysis. (B) Uniform Manifold Approximation and Projection (UMAP) embeddings of quality control–
passed nuclei for snRNA-seq (left) and snATAC-seq (right). The nuclei were annotated into dopaminergic neurons (DopaNs), GABAergic neurons (GabaN), oligodendro-
cytes (Oligo), oligodendrocyte precursor cells (OPCs), astrocytes (Ast), microglia (Micro), endothelial cells (Endo), and pericytes (Peri), based on cell typemarkers. (C) UMAP
embeddings of nuclei colored by pathological status, where red and blue indicate nuclei from PD and control SN, respectively. (D) UMAP embeddings of nigral neurons
illustrating sub-DopaN populations with or without the expression of AGTR (left), along with box plots showing the normalized nucleus proportion of AGTR+ and AGTR−

DopaNs between control and PD cases based on snRNA-seq data. (E) A heatmap by log2 fold change (FC) of cell type–resolved snRNA-seq reads (PD/control), illustrating
1876 down-regulated DEGs (left) and 1954 up-regulated DEGs (right), with the annotation of known PD risk genes. (F) A heatmap showing Pearson’s correlation coeffi-
cients (PCC) between snATAC-seq gene activity scores and snRNA-seq gene expression across the cell types present in the human SN. (G) Genome browser tracks of
H3K27ac ChIP-seq signals and pseudo-bulk snATAC-seq signals resolved according to each cell type for PD (red) and control (green) groups, along with tracks indicating
the positions of cell type–resolved cREs. The signals for ChIP-seq and cell type–resolved snATAC-seq were normalized by the total reads mapped in cREs.

Lee et al., Sci. Adv. 9, eabo2467 (2023) 14 April 2023 3 of 20

SC I ENCE ADVANCES | R E S EARCH ART I C L E



Identification of dysregulated cREs in distinct cell types
Next, we questioned the presence of global dysregulation in the
noncoding regulatory landscape associated with PD in individual
cell types. While the single-nucleus sequencing approach provides
valuable insights into cell type specificity in the brain, it is challeng-
ing to effectively identify disease-specific dysregulated cREs due to
its inherent sparsity. To compensate for these limitations, we incor-
porated high-quality bulk H3K27ac ChIP-seq results (late-stage
PD = 9 and control = 9) using the SN specimens (fig. S7E). Given
a high consistency between H3K27ac ChIP-seq and pseudo-bulk
snATAC-seq signals across the cREs (Fig. 1G and fig. S7F), we im-
plemented an iterative cellularity correction approach to resolving
cellular heterogeneity in our bulk H3K27ac ChIP-seq results (fig.
S8). Then, we performed a quasi-likelihood test in EdgeR (25, 26)
to identify 5680 dysregulated cREs [down-regulated = 2770 and up-
regulated = 2910; Benjamini-Hochberg (BH)–adjusted Q < 0.05]
(Fig. 2A and table S4). Down-regulated cREs (0.93%) were found
to be cell type–common, retaining a similar level of cell type specif-
icity as the overall cREs, with the cell types dominantly annotated in
oligodendrocytes, OPCs, and astrocytes. A higher rate of cell type–
common cREs (5.01%) was found in up-regulated cREs, which may
be ascribed to the recurrent cellular processes associated with up-
regulated DEGs.

To validate the regulatory role of the identified dysregulated
cREs, we evaluated the genomic localization of DEGs with respect
to cis-regulatory dysregulation in a cell type–specific manner. Our
results showed that the PD-specific DEGs compared to controls
were preferentially colocalized with dysregulated cREs in PD cases
in a 100-kb genomic window compared to random expectations
(Fig. 2B). In addition, GO analysis for DEGs and dysregulated
cREs presented shared molecular pathways implicated in PD path-
ogenesis in a cell type–resolved manner (Fig. 2C). Together, the
findings suggest that genome-wide dysregulation in the cis-regula-
tory landscape is highly associated with the aberrant gene expres-
sion specific to PD.

Identification of potential PD genes associated with
dysregulated cREs and PD genetic risk variants
Given the strong link of dysregulated cis-regulatory regions with
PD-specific gene expression, we aimed to systematically decipher
the gene regulatory circuitry by implementing the “activity-by-
contact” (ABC) model (27). It is an experimentally proven model,
in which the quantitative effect of a cRE over its target gene expres-
sion is determined by the activity of the cRE weighted by the inter-
action frequencies to its promoter (Fig. 3A). To this end, we
performed in situ Hi-C experiment using 11 SN specimens (late-
stage PD = 5 and control = 6) and sequenced a total of 5.16
billion mapped reads to obtain 1.61 billion valid cis read pairs
(744 million for PD SN and 870 million for control SN), generating
unbiased, all-to-all 3D chromatin contact maps for PD and control
SN (fig. S9A). Using Fit-Hi-C (28), we identified 1.42 million and
1.03 million long-range chromatin interactions in 5-kb resolution
within a 1–megabase pair (Mbp) window for PD and control SN,
respectively (Q < 0.01; union = 1.87 million) (fig. S9B).

To assess the quality and validity of the identified interactions,
we first confirmed the marked enrichment of these interactions at
promoters (11.05%) and cREs (53.64%) (fig. S9, C and D). In addi-
tion, the total chromatin contacts for a gene accounting all chroma-
tin interactions anchored to its gene promoter strongly correlated

with gene expression in all cell types (fig. S9E). We experimentally
validated promoter-to-cRE relationships identified on the basis of
significant interactions by disrupting a cRE harboring PD GWAS-
SNPs through CRISPR-Cas9–mediated genome editing using SH-
SY5Y neuroblastoma (Fig. 3B and fig. S10). The quantitative
mRNA expression analysis on the genes (TOMM7, KLHL7, and
NUPL2) linked to the PD GWAS-SNP–harboring cRE, showed a
significant reduction in gene expression after the induction of the
genetic mutation (Fig. 3B). Last, the integration of expression quan-
titative trait loci (eQTL) associations for the human SN from GTEx
portal (v7) showed a marked enrichment of eQTLs in dysregulated
cREs and PDGWAS-SNPs, and a significant portion of target genes
identified by the ABC model were validated (Fig. 3, C and D, and
fig. S11). In sum, our data strongly support the regulatory effects of
dysregulated cREs and PD GWAS-SNPs on target gene expression
by means of chromatin interactions.

With the ABC model applied to our high-resolution chromatin
contact map, we quantified all cRE-target gene relationships with
respect to their contribution to target gene expression within 1-
Mb window. A total of 656 target genes of dysregulated cREs and
PD GWAS-SNPs were identified in a cell type–specific manner
(DopaN = 165, GabaN = 191, Oligo = 300, OPC = 231,
Ast = 233, Micro = 223, Endo = 235, and Peri = 201; table S5)
based on an ABC score threshold greater than 10 (equivalent to
10% contribution in overall chromatin contacts for a gene). These
putative target genes were highly cell type–specific, with a consid-
erable portion of the target genes (52.13%) assigned to only one or
two cell types (fig. S12A). The enriched biological pathways of up-
regulated cREs indicated a recurrent representation of autophagy
(DopaN with SBF2 and KLHL22; Oligo with MARK2, ATG2A,
and TOMM7; and Micro with PTGES3 and RUVBL2) and protein
folding (DopaN with ABCA7 and Oligo with PFDN6 and DNAJB4)
in multiple cell types (Fig. 3E and fig. S12, B and C). Conversely, cell
type–specific biological pathways implicated in PD pathogenesis
were enriched by the target genes of down-regulated cREs, includ-
ing learning or memory (DopaN; ATP8A1 and ARL6IP5), myelina-
tion (Oligo; DEGS1, MTMR2, and ACER3), and protein lipidation
(Micro; MPPE1, ATG10, and ZDHHC20) (Fig. 3E and fig. S12, B
and C). Last, a gene set enrichment analysis of putative PD genes
based on MGI mammalian phenotype database showed that,
among the 75 enriched phenotype ontologies (P < 0.05), 28 of
them were neurological, movement, and immune phenotypes
with a potential link to PD-related symptoms (fig. S12D and table
S6). When the gene set analysis was iterated in each cell type, we
found varying cell types causing each of these phenotypes
(Fig. 3F). Together, our findings strongly suggest that the identified
putative target genes of dysregulated cREs and PD GWAS-SNPs
have notable implications in PD pathogenesis and reaffirm that
PD is a highly heterogeneous disorder with the involvement of
diverse cell types and risk genes.

