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Abstract: The five melanocortin receptors (MC1R–MC5R) are involved in numerous biological
pathways, including steroidogenesis, pigmentation, and food intake. In particular, MC3R and MC4R
knockout mice suggest that the MC3R and MC4R regulate energy homeostasis in a non-redundant
manner. While MC4R-selective agonists have been utilized as appetite modulating agents, the lack of
MC3R-selective agonists has impeded progress in modulating this receptor in vivo. In this study,
the (pI)DPhe position of the tetrapeptide Ac-His-Arg-(pI)DPhe-Tic-NH2 (an MC3R agonist/MC4R
antagonist ligand) was investigated with a library of 12 compounds. The compounds in this library
were found to have higher agonist efficacy and potency at the mouse (m) MC3R compared to the
MC4R, indicating that the Arg-DPhe motif preferentially activates the mMC3R over the mMC4R. This
observation may be used in the design of new MC3R-selective ligands, leading to novel probe and
therapeutic lead compounds that will be useful for treating metabolic disorders.
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1. Introduction

The melanocortin system consists of five receptors (MC1R–MC5R) [1–8] belonging to the class A
family of G protein-coupled receptors (GPCRs). The melanocortin receptors are involved in numerous
physiological functions and primarily signal through the Gαs pathway, increasing production of
cyclic adenosine monophosphate (cAMP) upon receptor activation [9]. The MC1R is involved in the
regulation of skin pigmentation [2,3]. The MC2R, implicated in steroidogenesis [3], is only activated by
the adrenocorticotropic hormone (ACTH) and not other endogenous melanocortin ligands [10]. The
MC3R and MC4R have been demonstrated to regulate appetite and energy homeostasis [4–6,11–14].
While the function of the MC5R has not been clearly elucidated in humans, this receptor has been linked
to exocrine gland function in mice [1,7,8,15]. The melanocortin receptors are stimulated by endogenous
agonists derived from the proopiomelanocortin (POMC) gene transcript [16], and include the α-, β-,
and γ-melanocortin stimulating hormones (MSH) and ACTH, as previously reviewed [17,18]. Common
to the endogenous agonists is a His-Phe-Arg-Trp tetrapeptide sequence, the minimum sequence when
the N-terminal is acetylated and the C-terminal is amidated to produce a functional response in the
frog (Rana pipiens) and lizard (Anolis carolinensis) skin bioassays [19,20]. The melanocortin system
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also contains two naturally occurring antagonists, agouti-signaling protein (ASP) and agouti-related
protein (AGRP), which possess an Arg-Phe-Phe tripeptide motif hypothesized to be important for
antagonist activity [21,22].

Studies in mice have indicated the important roles of the MC4R and MC3R in maintaining
energy homeostasis. Knock-out (KO) MC4R mice are hyperphagic and obese compared to wildtype
littermates [13]. While the MC3R may play a subtle role in regulating food intake [23], MC3R KO
mice exhibit increased fat mass, reduced lean mass, and maintain a similar body weight compared
to wildtype littermates [11,12]. Double MC3R/MC4R KO mice are significantly heavier than MC4R
KO mice, suggesting non-redundant roles for the MC3R and MC4R in energy homeostasis [12,24–26].
Central administration of non-selective melanocortin agonists has been shown to decrease food intake in
rodents [14,23,27], while the administration of MC3R/MC4R antagonists increases food intake [14,23,28].
Targeting the MC3R and MC4R may therefore lead to the development of treatments for metabolic
disorders such as obesity, anorexia, and cachexia. Similar to MC4R KO mice, select human MC4R single
nucleotide polymorphisms result in a hyperphagic and increased weight phenotype, as previously
reviewed [29]. MC4R-selective ligands have been reported to reduce body weight, although these
compounds possess side effects including increased blood pressure [30], erectile activity [31–33], and
skin darkening [34,35]. While the skin darkening is most likely due to the stimulation of the MC1R, the
increases in blood pressure [36] and erectile activity [37,38] are postulated to be MC4-mediated. In the
case of blood pressure, the lack of reported adverse cardiovascular side effects of the MC4R-selective
setmelanotide [34] indicates that this may be ligand-dependent. Though polymorphisms in the MC3R
may predispose an individual to obesity, the role of the MC3R has not been clearly elucidated [39].
While selective probes and therapeutic compounds have been developed for the MC4R, there remains
a need for MC3R-selective compounds to clarify the role of this receptor in energy homeostasis and as
potential lead ligands in the development of novel weight management therapeutics that bypass the
reported side effects of MC4R-selective ligands.

To identify novel scaffolds with agonist selectivity for the MC3R over the MC4R, our laboratory
performed a tetrapeptide mixture-based positional scan [40]. From this study, a new scaffold
tetrapeptide (Ac-His-Arg-(pI)DPhe-Tic-NH2) was identified that possessed nanomolar agonist potency
at the MC3R (EC50 = 40 nM) and was an antagonist at the MC4R (pA2 = 7.0) [40]. Compared to the
endogenous tetrapeptide melanocortin sequence (His-Phe-Arg-Trp), the new scaffold switched the
Phe and Arg positions and incorporated a Tic residue in place of the Trp. A follow-up study utilized
the most potent MC3R substitutions at each position within the tetrapeptide from the mixture-based
positional scan, retaining the switched Phe and Arg positions (Arg or Gln were utilized in the second
position, while (pI)DPhe or (pCl)DPhe were substituted at the third position) [41]. A 100-fold selective
MC3R versus MC4R agonist compound was identified (Ac-Val-Gln-(pI)DPhe-DTic-NH2) that did
not possess antagonist potency at the MC4R and only partially stimulated the MC4R (less than 50%
efficacy of NDP-MSH) [41]. Switching the Arg and Phe positions within the melanocortin tetrapeptide
sequence may therefore lead to MC3R-selective ligands that may be further developed into probe and
therapeutic lead compounds.

In previous studies examining the traditional melanocortin tetrapeptide sequence, the substitution
of (pI)DPhe for Phe, yielding the ligand Ac-His-(pI)DPhe-Arg-Trp-NH2, resulted in a full agonist
at the MC4R and a partial agonist with antagonist activity at the MC3R [42,43]. This contrasts
to the observed MC3R agonism and partial agonism with antagonist activity at the MC4R for the
scaffold Ac-His-Arg-(pI)DPhe-Tic-NH2, where switching to the Arg-(pI)DPhe motif and substituting Tic
results in opposite MC3R–MC4R activities. Further examination of the DPhe para-position within the
Ac-His-(pI)DPhe-Arg-Trp-NH2 scaffold demonstrated that this position influenced the efficacy at the
MC3R. Full MC3R agonist activity was observed when DPhe, DTyr, (pMe)DPhe, (pCN)DPhe, (pF)DPhe,
and (pCl)DPhe were incorporated, while (pI)DPhe, (pBr)DPhe, (pCF3)DPhe, and (3,4-diCl)DPhe
resulted in up to 50% receptor activation and micromolar to sub-micromolar antagonist potencies at
the MC3R [42]. All of these substitutions maintained full MC4R efficacy [42].
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Since switching the Phe and Arg positions results in MC3R agonism and MC4R partial
agonism/antagonism for the Ac-His-Arg-(pI)DPhe-Tic-NH2 scaffold, it was hypothesized that
further substitutions at the para-position might result in decreasing MC4R efficacy while retaining
MC3R agonism. Therefore, a library of 12 peptides was synthesized based upon the scaffold
Ac-His-Arg-(pX)DPhe-Tic-NH2 (substitutions for (pX)DPhe can be found in Figure 1) and assayed at
the mouse MC1R, MC3R, MC4R, and MC5R, in order to understand how the para-position within this
scaffold influences melanocortin receptor selectivity, potency, and efficacy.
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Figure 1. Structures and abbreviations of the amino acids used to replace the third amino acid in the
peptide template Ac-His-Arg-Xxx-Tic-NH2.

2. Results

Peptide Synthesis and Pharmacological Evaluation

Peptides were synthesized manually with microwave irradiation using standard Fmoc
synthesis techniques [44,45] and purified using semi-preparative reverse-phase high-pressure
liquid-chromatography (RP-HPLC). Peptide molecular mass was confirmed through ESI-MS (University
of Minnesota Mass Spectrometry Laboratory), and each peptide was assessed for purity (>95%) using
analytical RP-HPLC in two different solvent systems (acetonitrile and methanol; Table 1). Agonist
pharmacology was measured at the mMC3R, mMC4R, and mMC5R using a colorimetricβ-galactosidase
assay that measures cAMP production [46]. Agonist pharmacology was assessed at the mMC1R
using the Amplified Luminescent Proximity Homogenous Assay Screen (AlphaScreen, PerkinElmer),
as previously described [47–49]. The MC2R is only stimulated by ACTH, and was not examined in this
study. For both assays, HEK293 cells stably expressing the mMCRs were used. For agonist assays, the
peptide ligands NDP-MSH [50] and Ac-His-DPhe-Arg-Trp-NH2 [51] were used as positive controls.
Ligands were considered full agonists if they stimulated the receptor to >90% of the maximal signal
of NDP-MSH and were considered inactive if they did not stimulate the receptor to at least 20% of
the signal of NDP-MSH at a 100 µM concentration. Compounds that did not possess at least 50%
of the maximal NDP-MSH signal were assessed for antagonist pharmacology using a Schild assay
design [52], with NDP-MSH as the agonist. Compounds that were within 3-fold potency range were
considered equipotent and within the inherent experimental error of the assays.