Association of PD susceptibility with cell type–resolved cis-
regulatory landscape
On the basis of the gene regulatory circuitry identified by 3D chro-
matin contact maps, a putative function of PD risk variants in the
gene regulation program was annotated in individual cell types. To
examine the association of common genetic variants related to PD
in cis-regulatory regions (10), we collected and analyzed 5912
genetic variants from four PD GWAS summary statistics
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Fig. 2. Dysregulation of cREs shaping PD-specific gene expression. (A) A heatmap of 2770 down-regulated and 2910 up-regulated cREs by log2 fold change of
normalized H3K27ac ChIP-seq reads divided by the mean of all samples, along with binarized annotation of cell types. DRS, dementia rating scale; MMSE, mini
mental state of examination; NA, not available. (B) Enrichment analysis for colocalization between DEGs and dysregulated cREs in a distance genomic window (100
kb). Violin plots represent the expected proportion of DEGs harbored by simulated cREs with 10,000 permutations. The observed proportion of DEGs is shown in
bold donuts (blue for down-regulated DEGs and dark orange for up-regulated DEGs). The statistical significance was calculated based on empirical testing
(**P < 0.01 and ***P < 0.001). (C) Top 5 enriched GO biological pathways for down-regulated (left) and up-regulated (right) DEGs commonly represented by genes
annotated by dysregulated cREs through Genomic Regions Enrichment of Annotations Tool (GREAT) for individual cell types. DEGs within PD-related pathways that
are also supported by dysregulated cREs are labeled. ATP, adenosine 5′-triphosphate.
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(P < 5 × 10−8) (4–6, 8). We found that 61.69% of these genetic var-
iants were associated with cREs by linkage disequilibrium (LD;
r2 > 0.8) (fig. S13A). The enrichment of PD-related SNPs in cell
type–resolved cREs was assessed by implementing LD score
(LDSC) regression analysis of heritability (29). We incorporated
five additional GWAS summary statistics of other neurological
and psychiatric disorders (table S7) (30–34). Oligodendrocyte

cREs showed a strong association in three PD GWAS studies (4–
6) (Fig. 4A). Microglia and endothelial cREs indicated enrichment
in two PD GWAS studies (4, 5), and DopaN cREs were exclusively
enriched in the PD GWAS conducted in East Asian cases (6). Our
finding shows that PD etiology involves more diverse cellular prop-
erties than AD, whose GWAS-SNPs are most heavily linked to mi-
croglia cREs (13, 14, 19). Further, the GWAS heritability analysis on

Fig. 3. Target gene inference for
noncoding regulatory sequences
through 3D chromatin contacts.
(A) The illustrative approaches to
identifying long-range interaction
target genes using high-resolution
3D chromatin contact map and to
characterizing the cis-gene regula-
tion circuitry by calculating the
effect size of all cRE-to-gene pro-
moter associations within 1 Mb
based on ABC model. (B) Left:
H3K27ac ChIP-seq tracks for control
SN, PD SN, and SH-SY5Y neuroblas-
toma, along with pseudo-bulk chro-
matin accessibility for DopaNs.
Additional tracks indicate the posi-
tions of DopaN cREs and PD GWAS-
SNPs. Significant long-range chro-
matin interactions are shown in
purple arcs with the corresponding
ABC score. Right: Bar plots with dots
indicating TOMM7, KLHL7, and
NUPL2 RNA levels in the parental SH-
SY5Y cells and three independent
mutant clones. Each clone has three
biological replicates (Welch two-
sample t test, ***P < 0.001). (C) Forest
plots showing the enrichment of
eQTLs in dysregulated cREs (left) and
the proportion of eQTL-target gene
associations matched with Hi-C in-
teractions (right). The P value and
odd ratio were calculated using two-
sided Fisher’s exact test for eQTL
enrichment, and the significance of
target gene overlap was calculated
on the basis of hypergeometric test
(***P < 0.001). CI, confidence inter-
val. (D) An example of a down-reg-
ulated cRE in oligodendrocytes
whose significant chromatin inter-
actions to a target gene promoter is
supported by eQTL associations,
with H3K27ac ChIP-seq tracks for PD
and control SN and pseudo-bulk
chromatin accessibility for oligo-
dendrocytes (Oligo). Significant
long-range chromatin interactions
are shown in purple arcs with the
corresponding ABC score. (E) Top: A
scatter plot illustrating the putative
target genes for oligodendrocytewith an ABC score threshold of 10. Bottom: Putative target genes were categorized on the basis of DEG status and the representative GO
biological pathways. (F) A heatmap illustrating the enrichment of 656 putative PD genes for 28 neurological, movement, and immune symptoms potentially associated
with PD symptoms (*P < 0.05, **P < 0.01, and ***P < 0.001).
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Fig. 4. Characterization of PD GWAS-SNPs based on cell type–resolved epigenomic landscape. (A and B) Heatmaps illustrating the LDSC GWAS-SNP enrichment for
neurological and psychiatric disorders in cell type–resolved cREs (A) and dysregulated cREs (B). ALS, amyotrophic lateral sclerosis; ASD, autism spectrum disorder; SCZ,
schizophrenia. P values were derived from the LDSC enrichment testing (*P < 0.05, **P < 0.01, and ***P < 0.001). (C) H3K27ac ChIP-seq tracks for PD and control SN and cell
type–resolved pseudo-bulk snATAC-seq signals in the SNCA locus. Additional tracks indicate the positions of all and down-regulated cREs and PD GWAS-SNPs. (D)
Heatmap showing the fold enrichment of PD GWAS-matched genetic variants identified from each PD donor on cell type–resolved cis-regulatory landscape. The stat-
istical enrichment of variants on each cell type cREs was calculated on the basis of exact binomial test (*P < 0.05, **P < 0.01, and ***P < 0.001). (E) Jitter plots describing the
ratio of ChIP-seq reads mapped to the risk and nonrisk alleles of PD GWAS-matched heterozygous SNPs identified in PD donors. The black horizontal bars indicate the
mean of each group. The statistical significance was calculated on the basis of two-sided Welch two-sample t test. (F) Epigenome browser tracks for H3K27ac ChIP-seq
signals of control and four PD cases, along with GWAS-matched variants identified in each PD case and the PD-related tag and LD-expanded GWAS-SNPs in the SNCA
locus. The ChIP-seq signals are normalized by the total readsmapped in cREs. (G) A heatmap describing the putative target genes of GWAS-SNP–harboring cREs identified
on the basis of significant chromatin interactions. The ABC scores are calculated iteratively on the basis of the cell type–resolved epigenome to describe cell type–specific
activation of key pathogenic genes by the PD GWAS-SNPs. Fifty-two genes with the sum of ABC scores by the GWAS-SNP–harboring cREs greater than 20 are shown.
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dysregulated regulatory regions suggests that the PD risk variants
were specifically enriched in down-regulated cREs (Fig. 4B),
which is well illustrated by a down-regulated cRE located in the vi-
cinity of SNCA (Fig. 4C). This highlights the notion that genetic pre-
disposition related to PD is associated with down-regulated cis-
regulatory landscape.

We further examined the potential mechanistic role of PD
GWAS-SNPs at individual level. For each donor, we identified var-
iants in the cis-regulatory region using ChIP-seq data. When the
genetic variants identified from each PD and control individual
were matched with PD GWAS-SNPs, a higher number of variants
(one-sidedWilcoxon rank sum test, P = 0.0385) overlapped with PD
GWAS-SNP in PD cases compared to controls (fig. S13B). Further,
the GWAS-matched variants in each PD donor were enriched in
DopaNs, oligodendrocytes, and microglia, in line with the GWAS
enrichments obtained from stratified LDSC regression (Fig. 4D).
Then, we tested the effect of altered genetic variations in cis-regu-
latory activity by calculating allelic biases in GWAS variants found
in PD cases. The number of ChIP-seq reads aligned to the risk
alleles of PD GWAS variants showed a significant reduction com-
pared to nonrisk alleles (two-sided Welch two-sample t test,
P < 1.22 × 10−5) (Fig. 4E). The cis-regulatory effects of PD
GWAS–matched variants are well represented in the SNCA locus,
where PD cases contained GWAS variants in the down-regulated
cRE proximal to the SNCA promoter (Fig. 4F). These results
imply that the PD GWAS-SNPs are associated with altered cRE ac-
tivities and that our dysregulated cREs represent aberrant regulatory
features pertinent to PD susceptibility.

In addition, our target gene analysis based on 3D chromatin in-
teractions and PD GWAS-SNPs unraveled important regulatory as-
sociations involving known PD genes and annotated specific cell
types in which these associations are active. For example, the asso-
ciation of PD GWAS-SNPs to SH3GL2 and GCH1 was highly spe-
cific to DopaNs, while SNCA was prominent in most cell types
(Fig. 4G).MAPTwas dominantly associated with oligodendrocytes,
OPCs, and astrocytes. GPNMB was active in OPCs, astrocytes, and
microglia, while SCARB2 was substantially associated with neurons
and astrocytes (Fig. 4G). Our data substantially facilitate the inter-
pretation regarding the regulatory effects of PD GWAS-SNPs and
link known risk factors of PD with the responsible cell types.