Similar to prior reports [49,51], the Ac-His-DPhe-Arg-Trp-NH2 peptide (KNS2-153) possessed
agonist potencies of 10, 190, 12, and 5 nM at the mMC1R, mMC3R, mMC4R, and mMC5R, respectively
(Figure 2, Tables 2 and 3). The lead ligand for the current series (KNS2-22-4) switched the Arg and
DPhe positions, utilized a (pI)DPhe in the place of DPhe, and substituted a Tic residue in the place
of Trp compared to KNS2-153. These alterations resulted in a ligand that maintained full agonist
efficacy at the mMC1R, mMC3R, and mMC5R (EC50 = 0.7, 13, and 5 nM, respectively; Tables 2 and 3),
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and partial agonist efficacy at the mMC4R (40% of the NDP-MSH signal, EC50 = 150 nM; Figure 3).
An antagonist pA2 value of 7.3 was observed for KNS2-22-4 at the mMC4R (Figure 3). In prior
studies, this compound was observed to possess nanomolar agonist potency at the MC3R (30–40 nM),
partial agonist stimulation of the MC4R, and sub-micromolar antagonist potency at the MC4R (pA2 of
6.6–7) [40,41], similar to the results in the present study.

Table 1. Analytical data for peptides synthesized in this study a.

Peptide Sequence
Retention Time (min) M

(Calculated)
M + H

(Observed)
Purity

(%)System 1 System 2

KNS2-153 Ac-His-DPhe-Arg-Trp-NH2 10.1 15.6 685.3 686.4 >98
KNS2-22-4 Ac-His-Arg-(pI)DPhe-Tic-NH2 14.9 23.6 784.2 785.3 >97
KNS2-22-3 Ac-His-Arg-(pBr)DPhe-Tic-NH2 14.9 23.2 736.3, 738.3 b 737.3, 739.3 b >98
KNS2-22-1 Ac-His-Arg-(pCl)DPhe-Tic-NH2 14.6 22.7 692.3 693.5 >97
KNS2-22-2 Ac-His-Arg-(pF)DPhe-Tic-NH2 13.5 20.8 676.3 677.5 >95
KNS3-10 Ac-His-Arg-DPhe-Tic-NH2 12.8 20.1 658.3 659.5 >99

KNS2-23-4 Ac-His-Arg-(3,4-diCl)DPhe-Tic-NH2 15.6 24.2 726.3 727.4 >97
KNS2-23-7 Ac-His-Arg-(pMe)DPhe-Tic-NH2 14.3 22.3 672.4 673.5 >97
KNS2-23-6 Ac-His-Arg-(pCF3)DPhe-Tic-NH2 15.0 23.4 726.7 727.5 >98
KNS2-23-3 Ac-His-Arg-(ptBu)DPhe-Tic-NH2 17.5 26.5 714.4 715.4 >95
KNS2-23-1 Ac-His-Arg-DBip-Tic-NH2 16.7 25.9 734.3 735.5 >96
KNS2-23-9 Ac-His-Arg-DTyr-Tic-NH2 10.5 15.0 674.3 675.4 >96
KNS2-23-8 Ac-His-Arg-(pCN)DPhe-Tic-NH2 11.5 17.2 683.3 684.3 >97

a HPLC retention time (min) for peptides in solvent system 1 (10% acetonitrile in 0.1% trifluoroacetic acid/water and
a gradient to 90% acetonitrile over 35 min) or solvent system 2 (10% methanol in 0.1% trifluoroacetic acid/water and
a gradient to 90% methanol over 35 min). An analytical Vydac C18 column (Vydac 218TP104) was used with a flow
rate of 1.5 mL/min. The peptide purity was determined by HPLC at a wavelength of 214 nm. b Two peaks were
observed for the (pBr)DPhe amino acid due to the approximately equal natural abundance of 79Br and 81Br.

Table 2. Tetrapeptide pharmacology at the mouse melanocortin-1 receptor using the AlphaScreen
cyclic adenosine monophosphate (cAMP) assay a.

Peptide Sequence mMC1R
EC50 (nM)

NDP-MSH Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2 0.009 ± 0.002

KNS2-153 Ac-His-DPhe-Arg-Trp-NH2 10 ± 3

KNS2-22-4 Ac-His-Arg-(pI)DPhe-Tic-NH2 0.7 ± 0.2

KNS2-22-3 Ac-His-Arg-(pBr)DPhe-Tic-NH2 0.7 ± 0.3

KNS2-22-1 Ac-His-Arg-(pCl)DPhe-Tic-NH2 0.8 ± 0.2

KNS2-22-2 Ac-His-Arg-(pF)DPhe-Tic-NH2 1.8 ± 0.7

KNS3-10 Ac-His-Arg-DPhe-Tic-NH2 4.6 ± 0.4

KNS2-23-4 Ac-His-Arg-(3,4-diCl)DPhe-Tic-NH2 5 ± 2

KNS2-23-7 Ac-His-Arg-(pMe)DPhe-Tic-NH2 1.0 ± 0.3

KNS2-23-6 Ac-His-Arg-(pCF3)DPhe-Tic-NH2 5 ± 1

KNS2-23-3 Ac-His-Arg-(ptBu)DPhe-Tic-NH2 9 ± 3

KNS2-23-1 Ac-His-Arg-DBip-Tic-NH2 0.6 ± 0.1

KNS2-23-9 Ac-His-Arg-DTyr-Tic-NH2 40 ± 10

KNS-2-23-8 Ac-His-Arg-(pCN)DPhe-Tic-NH2 27 ± 6
a The indicated error represents the standard error of the mean determined from at least three independent
experiments performed in duplicate replicates.
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Table 3. Tetrapeptide pharmacology at the mouse melanocortin-3, -4, and -5 receptors using the β-Galactosidase cAMP assay a.

Peptide Sequence mMC3R EC50 (nM)
mMC4R

mMC5R EC50 (nM)
EC50 (nM) pA2

NDP-MSH Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2 0.52 ± 0.05 0.32 ± 0.02 - 3.4 ± 0.7
KNS2-153 Ac-His-DPhe-Arg-Trp-NH2 190 ± 40 12 ± 3 - 5 ± 2

KNS2-22-4 Ac-His-Arg-(pI)DPhe-Tic-NH2 13 ± 2
Partial Agonist

150 ± 40
(40% NDP)

7.3 ± 0.8 5 ± 1

KNS2-22-3 Ac-His-Arg-(pBr)DPhe-Tic-NH2 90 ± 20
Partial Agonist

290 ± 50
(55% NDP)

- 9.7 ± 0.5

KNS2-22-1 Ac-His-Arg-(pCl)DPhe-Tic-NH2 120 ± 20
Partial Agonist

280 ± 60
(70% NDP)

- 18 ± 6

KNS2-22-2 Ac-His-Arg-(pF)DPhe-Tic-NH2 450 ± 70
Partial Agonist

560 ± 60
(70% NDP)

- 70 ± 40

KNS3-10 Ac-His-Arg-DPhe-Tic-NH2

Partial Agonist
900 ± 200

(85% NDP)
3000 ± 2000 -

Partial Agonist
200 ± 30

(65% NDP)
KNS2-23-4 Ac-His-Arg-(3,4-diCl)DPhe-Tic-NH2 400 ± 100 >100,000 6.15 ± 0.05 70 ± 7

KNS2-23-7 Ac-His-Arg-(pMe)DPhe-Tic-NH2 110 ± 20
Partial Agonist

700 ± 200
(50% NDP)

- 17 ± 4

KNS2-23-6 Ac-His-Arg-(pCF3)DPhe-Tic-NH2 90 ± 30
Partial Agonist

600 ± 300
(20% NDP)

6.5 ± 0.2 13 ± 4

KNS2-23-3 Ac-His-Arg-(ptBu)DPhe-Tic-NH2

Partial Agonist
13 ± 4

(85% NDP)
>100,000 6.8 ± 0.3 3.4 ± 0.3

KNS2-23-1 Ac-His-Arg-DBip-Tic-NH2 14 ± 2
Partial Agonist

1400 ± 700
(45% NDP)

5.9 ± 0.2 7.6 ± 0.7

KNS2-23-9 Ac-His-Arg-DTyr-Tic-NH2

Partial Agonist
4200 ± 800
(85% NDP)

>100,000 <5.5 1000 ± 500

KNS2-23-8 Ac-His-Arg-(pCN)DPhe-Tic-NH2

Partial Agonist
4000 ± 1000
(75% NDP)

40% @ 100 µM <5.5 500 ± 100

a The indicated error represents the standard error of the mean determined from at least three experiments performed in duplicate replicates. The value of >100,000 nM indicates that the
compound was assayed but no agonist activity was observed up to a concentration of 100 µM. A percentage denotes the percent maximal stimulatory response observed at 100 µM, but not
enough stimulation was observed to determine an EC50 value. Partial agonist indicates a partial agonist with the percent maximal stimulation (relative to NDP-MSH) and the apparent
EC50 value. Antagonist pA2 values were determined using a Schild analysis [52] and the agonist NDP-MSH. The value of <5.5 indicates that no antagonist potency was observed in the
highest antagonist concentration range assayed (10,000, 5000, 1000, and 500 nM). A dash (-) indicates that the compound was not assayed as an antagonist at the mMC4R.
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Figure 2. Illustration of the agonist pharmacology of NDP-MSH, KNS2-153, KNS2-22-1, KNS3-10,
KNS2-23-3, and KNS2-23-8 at the mMC3R and mMC4R.
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Figure 3. Illustration of the antagonist pharmacology of KNS2-22-4 and KNS2-23-8 at the mMC4R.