TF binding alterations induced by PD GWAS variants
To investigate the effect of PD GWAS-SNPs on TF binding motifs,
we first identified 149 TFs whose bindingmotifs are highly enriched
(P < 1.0 × 10−10) in cell type–specific cREs (Fig. 5A). By applying
chromVAR (35), we computed deviation scores in per-cell basis and
further selected 60 enriched TFs (scaled deviation score > 1 and
percent of nuclei expressed > 0.1) that are highly active and ex-
pressed in their respective cell type (DopaN = 6, GabaN = 2,
Oligo = 12, OPC = 4, Ast = 12, Micro = 9, Endo = 8, and
Peri = 7) (Fig. 5B, fig. S13C, and table S8). UMAP representation
of snRNA-seq and snATAC-seq nuclei based on motif activity
and expression showed that the enriched TFs exhibit a substantial
level of cell type specificity (Fig. 5C).

To study individual TF binding motifs that are altered by PD
GWAS-SNPs, we calculated TF binding scores for each of the
GWAS-SNP–containing cRE in both risk and nonrisk alleles of
GWAS-SNPs. The evaluation of delta binding scores showed that
GWAS variants on cis-regulatory regions most often act toward

TF binding disruption, as 23 of the 60 enriched motifs exhibited
an overall reduction in TF binding affinity by the GWAS-SNPs, as
opposed to only one motif with a gained TF binding affinity (exact
binomial test, P = 2.98 × 10−6) (Fig. 5D and table S9). Specifically,
NRF1 (DopaN, and OPC), TFDP1 (DopaN), TCF4 (DopaN and
Oligo), PBX3 (Oligo), ZNF148 (Micro), and KLF2 (Endo) were as-
sociated with GWAS-SNP–induced binding disruption (Fig. 5E and
fig. S13D). We also found that the down-regulated cRE at the SNCA
locus can potentially be explained by the binding disruption of these
TFs, where the delta binding score was mostly positive (i.e., TF
motif disruption) for NRF1 (DopaN) = 6.30, PBX3 (Oligo) = 3.84,
TCF4 (Oligo) = 2.69, and ZNF148 (Micro) = 7.92. Next, to examine
the transcriptional effects of GWAS variants on the disrupted
motifs, we collected genetic variants in cREs that match with PD
GWAS-SNPs from each donor and identified the putative target
genes of the disrupted motifs using the chromatin interaction
map (cumulative ABC score > 1). The expression of the target
genes showed a remarkable down-regulation in each patient with
PD for most of the TFs that were associated with SNP-mediated
motif disruption (Fig. 5F and fig. S13E). Together, our analysis pro-
vides a global view on how individual PD GWAS-SNPs influence
the TF binding behavior and a biological rationale for the enrich-
ment of PD GWAS-SNPs in the down-regulated cREs and their
reduced regulatory activities.

Modular expression patterns of potential PD genes resolve
complex molecular characteristics of PD
Since a number of potential PD genes have been identified by infer-
ring the target genes of dysregulated cREs and PD GWAS-SNPs, we
attempted to characterize the complex molecular pathways under-
lying the neuropathology based on the potential PD genes and iden-
tify the responsible cell type associated with each pathway. To this
end, we examined the dynamic modular gene expression patterns of
the 656 potential PD genes using the cellularity-corrected bulk
RNA-seq dataset from 16 SN specimens (late-stage PD = 8 and
control = 8). The hierarchical clustering of gene expression correla-
tion across these samples displayed amodular pattern with nine dis-
tinct clusters (from C1 to C9) with notable biological processes
involved in PD pathogenesis (Fig. 6A and table S10). In addition,
these biological pathways were represented by cell type–specific
gene regulatory relationships. For example, genes involved in C1
(response to unfolded proteins and reactive oxygen species) were
specifically targeted by microglia cREs (Fig. 6B). Alternatively, the
C3 genes represented by negative regulation of apoptosis were selec-
tively enriched in oligodendrocytes and astrocytes, implicating their
neuroprotective function toward the loss of nigral neurons. Unex-
pectedly, C2 contained multiple cellular processes associated with
PD pathogenesis, including endocytosis, lipid metabolism, iron ho-
meostasis, and synaptic function (36–38), and harbored many
target genes of PD GWAS-SNPs, highlighting the possibility that
these cellular pathways are highly associated with PD pathogenesis
(Fig. 6B). The genes in C2 were enriched with down-regulated cRE
target genes from all cell types, which is consistent with our finding
in the heritability analysis that PD-related genetic variations are as-
sociated with down-regulated cREs from diverse cell types. Further-
more, through our target gene analysis, we pin-pointed potential
links to PD candidates while confirming the connections of
known PD risk genes. For example, the endocytosis-related genes
in C2 identified CLASP2, PDCD6IP, MTMR2, and PICALM, in
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Fig. 5. Altered motif binding affinity for active TFs in the PD GWAS-SNP–containing cREs. (A) Heatmaps describing the z-transformed activity of cell type–specific
cREs (top) and the enrichment of binding motifs in the cell type–specific cREs (bottom). Cell type–specific cREs were identified on the basis of Wilcoxon BH-adjusted
P < 0.05, log2FC > 1, and percent of nucleus detected > 0.05, comparing each cell type to the background of all other cell types. (B) Scatter plots illustrating the −log10
hypergeometric enrichment of TFs and the scaled chromVAR deviation score, depicting TF motif activity. The size of each data point represents the percent of nuclei
expressed, and TFs withminimum expression detected greater than 10%were selected as enriched TFs. (C) UMAP embeddings of snATAC-seq (left) and snRNA-seq (right)
nuclei illustrating z-transformed deviation score and gene expression of enriched TFs including NRF1, PBX3, and ZNF148. (D) Scatter plots of enriched motifs illustrating
GWAS-SNP–containing cREs with gain or loss of TF binding as a result of PD-associated genetic variations. For each GWAS-SNP–containing cRE, a difference in binding
score greater than 3 between risk and nonrisk alleles of GWAS-SNPs was used to define gained and lost TF binding. The dashed gray lines represent the difference in the
number of cREs with gained and lost TF binding of 5. (E) Heatmaps showing the delta binding scores of individual PD GWAS-SNP–containing cREs across the genome, for
enriched TFs in DopaNs, oligodendrocytes, and microglia. (F) Scatter plots describing the log2 fold change expression (a respective PD donor over the mean of control
samples) for target genes of cREs with disruption in binding motifs for respective TFs by GWAS-matched donor variants based on cumulative ABC score greater than
1. The name of target genes with log2 fold change less than −1 is labeled in red. PDSN, Parkinson's disease SN; NOSN, control SN.
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Fig. 6. Analysis of modular gene expression patterns across putative PD genes. (A) Left: A hierarchical clustering of 656 putative PD genes based on similarities in
gene expression between 16 bulk RNA-seq samples from control and PD SN. The color intensity indicates PCC of putative target gene expression between pair-wise
samples. Nine distinct clusters were identified by a linkage distance (0.66) threshold in the dendrogram. Right: A heatmap describing the enrichment of GO biological
pathways (BP). Each entry indicates −log10(P) of GO biological processes in the corresponding cluster. (B) Heatmaps illustrating the enrichment of cell type–resolved
target genes with respect to the nine coexpression clusters. For each cell type, the putative target genes were categorized into three groups based on the type of cRE
connected (down- and up-regulated cREs or GWAS-SNP–harboring cRE). The enrichment level was calculated on the basis of one-sided exact binomial test with BH
multiple testing correction (*Q < 0.05, **Q < 0.01, and ***Q < 0.001). (C to E) H3K27ac ChIP-seq tracks for PD and control SN and pseudo-bulk chromatin accessibility
for oligodendrocytes (Oligo) for a genomic locus containing PICALM (C), CLASP2 and PDCD6IP (D), andMTMR2 (E). Additional tracks indicate positions of Oligo and down-
regulated cREs. The signals for ChIP-seq and cell type–resolved snATAC-seq are normalized by the total reads mapped in cREs. Significant long-range chromatin inter-
actions are shown in purple arcs with the corresponding ABC score.
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addition to SCARB2 and INPP5F, whose genetic variations are
highly related to PD pathogenesis (Fig. 6, C to E) (5, 39, 40).

From C6 to C9, we found PD-associated biological features tar-
geted by up-regulated cREs pertaining to a specific cellular identity
(Fig. 6B). We found that C6 represented fundamental pathogenic
pathways (aging, cytoskeleton organization, stress response, modu-
lation of synaptic activity, protein stability, and gliogenesis) related
to DopaNs and microglia, while containing PD risk genes such as
MAPT, BAX, and TOMM7 (41). In C7, cellular processes such as
glial cell differentiation and neural tube development were activated
in astrocytes, in all likelihood, as a response mechanism to PD pro-
gression. Last, target genes in C8 indicate guanosine triphosphatase
(GTPase)–mediated signaling and protein autophosphorylation are
active in OPCs as a result of autophagy accumulation in PD SN
(42, 43).