Replacing (pI)DPhe with (pBr)DPhe (KNS2-22-3) resulted in similar potencies at the melanocortin
receptors assayed compared to KNS2-22-4, although higher efficacy was observed at the mMC4R
(55% maximal NDP-MSH signal). The (pCl)DPhe-substituted KNS2-22-1 maintained similar potencies
compared to KNS2-22-4 at the mMC1R and mMC5R, but was 9-fold less potent at the mMC3R (120 nM,
Figure 2) and possessed an increased partial agonist response relative to NDP-MSH (70%, EC50 = 280 nM)
at the mMC4R (Figure 2) compared to KNS2-22-4. The Ac-His-Arg-(pCl)DPhe-Tic-NH2 (KNS2-22-1)
tetrapeptide was previously reported to possess agonist pharmacology at the mMC3R (110 nM) and
partial agonist activity at the mMC4R (EC50 = 140 nM), similar to the values observed in the present
study [41]. While similar potency relative to KNS2-22-4 was observed for the (pF)DPhe-substituted
KNS2-22-2 at the mMC1R, this substitution decreased potency at the mMC3R and mMC5R (30- and
14-fold as compared to KNS2-22-4, respectively). Similar to KNS2-22-1, a 70% partial agonist response
at the mMC4R (EC50 = 560 nM) was observed for KNS2-22-2.

The DPhe-substituted KNS3-10 possessed decreased agonist potency compared to KNS2-22-4 at
the mMC1R (6-fold), mMC3R (70-fold), and mMC5R (5-fold). This substitution resulted in a partial
agonist response at the mMC3R and mMC5R (85% and 65% maximal NDP-MSH signal, respectively),
and was the only compound in the series to possess full agonist efficacy at the mMC4R (EC50 = 3 µM;
Figure 2). The only di-substituted ring examined, (3,4-diCl)DPhe (KNS2-23-4), possessed decreased
potency at the mMC1R (7-fold), mMC3R (30-fold), and mMC5R (14-fold) compared to KNS2-22-4, and
did not result in stimulation of the mMC4R at concentrations up to 100 µM. This substitution resulted
in micromolar antagonist potency at the mMC4R (pA2 = 6.2).
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Replacing (pI)DPhe with (pMe)DPhe (KNS2-23-7) resulted in similar agonist potencies at the
mMC1R and mMC5R compared to KNS2-22-4, an 8-fold decreased potency at the mMC3R, and
stimulated the mMC4R up to 50% of the maximal NDP-MSH signal (EC50 = 700 nM). Substituting a
p-trifluoromethyl group (KNS2-23-6) retained similar potency at the mMC5R compared to KNS2-22-4,
but decreased potency at the mMC1R and mMC3R (7-fold for both). This substitution resulted in
20% stimulation of the mMC4R (relative to NDP-MSH), with an agonist potency of 600 nM and an
antagonist pA2 value of 6.5. The incorporation of (ptBu)DPhe resulted in tetrapeptide KNS2-23-3, with
decreased potency at the mMC1R (13-fold) compared to KNS2-22-4, similar potency at the mMC3R
and mMC5R, and produced a partial agonist response (85% relative to NDP-MSH) at the mMC3R. This
substitution resulted in minimal agonist activity (<20%) at the mMC4R (Figure 2), but resulted in the
second highest antagonist potency observed at the mMC4R (pA2 = 6.8). When another aromatic ring
was extended from the para-position (DBip, KNS2-23-1), similar potencies at the mMC1R, mMC3R,
and mMC5R were observed compared to KNS2-22-4, with decreased agonist (1.4 µM) and antagonist
(pA2 = 5.9) potencies at the mMC4R.

The least potent compounds possessed a hydroxyl (KNS2-23-9) or nitrile (KNS2-23-8) group at
the para-position. The substitution of DTyr (KNS2-23-9) resulted in potencies of 40 nM, 4300 nM, and
1000 nM at the mMC1R, mMC3R, and mMC5R, respectively, and did not possess agonist or antagonist
activity at the mMC4R in the concentrations assayed. An 85% partial agonist response was observed
at the mMC3R. Similar agonist potencies of 27 nM, 4000 nM, and 500 nM at the mMC1R, mMC3R,
and mMC5R were observed for KNS2-23-8, with partial efficacy at the mMC3R (75%). At 100 µM
concentrations, this ligand was able to partially stimulate the mMC4R (40% of the maximal NDP-MSH
signal; Figures 2 and 3) and did not result in antagonist activity (Figure 3).