Together, our analysis on the modular expression pattern dem-
onstrates that the heterogeneous molecular features in the advanced
PD cases are well explained by the target genes of dysregulated cREs
and PD GWAS-SNPs. Although common genetic variations found
in GWASs explain only a fraction of PD pathogenesis in individual
PD cases, most of the PD-related cellular processes were represented
by our target genes based on the integration of epigenetic features.
The strong association between PD genetic variants and down-reg-
ulated cREs supports the notion that cellular processes linked to PD
are coordinated by the combined effects of genetic and epigenetic
aberrations. On the basis of these findings, we propose that a genetic
predisposition and epigenetic dysregulation are two indistinguish-
able modes of gene regulation that contribute to PD pathogenesis
(fig. S14).

DISCUSSION
Major progresses have been made in the past decades furthering the
understanding of molecular mechanisms and risk genes involved in
PD pathogenesis. While evidence has revealed diverse PD-related
cellular properties including protein quality control, autophagy-ly-
sosome pathway, mitochondria homeostasis, lipid metabolism, syn-
aptic toxicity, and neuroinflammation (36–38, 44), our knowledge
is still limited to fully explain the molecular causes of sporadic PD
cases. A thorough characterization of the dynamic and interactive
role of individual cell types during PD development is essential to
broaden the scope of PD heritability. In this regard, the current
study provides important insights into PD pathogenesis by identi-
fying the cell type–resolved dysregulation of cis-regulatory land-
scape and by characterizing the perturbed molecular pathways
based on the relevant cell types. Through this effort, we identified
656 known and potential PD candidate genes, which demonstrate
the heterogeneous molecular characteristics implicated in PD.

Our cell type–specific cross-investigation of PD and control SN
repeatedly shows that oligodendrocytes and microglia are the key
cell types associated with PD pathogenesis, based on three lines of
evidence. First, a large proportion of known PD genes were includ-
ed in PD-associated DEGs from oligodendrocytes and microglia.
Among the 20 PD risk genes (24), oligodendrocytes and microglia
each contained two and four PD risk genes as DEGs (MAPT and
FBXO7 for oligodendrocytes and SNCA, LRRK2, VPS13C, and
GAK for microglia), respectively, while other glial cell types
(OPCs, endothelial cells, and pericytes) had none or one PD risk
genes as DEGs. Second, our GWAS heritability analysis showed a

specific enrichment of PDGWAS-SNPs in oligodendrocyte andmi-
croglia cREs. While a significant enrichment was found in at least
two sets of PD GWAS statistics for oligodendrocytes and microglia,
other glial cell types (astrocytes and OPCs) presented a low corre-
lation with PD GWAS-SNPs. This finding was further supported by
the individual SNPs identified from our PD donors, where PD
GWAS–matched variants from each PD case were concentrated
mostly on oligodendrocyte andmicroglia cREs. Third, coexpression
modules highly associated with PD pathogenesis were specifically
represented by oligodendrocyte and microglia. For instance, genes
in C1 (response to unfolded proteins, and reactive oxygen species)
were almost exclusively associated with microglia’s up-regulated
cREs in PD SN, and genes in C2 (endocytosis, lipid metabolism,
iron homeostasis, and synaptic function) were most strongly asso-
ciated with down-regulated cRE target genes of oligodendrocyte,
along with its GWAS-SNP targets. Overall, our analysis suggests
that oligodendrocytes and microglia are closely linked to PD
pathogenesis.

Our findings suggest that PD is a highly heterogeneous disorder.
The GWAS-SNP enrichment test of PD heritability showed that PD
involves far more diverse cellular properties than AD, whose enrich-
ment is limited predominantly inmicroglia. We also found that het-
erogeneity exists among the four PD GWAS statistics used in this
study, where SNPs from three PD GWAS showed a varying LDSC
enrichment pattern across DopaNs, oligodendrocytes, microglia,
and endothelial cells. The low correlation of PD GWAS-SNPs by
Nalls et al. (8) with overall cis-regulatory regions may be ascribed
to their heavy localization in nonintergenic regions, and other types
of regulatory signals (e.g., different histone marks) are required to
precisely characterize the PD GWAS-SNPs. by Nalls et al. (8). Nev-
ertheless, it is clear that the common variants identified by GWAS
exhibit a regulatory function in a cell type–specific manner.
However, most of the previous genomics-based studies for
complex traits did not sufficiently address this critical issue. We
conducted cell type annotation of key genetic variants by overlaying
them onto the cell type–resolved epigenome and demonstrated that
the PD variants are highly associated with genome regulatory ele-
ments and likely conduct a regulatory role in cell type–specific
manner, together with dysregulated cREs. In this regard, our
results provide a unique perspective on the PD heritability that
the previous genomics investigations were not able to address.

Our analysis provides biological insights into PD GWAS-SNPs
regarding their mode of action on disease-specific cREs. Although
GWAS variants do not always cause a loss in regulatory activity, we
found a consistent association of PDGWAS-SNPs with reduced cis-
regulatory activities, as evidenced by the enrichment of GWAS-
SNPs in down-regulated cREs and the reduced ChIP-seq reads on
the GWAS-matched variants from PD donors. This finding was
further supported by our motif analysis, which showed that the
risk variants in cREs have a higher chance of causing cell type–spe-
cific disruption in TF binding. Thus, the overall loss of function in
disease-specific cREs may be linked to putative risk genes involved
in PD pathogenesis.

We present a unique multiomics data integration centering on
high-resolution 3D chromatin interactome. The implementation
of ABC model effectively combined cell type–resolved epigenome
and transcriptome while accounting for chromatin contacts and
quantitatively defined the regulatory effects of all cREs to the sur-
rounding genes. The integrative analysis based on cell type–resolved
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3D epigenome bridged the gap between key risk genetic variants
and candidate genes, greatly advancing our view on the regulatory
mechanisms involving PD. Our 3D epigenome analysis revealed
specific cis-gene regulations that modulate PD risk genes (SNCA,
MAPT, SCARB2, GCH1, BAG3, and INPP5F), while identifying
candidate genes that are associated with PD-implicated biological
processes. The present work emphasizes the role of noncoding reg-
ulatory elements in understanding PD and provides additional in-
sights into molecular mechanisms related to the perturbed
epigenomic landscape. This computational framework incorporat-
ing omics data integration is highly applicable in other complex
human disorders.

The single-nucleus sequencing strategy is a highly advanced
technique allowing the investigation of individual cell populations.
However, because of the insufficient coverage obtained for each
nucleus, the single-nucleus assays allow a differential analysis in
only a small fraction of genes. The detection rate of DNA fragments
is far less for snATAC-seq because of the limited copies of DNA to
capture, in comparison to snRNA-seq. This inherent sparsity
hinders robust identification of epigenomic dysregulation for a
complex disease to its entirety. In this aspect, our work shows
that the integration of bulk assays with a corresponding single-
nucleus dataset may provide a solution. Our single-nucleus datasets
offered a suitable reference for cellularity correction method for the
bulk sequencing data, and the ratio of sequenced reads mapped to
cell type markers effectively addressed the fraction of each cell type
across the samples. This shows that the sequencing data generated
from bulk tissues may still hold substantial value as a resource when
integrated with appropriate single-nucleus data.

The difficulty in interpreting postmortem tissue data lies in the
unresolved cause and effect signature by the pathology. Studies pin-
pointing the epigenomic changes before the motor phase of PD
(Braak stages 1 and 2) or studies leveraging Braak stage–specific
samples may further elucidate the molecular mechanism underly-
ing the pathogenic progression of PD. In addition, the chromatin
conformation capture method conducted at a single-nucleus level
will allow the cell type–specific investigation of chromatin interac-
tome. The application of single-cell Hi-C technology to clinical
brain samples of neurodegenerative disorders may better portray
the disease-related gene regulatory circuitry in a cell type–specific
manner. Establishing the complete 3D epigenome may play an im-
portant part, especially in effective personalized therapeutics, in
light of the recent success in restoring clinical symptoms of PD
by the implantation of patient-derived dopaminergic progenitor
cells (45). Further understanding of pathogenic mechanisms in
glial cells may be required to prevent neurodegeneration in
patient-specific manner. Nevertheless, the present delineation of
PD-specific aberration in cis-genome regulation, coupled with
high-resolution chromatin interaction maps, substantially broad-
ened the scope for disease-specific gene regulation mechanisms
and expanded potential therapeutic candidate genes for PD. The
present work conveying cell type–resolved noncoding regulatory el-
ements lays the ground for further understanding of the gene reg-
ulatory network involved in complex genetic disorders.

MATERIALS AND METHODS
Collection of human brain samples
Flash-frozen postmortem tissues from the human SN were acquired
for PD and control subjects from the ADRC at the University of
California, San Diego (table S1). The main cause of death for
most of the donors was bronchopneumonia and cardiovascular
failure, although obtaining the information at individual level was
restricted. The difference in age of death between PD and control
cases was calculated to be insignificant (Welch two-sample t test,
P = 0.803). Samples from the left mid-frontal cortex were fixed in
4% paraformaldehyde, and those from the right mid-frontal cortex
were stored in liquid nitrogen for experiments. Formalin-fixed
brains were sectioned at 40 μm and processed for pathohistological
examination by hematoxylin and eosin, and pathological scoring
was assessed according to Braak stages (46). Institutional Review
Board approval was obtained from Korea Advanced Institute of
Science and Technology for the use of these brain tissues.

snRNA-seq and snATAC-seq
About 15 mg of tissue was placed in an extra-thick tissue processing
tube (Covaris, 520140) while being kept in liquid nitrogen and re-
peatedly hammered to produce frozen tissue powder. The frozen
tissue was transferred to a lysis buffer of 0.2% Triton X-100, a pro-
tease inhibitor (Roche, 04-693-159-001), 1 mM dithiothreitol
(Sigma-Aldrich, D9779), RNasin (0.2 U/μl; Promega, N211B),
and 2% bovine serum albumin (BSA) (Sigma-Aldrich, SRE0036)
in phosphate-buffered saline (PBS). The sample was pipetted 10
times, rotated for 5 min at 4°C, and centrifuged at 500g for 5 min.
The pellet was resuspended in a sorting buffer of 1 mM EDTA,
RNasin (0.2 U/μl), and 2% BSA in PBS and passed through a 30-
μm strainer (Sysmex, 04-0042-2316) to remove excessive debris.
The nuclei were stained with DRAQ7 (1:100; Cell Signaling Tech-
nology, 7406) for snRNA-seq and with 4′,6-diamidino-2-phenylin-
dole (10 μg/ml; Sigma-Aldrich, 32670) for snATAC-seq. Between
100,000 and 150,000 nuclei were sorted using a MoFlo Astrios EQ
sorter (Beckman Coulter, laser/filter) into a collection tube with
RNasin (1 U/μl) and 5% BSA in PBS. Sorted nuclei were centrifuged
at 1000g for 15min at 4°C, and the supernatant was removed. Nuclei
were resuspended in resuspension buffer [RNasin (0.2 U/μl) and 1%
BSA in PBS] and counted using a cell counter (Cellometer Auto
2000, Nexcelom Biosicence) with acridine orange/propidium
iodide (AO/PI) staining.

A subset of snRNA-seq and snATAC-seq libraries was generated
by pooling the nuclei from two or three different donors with a
matched pathological state and demultiplexed on the basis of indi-
vidual genetic backgrounds using souporcell (47). We generated
snRNA-seq libraries using the Chromium Single Cell 3′ Library &
Gel Bead Kit v3 (10x Genomics). For snATAC-seq libraries, the iso-
lated nuclei were subject to permeabilization in a lysis buffer with
tris-HCl (pH 8.0), 10 mMNaCl, 3 mMMgCl2, 0.1% Tween 20, 0.1%
NP-40 substitute (Sigma-Aldrich, 74385), 0.01% digitonin (Thermo
Fisher Scientific, BN2006), and 1% BSA. After washing, the nuclei
were resuspended in nuclei buffer, and snATAC-seq libraries were
generated using the Chromium Single Cell ATAC Library & Gel
Bead Kit v1 (10x Genomics). Quality control for DNA libraries
was performed using Agilent Tape Station 4200 with a high-sensi-
tivity D5000 kit. The libraries were sequenced in a paired-end mode
using Illumina HiSeq 4000 and MGI DNBSEQ-G400 platform.
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snRNA-seq data processing
In addition to the single-nucleus data that we generated from the SN
specimens from ADRC, raw snRNA-seq data generated from
healthy SN specimens (GSE140231) (20) was downloaded and pro-
cessed in parallel (table S1). To demultiplex the data for pooled li-
braries, the nuclei were clustered on the basis of individual genetic
variants using souporcell (47) and assigned to the corresponding
donor by matching the genetic variants obtained from bulk RNA-
seq data. The genetic variants from bulk RNA-seq data were ob-
tained using freebayes (-iXu -C 2 -q 20 -n 3 -E 1 -m 30 --min-cov-
erage 20 --pooled-continuous --skip-coverage 100000). The
number of demultiplexed nuclei from each pooled library is de-
scribed in table S2. The feature-barcode matrix was generated
using cellranger count (10x Genomics, v3.0.2), aligning the se-
quenced reads to the human reference genome (hg19; 10x Cell
Ranger reference GRCh37 v3.0.0). Then, the count matrices were
aggregated by cellranger aggr function across the samples with
default parameters. The following analysis was performed using
Seurat R package v4.0.5 (21). Nuclei with fewer than 200 or
greater than 10,000 genes detected were filtered from the snRNA-
seq dataset. Low-quality nuclei with mapped reads in the mitochon-
drial genes greater than 10% were removed. Doublets were identi-
fied using Scrublet (48), and nuclei with doublet score greater than
0.4 were excluded from analysis. The snRNA-seq data were integrat-
ed to correct for technical differences across individual samples. For
this, the feature-barcode matrix was individually normalized by the
total read count and log-transformed, and top 5000 variable genes
were selected for each sample using Seurat’s FindVariableFeatures
function. Data integration was conducted on the basis of anchors
identified using FindIntegrationAnchors function. The aligned
nuclei were scaled, and principal components analysis (PCA) was
conducted on the scaled expression matrix. The top 45 principal
components (PCs) were used to compute Shared Nearest Neighbors
(SNNs), which were then used to cluster nuclei based on the
Louvain algorithm (resolution = 1.5) in FindClusters function in
Seurat R package. The top 45 PCs were used for the UMAP
embedding.

We selected 3000 highly variable genes by the vst method in
Seurat R package v4.0.5 (21). Harmony (v1.0) (49) was used to
correct the technical variations across the samples in the PCA di-
mensions. The first five dimensions were used to build SNN
graph, which was clustered using the Louvain algorithm (resolu-
tion = 1.0). These dimensions were used to visualize neuronal
nuclei in UMAP dimensions. Cell type markers for DopaNs (TH
and SLC6A3) and GabaNs (GAD1 and GAD2) were used to
assign subneuronal identity for individual subclusters. The
nucleus-level expression signals were imputed using MAGIC
(v2.0.3) (50) for UMAP visualization of cell type markers in
snRNA-seq clusters. To build a reference for cell type–dependent
transcriptome in the SN, we generated a count matrix from the
feature-barcode matrix using the cellular identity annotated for all
nuclei. The count matrix was then quantile-normalized, and the
ratio of normalized reads based on individual cell types was com-
puted to represent the gene expression ratio (ER) among different
cell types. The cell types whose gene ER is greater than 10% were
annotated as the active cell type for the corresponding gene.

snATAC-seq data processing
In addition to the single-nucleus data we generated from the SN
specimens from ADRC, raw snATAC-seq data generated from post-
mortem SN specimens (GSE147672) (13) was downloaded and pro-
cessed in parallel (table S1). To demultiplex the data for pooled
libraries, the nuclei were clustered on the basis of individual
genetic variants using souporcell (47), using the same parameters
(--min_alt 8 --min_ref 8 --no_umi True --skip_remap True
--ignore True) used in the study of Fiskin et al. (51). The genetic
variants from bulk ChIP-seq data were obtained using freebayes
(-iXu -C 2 -q 20 -n 3 -E 1 -m 30 --min-coverage 20 --pooled-con-
tinuous --skip-coverage 100000). The number of demultiplexed
nuclei from each pooled library is described in table S2. The
feature-barcode matrix was generated using the cellranger-atac
count (10x Genomics, v1.1.0), and aligning the sequenced reads
was aligned to the human reference genome (hg19). Then, the
count matrices were aggregated by cellranger-atac aggr function
with default parameters. The following analysis was performed
using Signac R package v1.4.0 (22). Nucleosome signal was comput-
ed with Signac’s NucleosomeSignal function. Low-quality nuclei
were removed from snATAC-seq dataset based on the following cri-
teria: fewer than 2000 or greater than 30,000 fragments mapped to
peak regions, less than 15% of reads in peak regions, nucleosome
signal greater than 10, and transcription start site (TSS) enrichment
less than 2. Doublets were identified using Scrublet (48) and exclud-
ed from analysis. We selected top 50%most common features as the
variable features and performed latent semantic indexing (LSI) di-
mensionality reduction by implementing term frequency–inverse
document frequency transformation, followed by singular value de-
composition. Then, reciprocal LSI projection was conducted to
identify integration anchors for each sample, and the snATAC-seq
data were integrated across the samples using low-dimensional cell
embeddings with Signac’s IntegrateEmbeddings function. The
identical method used in snRNA-seq for graph-based clustering
and nonlinear dimension reduction by UMAP was applied to the
snATAC-seq dataset. Gene activity scores were computed for
protein coding genes by summing snATAC-seq reads mapped in
the gene body and the promoter (5-kb upstream to TSS) using Ge-
neActivity function in Signac R package. We used Signac’s label-
transfer algorithm with default parameters using cell type marker
genes identified on the basis of snRNA-seq data.