3. Discussion

Previous results exploring the DPhe para-position in the Ac-His-DPhe-Arg-Trp-NH2 scaffold
resulted in full MC4R agonists with different MC3R agonist and antagonist activities [42]. Select
substitutions resulted in full MC3R agonist efficacy, while others resulted in partial receptor activation at
100 µM concentrations and micromolar to sub-micromolar antagonist potencies [42]. Thus, a DPhe-Arg
motif resulted in full agonism at the MC4R and full to partial agonism at the MC3R accompanied by
antagonist activity (dependent on the DPhe para-position). Due to the MC3R agonism and MC4R
antagonism observed in the Ac-His-Arg-(pI)DPhe-Tic-NH2 ligand [40,41], it was hypothesized that
different substitutions at the DPhe para-position within this scaffold (possessing an Arg-DPhe motif and
a Tic residue in position 4) may modulate MC4R agonist efficacy. The results in Table 3 demonstrate that
the efficacy at the mMC4R was modulated by various para-substitutions. Full agonism was observed
for the ligand Ac-His-Arg-DPhe-Tic-NH2 (KNS3-10) at the mMC4R (Figure 2), and an additional four
substitutions resulted in over 50% agonist efficacy at the mMC4R ((pBr)DPhe, (pCl)DPhe, (pF)DPhe,
and (pMe)DPhe). Modest agonist efficacy (20–50%) was observed for four ligands (possessing the
(pI)DPhe, (pCF3)DPhe, DBip, and (pCN)DPhe substitutions), and three substitutions ((3,4-diCl)DPhe,
(ptBu)DPhe, and DTyr) resulted in compounds that did not produce >20% response of the maximal
NDP-MSH signal at up to 100 µM concentrations at the mMC4R. A partial agonist response at the
mMC3R was also observed for four of the ligands. Thus, the para-substitution at the DPhe position
within the Ac-His-Arg-(pI)DPhe-Tic-NH2 scaffold modulates agonist efficacy at both the mMC3R and
mMC4R, with the Arg-DPhe motif in general resulting in a more efficacious response at the mMC3R.

Several compounds from this study may be useful lead ligands in the development of
MC3R/MC4R-selective compounds. One compound (KNS2-23-9) possessed micromolar mMC3R
agonist potency and did not possess agonist or antagonist activity at the mMC4R. An additional three
compounds were at least 100-fold selective agonists for the mMC3R over the mMC4R (KNS2-23-4,
KNS2-23-3, and KNS2-23-1), though these three ligands possessed micromolar to sub-micromolar
mMC4R antagonist potencies. Further optimization to increase MC3R potency and efficacy, and to
minimize MC4R pharmacology, may be required to develop selective MC3R ligands that can elucidate
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the roles of the MC3R. The use of MC3R KO and MC4R KO mice may also be used with the present
ligands to begin to clarify the roles of the different melanocortin receptors in vivo. Alternatively, three
compounds (KNS2-22-4, KNS2-23-6, and KNS2-23-3) possessed mMC3R agonist potencies of less
than 100 nM and were sub-micromolar potent mMC4R antagonists. Further optimization of this dual
pharmacology (increased MC3R agonism with increased MC4R antagonism) might result in novel
tool compounds that can characterize the in vivo role of the MC3R and MC4R in the regulation of
food intake.

While these substitutions had an effect on efficacy at the mMC3R and mMC4R, all compounds
assayed were full agonists at the mMC1R, and only one compound was not a full agonist at the
mMC5R (KNS3-10, stimulating the mMC5R to 65% of the maximal NDP-MSH response). It therefore
appears that the Arg-DPhe position switch may only lead to mMC3R over mMC4R selectivity. Potency
trends at the mMC1R and mMC5R were similar to that at the mMC3R. The two compounds that
were micromolar potent mMC3R agonists (KNS2-23-9 and KNS2-23-8) were also the least potent
mMC1R (40 and 27 nM, respectively) and mMC5R (1000 and 500 nM, respectively) agonists. While no
compound was significantly more potent than the Ac-His-DPhe-Arg-Trp-NH2 ligand at the mMC5R,
five ligands resulted in at least a 10-fold potency increase at the mMC1R (KNS2-22-4, KNS2-22-3,
KNS2-22-1, KNS2-23-7, and KNS2-23-1).

Another report investigated the para-position within the Ac-His-DPhe-Arg-Trp-NH2 scaffold
for MC1R selectivity [53]. In addition to pF, pCl, pBr, and pCF3 substitutions, Arg was replaced
with a neutral Nle residue due to hypothesized interactions with the Arg and basic residues in the
MC3R and MC4R [53]. As a general trend, these substitutions increased binding affinity at the MC1R
compared to the other melanocortin receptors, as well as increased agonist selectivity for the MC1R [53].
Intraperitoneal (i.p.) injection of the pCF3 substituted ligand resulted in in vivo pigmentation effects
when administered to Anolis carolinesis lizards [53]. Our results indicate that switching the Phe-Arg
positions and substituting Tic for Trp may also increase MC1R potency. When combined with the Nle
substitution at the Arg position, these substitution patterns may result in increased MC1R selectivity
and/or potency.