Major cell types in the SN were assigned to each snATAC-seq
cluster based on the identical set of known marker genes used in
snRNA-seq processing. The neuronal population was subclustered
to identify DopaNs and GabaNs. First, we selected features with
fragments detected in more than 10 nuclei as the variable features.
Then, harmony (v1.0) (49) was used to correct the technical varia-
tions across the samples in the LSI dimensions. The first five dimen-
sions were used to build SNN graph, which was clustered using the
Louvain algorithm (resolution = 1.0). These dimensions were used
to visualize neuronal nuclei in UMAP dimensions. Cell type
markers for DopaNs (TH and SLC6A3) and GabaNs (GAD1 and
GAD2) were used to assign subneuronal identity for individual sub-
clusters. The nucleus-level gene activity scores were imputed using
MAGIC (v2.0.3) (50) for UMAP visualization of cell type markers
in snATAC-seq clusters.

We generated cell type–resolved BAM files for each sample and
merged the BAM files according to the cell type. Peak calling by
MACS2 identified 240,354 peaks (P < 0.05). Through a manual
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inspection of pseudo-bulk signals in the epigenome browser, we
collected top 128,724 peaks based on the abundance of snATAC-
seq reads and defined them as cREs. To build a reference for cell
type–dependent epigenome in the SN, we generated a count
matrix by conducting bedtools (v2.29.1) coverage function for the
cell type–resolved BAM files. The count matrix was then quantile-
normalized, and the ratio of normalized reads based on individual
cell types was computed to represent the cRE activity among differ-
ent cell types. The cell types whose cRE activity ratio is greater than
10% were annotated as the active cell type for the correspond-
ing cRE.

Identification of cell type–dependent differential features
To identify cell type markers for snRNA-seq and snATAC-seq data,
we used FindAllMarkers function in Seurat R package to identify
cell type markers with the model-based analysis of single-cell tran-
scriptomics algorithm (52) based on the two data modalities, lever-
aging the gene expression levels (snRNA-seq) and gene activity
scores (snATAC-seq). It computes differential genes by iteratively
contrasting one cell type to all, and the genes that satisfy BH-adjust-
ed P < 0.05, a log2 fold change of >0.25, and an expression detected
in at least 10% of nuclei were defined as cell type markers. These cell
type markers were used for cellularity correction and label transfer
between snRNA-seq and snATAC-seq clusters.

To compute DEGs between PD and control SN, we obtained raw
RNA counts from each snRNA-seq library and merged the counts
from a same donor to construct a donor-based pseudo-bulk for in-
dividual cell types. The raw counts were normalized by the total
count, and the batch effect from different snRNA-seq data source
was removed by using ComBat function in sva R package (53).
We identified cell type–specific DEGs by applying EdgeR likelihood
ratio test (25, 26) on the pseudo-bulk using a threshold of BH-ad-
justed P < 0.05, a log2 fold change of >0.5, and a percentage of nuclei
expressed >0.1 in either control or PD SN nuclei.

Bulk RNA-seq and data processing
About 40 mg of tissue was placed in an extra-thick tissue processing
tube (Covaris, 520140) while being kept in liquid nitrogen and re-
peatedly hammered to produce frozen tissue powder. Total RNA
was extracted using NucleoSpin RNA XS (Macherey-Nagel,
740902). RNA-seq libraries were prepared using TruSeq stranded
mRNA library prep kit (Illumina, 20020594). External RNA con-
trols consortium (ERCC) RNA spike-in mixes (Thermo Fisher Sci-
entific, 4456740) were included for quality assurance. RNA-seq
libraries were sequenced in a paired-end mode using Illumina
HiSeq 4000 and MGI DNBSEQ-G400 platform.

Paired-end reads were aligned to the reference genome (hg19
with ERCC) using STAR software v2.7.5 with default parameters.
The raw read counts were quantified with RSEM based on a gene
list obtained from GENCODE v38 by selecting protein coding
genes and long noncoding RNAs (lncRNAs) with confidence
levels 1 and 2 (n = 21,151). The count values were merged into a
count matrix and quantile-normalized using preprocessCore R
package across the samples. The cellular heterogeneity in individual
samples was assessed with unique marker genes, and the overall
gene expression pattern was adjusted iteratively on the basis of rel-
ative gene ERs across the cell types. Technical variations from exper-
imental and sequencing batches were corrected using ComBat
function in sva R package (53). To identify APOE isoform for

each patient with PD, we conducted genotype profiling by imple-
menting freebayes on the bulk RNA-seq samples, and the APOE
isoform (ε2, ε3, and ε4) was determined on the basis of rs429358
and rs7412 genotype.

To identify the degree of intersection between PD-associated
DEGs and SN tissue-specific expression, we incorporated the ex-
pression count matrix for bulk RNA-seq data encompassing 197
hippocampus, 209 frontal cortex, and 139 SN. The expression of
SN tissues was compared iteratively with hippocampus and
frontal cortex based on edgeR threshold of BH-adjusted P < 0.05,
and the intersection of DEGs obtained from hippocampus and
frontal cortex was compared to PD-associated DEGs identified by
our snRNA-seq data.

Chromatin immunoprecipitation sequencing
To conduct H3K27ac ChIP-seq experiments from flash-frozen SN
tissues, about 40mg of tissuewas placed in an extra-thick tissue pro-
cessing tube (Covaris, 520140) while being kept in liquid nitrogen
and repeatedly hammered into frozen tissue powder. The tissue
sample was cross-linked in a cross-linking buffer of 100 mM
NaCl, 0.1 mM EDTA, 5 mMHepes (pH 8.0), and 1% formaldehyde
for 10 min at room temperature. The cross-linking was quenched
with 125 mM glycine for 5 min on a rotation and washed twice
with ice-cold PBS. The samples were passed through a 30-μm
strainer (Sysmex, 04-0042-2316) to remove excessive debris and
suspended in SDS lysis buffer of 1% SDS, 50 mM tris-HCl
(pH8.0), 10 mM EDTA, and protease inhibitor (Roche, 04-693-
159-001). Chromatin fragmentation was performed by sonication
(Covaris, S220) in the volume of 100 μl to obtain mono-, di-, and
trinucleosome size chromatin. After centrifugation at 12,000g for 15
min at 4°C, the sonicated chromatin in supernatant was diluted 10
times with dilution buffer to achieve final concentration of 0.1%
Triton X-100, 0.1% SDS, 150 mM NaCl, 15 mM tris-HCl (pH
8.0), 1 mM EDTA, and protease inhibitor for ChIP. The sonicated
chromatin in supernatant was incubated with protein Dynabead
(Thermo Fisher Scientific, 10001D) coated with anti-H3K27ac an-
tibody (Active Motif, 39133) for 4 hours at 4°C with rotation, while
a fraction of the input chromatin was stored to be used as an input
control. The chromatin-antibody-bead complex was subjected to
serial washing with varying salt concentrations optimized for the
antibody used. The immunoprecipitated complex was treated with
ribonuclease A (QIAGEN, 19101) and reverse–cross-linked over-
night at 68°C. The immunoprecipitated DNA was recovered using
AMPure XP beads (Beckman Coulter, A63881), and ChIP-seq li-
braries were prepared using NEBNext Ultra II DNA library Prep
Kit [New England Biolabs (NEB), E7645] following the manufac-
turer ’s instructions. The ChIP-seq libraries were sequenced in
paired-end mode Illumina HiSeq 4000 and MGI DNBSEQ-G400
platform.

Quantification of cRE activity
The sequenced DNA reads from ChIP-seq libraries were mapped to
the human reference genome (hg19) using Burrows-Wheeler
aligner (BWA)-mem (ver. 0.7.17, “-M” option). Reads with a low
alignment quality (MAPQ < 10) were removed, and polymerase
chain reaction (PCR) duplicates were discarded using Picard
(v2.6.0). We computed the number of ChIP-seq reads aligned in
the 128,724 cREs identified on the basis of snATAC-seq data
using bedtools (v2.29.1) coverage function. The read counts were
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merged into a count matrix and quantile-normalized using prepro-
cessCore R package across the samples. The cellular heterogeneity in
individual samples was assessed with unique marker cREs, and the
global cRE activities were adjusted iteratively on the basis of relative
cRE activity ratios across the cell types. Technical variations from
experimental and sequencing batches were corrected using
ComBat function in sva R package (53). We used the quasi-likeli-
hood F test in EdgeR (25, 26) to identify dysregulated cREs with a
multitest corrected (BH method) significance threshold (adjusted
P < 0.05). We annotated active cell types for each dysregulated
cRE based on the cell type reference obtained from snATAC-
seq data.

Assessment and adjustment of cellular heterogeneity
To investigate the cellular heterogeneity in the bulk RNA-seq data
generated from the SN tissues, we used 100 unique cell type marker
genes for each cell type based on the cell type–resolved transcrip-
tome identified by snRNA-seq data. For individual samples, we
computed the sum of reads mapped to the marker genes from
each cell type and the ratio of these summed reads across cell
types to evaluate the relative composition of cell populations
within the bulk data. The identified composition of reads in the
unique marker genes considerably matched the cellular composi-
tions obtained from single-nucleus sequencing datasets. For each
cell type, we calculated the mean of relative compositions computed
from the bulk samples, and then a relative cellular fraction (RCF)
was obtained for a given cell type in a sample by dividing its relative
composition to the mean. Then, cellularity-adjusted value (CAV)
for gene i was computed on the basis of the RCF of a sample and
the ER among eight cell types present in the SN as the following:

CAVi ¼ RNA read counti �
Xn

j¼1
ðERCj � RCFCjÞ

where {Cj} = {DopaN, GabaN, Oligo, OPC, Ast, Micro, Endo, and
Peri}. This procedure was repeated three times until the variation of
cellular compositions was minimal across the samples.

To examine the cellular heterogeneity in the bulk H3K27ac
ChIP-seq data, we used the top 200 unique cell type marker cREs
for each cell type based on the cell type–resolved chromatin acces-
sibility identified by snATAC-seq data. Identical to the method
applied to the bulk RNA-seq dataset, we computed the ratio of
summed reads mapped to cell type marker cREs for individual
samples, and the mean of relative compositions was calculated for
each cell type. Then, the RCF was calculated for each cell type in a
sample, and CAV for cRE i was computed on the basis of the RCF of
the sample and the cRE activity ratio (CR) among eight cell types
present in the SN as the following:

CAVi ¼ ChIP reads counti �
Xn

j¼1
ðCRCj � RCFCjÞ

where {Cj} = {DopaN, GabaN, Oligo, OPC, Ast, Micro, Endo, and
Peri}. This procedure was repeated three times until the variation of
cellular compositions was minimal across the samples.

Colocalization of DEGs in proximity of dysregulated cREs
To examine the regulatory effect of dysregulated cREs on the sur-
rounding genes, we conducted an enrichment test to measure the

number of DEGs harbored by the dysregulated cREs in a given
genomic window (100 kb), compared to random expectations.
We created two sets of random groups, simulating both dysregu-
lated cREs and DEGs. First, simulated cREs were generated by cre-
ating a set of genome coordinates that match the dysregulated cREs
in number, size, and chromosome. Simulated DEGs were created by
random gene sampling from the total gene set. The enrichment was
measured on the basis of iterative trials (n = 10,000) considering the
degree of DEGs colocalized in 100-kb window. The statistical signif-
icance was calculated in the form of empirical testing. The test was
performed independently with respect to cell types and the type of
cRE dysregulation.

PD GWAS-SNP imputation based on LD structure
PD-related GWAS-SNPs were collected from four GWAS summary
statistics (4–6, 8), and tag GWAS-SNPs with the significance thresh-
old (P < 5 × 10−8) were selected for downstream analysis. We ex-
panded the GWAS-SNPs using LD structure. LDSCs were
calculated using PLINK for five different populations, including
African, American, East Asian, European, and South Asian, from
1000 genome phase 3 data. For each tag SNP, we identified associ-
ated SNPs that share a tight LDSC (r2 > 0.8) in at least three
ethnic groups.

LDSC regression of disease heritability
To determine whether cell type–resolved cREs and dysregulated
cREs are enriched with heritability of specific neurological and psy-
chiatric disorders, we applied LDSC regression analysis (29, 54). We
used four GWAS summary statistics for PD (4–6, 8). We obtained
five additional GWAS summary statistics for AD (30, 31), amyotro-
phic lateral sclerosis (32), autism spectrum disorder (33), and schiz-
ophrenia (34). The cell type–resolved cREs and dysregulated cREs
were tested for enrichment of heritability while controlling for the
full baseline model.

Assessment of allelic bias on cRE activities for PD GWAS–
matched variants
To determine genetic variations on cis-regulatory regions, we con-
ducted genotype profiling by implementing freebayes on the bulk
ChIP-seq samples. Then, the variants from each individual were
matched with LD-expanded PD GWAS-SNPs. To assess the
effects of PD GWAS-SNPs in cis-regulatory activity, we calculated
the allelic bias on the heterozygous GWAS variants found in PD
cases. For this, we first collected mapped ChIP-seq reads containing
the variant position and compared the number of sequenced reads
mapped to risk and nonrisk (reference) alleles of GWAS-SNPs. To
rule out the alignment bias between reference and alternative alleles,
we generated synthetic 100-bp reads covering the variant position.
By performing alignment with reads in both risk and nonrisk
alleles, we estimated variant-dependent alignment bias.We discard-
ed variants showing BH-adjusted P < 0.05 from the binomial test in
downstream analysis. The PD donors containing PD GWAS-SNPs
greater than 100 were used to test the enrichment with cis-regula-
tory landscape across the cell types.

In situ Hi-C library preparation and data processing
In situ Hi-C experiments were performed on the SN tissues from
PD and control cases (table S1). About 50 mg of tissue was placed
in an extra-thick tissue processing tube (Covaris, 520140) and
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repeatedly hammered while being frozen in liquid nitrogen to
produce tissue powder. The pulverized tissue was cross-linked
with 1% formaldehyde. In situ Hi-C was conducted on the basis
of the previously reported protocol with minor modifications
(55). Cross-linked cells were lysed with 10 nM tris-HCl (pH 8.0),
10 mM NaCl, and 0.2% IGEPAL CA-630 (Sigma-Aldrich, 18896)
and digested with 100 U ofMboI (NEB, R0147). Digested fragments
were labeled with biotin-14-dCTP (Invitrogen, 19518018) and
proximally ligated with T4 DNA Ligase (NEB, M0202), followed
by reverse–cross-linking with proteinase K (2 μg/μL; NEB,
P8102), 1% SDS, and 500 mM NaCl overnight at 68°C. The DNA
fragments were purified with AMPure XP beads (Beckman Coulter,
A63880) and subjected to sonication (Covaris, S220). The ligated
DNA fragments were pulled down with Dynabeads MyOne strepta-
vidin T1 beads (Invitrogen, 65602) with thorough washing. Hi-C
libraries were prepared manually by performing DNA end repair,
removal of un-ligated ends, adenosine addition at 3′ end (NEB,
M0212), ligation of Illumina indexed adapters (NEB, M2200),
and PCR amplification (Thermo Fisher Scientific, F549). The
number of cycles for PCR amplification was determined on the
basis of KAPA library quantification kit (KAPA, KK4854). The
Hi-C libraries were then subjected to deep sequencing in paired-
end mode using Illumina HiSeq 4000 and X platforms.

The sequencing output from Hi-C libraries was mapped to the
reference genome (hg19) using BWA-mem (“–M” option). In-
house scripts were used to remove low-quality reads (MAPQ
<10), the reads that span ligation sites, chimeric reads, and self-in-
teracting reads (two fragments located within 5 kb). The chimeric
reads were removed since they are biproducts of ligation chemistry
in Hi-C library construction and cannot be properly processed by
paired-end BWA-mem command. The read pairs were merged to-
gether as paired-end aligned BAM files, and PCR duplicates were
removed with Picard (v2.6.0).

Significant chromatin interaction calling
Statistically significant, long-range chromatin interactions were
identified at 5-kb resolution using Fit-Hi-C, as previously described
(28).We createdmergedHi-C BAM files with respect to control and
PD status, converted them into an input format for Fit-Hi-C in each
chromosome, and used the default Fit-Hi-C code to calculate the
interaction significance between two genomic coordinates in 1-
Mbp distance. A significance threshold (Q < 0.01) was used to
define significant chromatin interactions. We defined the union
of chromatin interactions obtained from PD and control SN as a
general interaction set and classified promoter- and cRE-associated
chromatin interactions by determining whether either bin of a chro-
matin interaction contained a TSS or a cRE. We labeled them as
“none” if the bin in the chromatin interaction contained no regula-
tory element.