4. Materials and Methods

4.1. Reagents

4-(2′,4′-Dimethoxyphenyl-Fmoc-aminomethyl)phenoxyacetyl-MBHA resin (rink-amide-MBHA
(100–200 mesh), 0.66 equivalents/g substitution), 2-(1H-benzotriazol-1-yl)1,1,3,3,-tetramethyluronium
hexafluorophosphate (HBTU), and the amino acids Fmoc-His(Trt), Fmoc-Arg(Pbf), Fmoc-DPhe,
Fmoc-Trp(Boc), Fmoc-(pF)DPhe, and Fmoc-(pCl)DPhe were purchased from Peptides
International (Louisville, KY, USA). Fmoc-(pBr)DPhe, Fmoc-(3,4-diCl)DPhe, Fmoc-(pCN)DPhe,
Fmoc-(pMe)DPhe, and Fmoc-(ptBu)DPhe were purchased from BACHEM (San Carlos, CA, USA).
Fmoc-(pI)DPhe was purchased from Alfa Aesar (Tewksbury, MA, USA). Fmoc-(pCF3)DPhe was
purchased from Chem Cruz (Dallas, TX, USA). Fmoc-d-4,4′-biphenylalanine (Fmoc-Bip) and
Fmoc-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Fmoc-Tic) were purchased from Synth Tech
(Albony, OR, USA). Fmoc-DTyr(But) was acquired from Advanced Chemtech (Louisville, KY,
USA). Triisopropylsilane (TIS), dimethyl sulfoxide (DMSO), N,N-diisopropylethylamine (DIEA),
1,2-ethanedithiol (EDT), piperidine, pyridine, and trifluoroacetic acid (TFA) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Acetonitrile (MeCN), N,N-dimethylformamide (DMF),
dichloromethane (DCM), methanol (MeOH), and acetic anhydride were purchased from Fisher
Scientific. All reagents were ACS grade or higher and were used without further purification.

4.2. Peptide Synthesis

Peptides were synthesized on a CEM Discover SPS manual microwave synthesizer using standard
fluorenyl-9-methyloxycarbonyl (Fmoc) methodology [44,45]. The rink-amide resin was added to
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a fritted polypropylene reaction vessel (25 mL CEM reaction vessel). The resin was allowed to swell
in DCM for 1 h. Deprotection of the Fmoc group consisted of two steps: (1) 20% piperidine in DMF
at rt for two minutes, followed by (2) 20% piperidine in DMF using microwave irradiation for 4 min
at 75 ◦C with 30 W. The resin was washed with DMF, and the presence of a free amine was assessed
using the ninhydrin [54] or chloranil [55] (for the Tic residue) tests. Coupling reactions were carried
out with 3.1 equivalents (eq) of the incoming Fmoc-protected amino acid, 3 eq HBTU, and 5 eq
DIEA using microwave irradiation (5 min, 75 ◦C, 30 W). A lower temperature (50 ◦C) was utilized
for His. For Arg coupling, higher equivalents of Arg (5.1 eq), HBTU (5 eq), and DIEA (7 eq) were
used with a longer (10 min) microwave irradiation time. Following resin washing with DMF, the
completeness of the coupling reactions was assessed with the ninhydrin or chloranil tests, and amino
acids were recoupled if necessary. Following the coupling of the N-terminal His residue, the final
Fmoc group was removed and the N-terminal was acetylated with 3:1 acetic anhydride:pyridine
for 30 min at rt. Peptides were side-chain deprotected and cleaved from the resin for 2 h using
a 91:3:3:3 TFA:thioanisole:TIS:H2O solution, except for KNS2-23-9 (Ac-His-Arg-DTyr-Tic-NH2), which
was cleaved in a 91:3:3:3 TFA:EDT:TIS:H2O solution. After cleavage, peptides were precipitated in
ice-cold diethyl ether, and pelleted using a Sorvall Legend XTR centrifuge using a swinging bucket
rotor (4000 rpm for 4 min at 4 ◦C). The peptide was washed with diethyl ether and pelleted at least
three times before drying overnight in a desiccator.

The peptides were purified by RP-HPLC on a semipreparative C18 reverse-phase column (Vydac
2181010, 10× 250 mm) using a Shimadzu UV detector (Shimadzu, Kyoto, Japan). The collected fractions
were concentrated on a rotary evaporator and lyophilized. The purified compounds were characterized
analytically by RP-HPLC on an analytical C18 reverse-phase column (Vydac 218104; Hichrom, Theale,
UK) using two solvent systems—methanol and acetonitrile. Peptides were determined to be greater
than 95% pure as assessed by peak area at 214 nm, and the correct average molecular mass was
confirmed using ESI/TOF-MS (Bruker, BioTOF II, University of Minnesota Department of Chemistry
Mass Spectrometry Laboratory, Minneapolis, MN, USA).

4.3. AlphaScreen Bioassay

Peptide ligands were dissolved in DMSO at stock concentrations of 10−2 M. To assess the
pharmacological activity of the tetrapeptides at the mMC1R, HEK293 cells stably expressing the
mMC1R were stimulated with the ligands using the cAMP AlphaScreen assay (PerkinElmer) according
to the manufacturer’s instruction and as previously described [47,49,56].