Calculation of ABC score
We applied a conceptually identical framework described in the
ABC model (27), in which the quantitative effect of a cRE to a
target gene depends on the frequency with which it contacts its pro-
moter multiplied by the activity of the cRE. Briefly, ABC score for

the effect of cRE i on gene j was measured as the following:

ABC score for effect of cRE i on gene j

¼
Activity of cRE i�Contact frequency between cRE i and gene j

Sumof ðcRE activity�Contact frequencyÞ over all cRE s within 1Mb

The ABC scores for all cRE to gene relationships within 1-Mb
window were computed for individual cell types. The cRE activity
was defined by the normalized snATAC-seq reads in the given cell
type, and the contact frequency was represented by Hi-C contact
frequency between the two bins containing the cRE and TSS of
the target gene in 5-kb resolution. The position of a cRE was deter-
mined by the 5-kb genomic bin, in which the center of the cRE was
located. When two cREs were present in one 5-kb bin, the sum of
these cREs was used. Contact value was defined by cRE activity mul-
tiplied by contact frequency.

Integration of eQTL dataset from the human SN
The significant and all-paired eQTL associations from the human
SN were downloaded from GTEx portal (v7). The significant
eQTLs defined by GTEx (Q < 0.05) were first overlapped with dys-
regulated cREs, and the proportion of significant eQTLs in dysregu-
lated cREs was compared to expectation to calculate the eQTL
enrichment via two-sided Fisher ’s exact test. The LD-expanded
PD GWAS-SNPs in cis-regulatory region were matched with signif-
icant eQTLs, and the significance in enrichment compared to ex-
pectation was calculated identically. Then, the dysregulated cREs
and PD GWAS-SNPs that matched with eQTLs were used to test
the degree of overlap between target genes of eQTL association
and significant chromatin interactions, by considering the
number of eQTLs matched with the chromatin interactions. The
significance in the overlap between eQTL and Hi-C target genes
was calculated by performing hypergeometric test.

Putative target gene identification for dysregulated cREs
and PD GWAS-SNPs
Putative target genes of dysregulated cREs were identified iteratively
for each cell type based on the following criteria: (i) Dysregulated
cRE and its target gene are connected by a significant interaction,
(ii) dysregulated cRE and its target gene are annotated as an active
cell type in the cell type–resolved transcriptomic and epigenomic
reference, (iii) ABC score of dysregulated cRE to target gene rela-
tionship is greater than 10, and (iv) the Pearson’s correlation coef-
ficient (PCC) between cRE activity and target gene expression
across the samples based on bulk sequencing data is greater than
0.3. Putative target genes of PD GWAS-SNPs were identified for in-
dividual cell types based on the following data: (i) SNP-harboring
cRE and its target gene are connected by a significant interaction,
(ii) SNP-harboring cRE and its target gene are annotated as an
active cell type in the cell type–resolved transcriptomic and epige-
nomic reference, and (iii) ABC score of SNP-harboring cRE to
target gene relationship is greater than 10.

GO and mammalian phenotype analyses
EnrichR was used to identify biological processes for cell type–spe-
cific DEGs based on GO Biological Processes 2018 database. Simi-
larly, Genomic Regions Enrichment of Annotations Tool (GREAT)
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was used to determine biological processes that are associated with
dysregulated cREs.We used enrichR to identify mammalian pheno-
type overrepresented in putative target genes of dysregulated cREs
and PD GWAS-SNPs based on MGI mammalian phenotype data-
base (56). Among 4601 mammalian phenotype level 4 (2021) ontol-
ogies, we found 75 terms were enriched with the significance
threshold of P < 0.05 and a gene count of >7. Then, 28 phenotype
ontologies representing neurological, movement, and immune
symptoms were manually selected by neuropathology experts. The
full list of enriched phenotype ontologies and its associated gene set
is provided in table S6. Phenotypes with no biological relevance to
human diseases, including “lethality,” “death,” and “no abnormal
phenotype,” were excluded.

CRISPR-Cas9 genome editing
We validated gene-to-regulatory sequence relationships identified
by our Hi-C chromatin interactions. CRISPR-Cas9–mediated
genome editing was conducted using ribonucleoprotein (RNP) de-
livery method in the SH-SY5Y cell line. Three CRISPR RNAs
(crRNAs), along with trans-activating RNA (tracrRNA), were syn-
thesized in vitro (Integrated DNA Technologies). To create a RNP
complex, a guide RNA and tracrRNA were annealed, mixed with
Cas9 nuclease (Enzynomics, M058HL), and incubated for 15 min
at room temperature. The RNP complex was transfected into cells
by electroporation with Neon transfection 10-μl kit (Thermo Fisher
Scientific, MPK1096). To measure the efficiency of genome editing
in each guide RNA, we performed targeted deep sequencing. For
this, the genomic DNA was extracted from the transfected cells,
and the target sites were amplified by PCR subsequently. Indices
and sequencing adaptors were attached by additional PCR. High-
throughput sequencing was performed using Illumina MiniSeq
(San Diego, CA, USA). The mutation frequencies and patterns
were analyzed using the Cas-Analyzer program implemented in
CRISPR RGEN Tools (www.rgenome.net/). The cells were separat-
ed into single clones by serial dilutions on 96-well plates. After suf-
ficient growth of each clone, the genotype was confirmed by
conducting a Sanger sequencing of the target region from both di-
rections. We selected mutant clones with the largest mutation size
from each of the three guide RNAs from Sanger sequencing results
and purified total RNA for reverse transcription quantitative PCR
(RT-qPCR) to measure the relative mRNA expression levels of pu-
tative target genes. crisprRNA #1, TCTTGTGTGAA
GAAACCCGTTGG; crisprRNA #2, GCCCAAACCGAAGCCCC
CAAAGG; crisprRNA #3, AGCAACTCTCCTCCCTTTGGGGG;
genotyping, TCGTCTGCCGAGGATGTA (forward) and AATTT
CACGAATGCACCACAC (reverse); RT-qPCR primers: GAPDH,
CCACTCCTCCACCTTTGACG (forward) and TTCGTTGTCA
TACCAGGAAATGAG (reverse); TOMM7, CGGAATGCCTGAAC
CAACT (forward) and GCCTTGTGCCATCCAACTA (reverse);
KLHL7, CAGCAAGAAGAAGACCGAGAAG (forward) and
GCAAGAACAACACGATGAGCAG (reverse); NUPL2,
AAGTTTGGGAGTCGTCGGGA (forward) and CTTTTACGTCA
GAGAGCAGAGC (reverse).

Analysis of motif disruption by PD GWAS-SNPs
To determine enriched motifs and TFs, we first obtained cell type–
specific cREs using Signac’s FindAllMarkers function based on a
threshold of Wilcoxon BH-adjusted P < 0.05, a log2 fold change
of >1, and a minimum percent of nucleus detected >0.05, evaluating

cRE activity in one cell type to the background of all other cell types.
Next, Signac’s AddMotifs function was used to add motif informa-
tion to each cRE using JASPAR2020 CORE vertebrate nonredun-
dant database. The enrichment of binding motifs in cell type–
specific cREs was calculated by performing the hypergeometric
test in Signac’s FindMotifs function, and the motifs with a signifi-
cant binding enrichment (P < 1 × 10−10) were selected. We also
computed the deviation scores to evaluate the motif activity in
per-cell basis by running chromVAR (35). Then, the TFs with a
scaled deviation score greater than 1 and RNA detected at least
10% of nuclei were selected to determine TFs that are highly
active and expressed in each cell type.

To examine the association of PD GWAS-SNPs with TF binding
disruption, we constructed a synthetic genome containing the risk
alleles of PD GWAS-SNPs. Motif binding scores of enriched TFs
were computed on each GWAS-SNP–containing cRE using FIMO
(57) for both risk and nonrisk (reference) alleles. The default P value
threshold of FIMO was changed to 0.99 to account for all binding
possibilities, and the binding score for each GWAS-SNP–contain-
ing cRE was defined by the sum of −log10(P) of all binding combi-
nations within the cRE. The delta binding score was calculated by
the difference in binding score between risk and nonrisk alleles for
each GWAS-SNP–containing cRE, and a delta binding score greater
than 3 was used to define cREs with gained and lost TF binding.
Next, to evaluate the transcriptional effect of the disrupted motifs,
we collected GWAS-matched genetic variants obtained from each
PD donor and identified cREs with disrupted binding (delta
binding score > 3). Then, the putative target genes of these disrupt-
ed motifs were identified on the basis of the chromatin interaction
map using a threshold of cumulative ABC score > 1.

Analysis of modular gene expression patterns
For the 656 putative target genes obtained, a correlation matrix
where each entry indicates a similarity score between two putative
target genes was prepared by computing the PCC based on 16 bulk
RNA-seq samples. The correlation matrix was subjected to a hier-
archical clustering (Pearson correlation metric with average
linkage), which presented nine distinct gene clusters at a dendro-
gram height threshold of 0.65. Enriched biological processes of
protein-coding genes in clusters from C1 to C9 were determined
using Metascape (v3.5). The enrichment of target genes based on
the cell type and the type of dysregulated cREs in each cluster was
evaluated using the one-sided exact binomial test. The correspond-
ing significance values were multiple testing corrected for the
number of cell type annotations.
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