Cells were grown at 37 ◦C with 5% CO2 in cell media (Dulbecco’s Modified Eagle’s Medium
(DMEM) containing 10% newborn calf serum (NCS) and 1% penicillin-streptomycin) in 10 cm plates to
70–95% confluency. Cells were dislodged with Versene (Gibco) at 37 ◦C, and 10,000 cells/well were
plated in a 384-well plate (Optiplate) with freshly made stimulation buffer (Hank’s Balanced Salt
Solution (HBSS, 1×), 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 5 mM HEPES, and 0.1% bovine
serum albumin (BSA), pH = 7.4) with 0.5 µg anti-cAMP acceptor beads per well. The cells were
stimulated with the addition of 5 µL stimulation buffer containing peptide (a seven-point dose response
curve was used starting with peptide concentrations of 10−4 to 10−7 M, determined by ligand potency)
or forskolin (10−4 M) and incubated in the dark at rt for 2 h.

Following stimulation, biotinylated cAMP (0.62 µM) and streptavidin-coated donor beads (0.5 µg)
were added to the wells in a subdued light environment with 10 µL lysis buffer (0.3% Tween-20, 5 mM
HEPES, and 0.1% BSA, pH = 7.4). Plates were incubated for an additional 2 h in the dark. Post
incubation, the plates were read by an EnSpire plate reader (PerkinElmer, Waltham, MA, USA).

4.4. β-Galactosidase Assay

The peptide ligands were assessed for pharmacological activity at the mMC3R, mMC4R, and mMC5R
using a β-galactosidase assay. Briefly, HEK293 cells stably expressing the MC3R, MC4R, or MC5R were
plated into a 10 cm dish and grown to 40% confluency. The HEK293 cells were transfected with 4 µg of
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CRE/β-galactosidase using the calcium-phosphate method, as previously described [46]. Cells (5000 to
15,000) were plated on collagen-treated Nunclon Delta Surface 96-well plates (Thermo Fisher Scientific)
and incubated at 37 ◦C with 5% CO2. Plates were stimulated 48 h post-transfection with 100 µL solutions
of peptide (a seven-point dose response curve with concentrations between 10−4 to 10−12 M, depending
on potency) or forskolin (10−4 M) in assay media (DMEM containing 0.1 mg/mL BSA and 0.1 mM IBMX)
for 6 h. The assay media was aspirated and 50 µL of lysis buffer (250 mM Tris-HCl, 0.1% Triton X-100, pH
8.0) was added to each well. Plates were stored at −80 ◦C for up to two weeks.

Thawed plates were assessed for protein content and assayed for β-galactosidase activity. Relative
protein concentration was determined by adding 10 µL of cell lysate to 200 µL of a 1:5 dilution of
Bio Rad G250 protein dye in a 96-well plate. Absorbance was measured using a 96-well plate reader
(Molecular Devices) at λ = 595 nm. To determine β-galactosidase activity, 40 µL of 0.5% BSA in
phosphate buffered saline (PBS) (37 ◦C) and 150 µL of the β-galactosidase substrate (60 mM Na2HPO4,
1 mM MgCl2, 10 mM KCl, 50 mM 2-mercaptoethanol, and 660 µM 2-nitrophenyl β-d-galactosidase)
were added to the remaining 40 µL of cell lysate. Plates were incubated at 37 ◦C and periodically read
on the 96-well plate reader until the absorbance at λ = 405 nm reached approximately 1.0 relative
absorbance units for the positive controls.

4.5. Data Analysis

The EC50 and pA2 values represent the mean of duplicate replicates performed in at least three
independent experiments. The EC50 and pA2 values and their associated standard errors (SEM) were
determined by fitting the data to a nonlinear least-squares analysis using the PRISM program (v4.0,
GraphPad Inc., San Diego, CA, USA). The ligands were assayed as TFA salt and not corrected for
peptide content.

5. Conclusions

The tetrapeptide Ac-His-Arg-(pI)DPhe-Tic-NH2, possessing a switched Arg-DPhe motif and Tic
at the fourth position relative to the Ac-His-DPhe-Arg-Trp-NH2 melanocortin agonist sequence, was
characterized to be an MC3R agonist/MC4R antagonist ligand following a mixture-based positional
scan to identify MC3R agonist-selective ligands. Previous characterization of the DPhe para-position
within the Ac-His-DPhe-Arg-Trp-NH2 scaffold indicated that substitutions influenced MC3R efficacy
while maintaining full MC4R agonism. It was therefore hypothesized that different substitutions at
the DPhe para-position in the Ac-His-Arg-(pI)DPhe-Tic-NH2 scaffold might modulate MC4R efficacy
while maintaining MC3R agonism. A range of MC4R efficacies was observed from the library of
12 compounds, including one full agonist and three ligands that possessed no agonist activity at
concentrations up to 100 µM. Efficacy at the MC3R was also modulated, though all compounds
maintained at least at 75% stimulation of the MC3R relative to NDP-MSH. Thus, the inversion of
the Arg and DPhe positions within the melanocortin tetrapeptide sequences appears to result in
preferential MC3R agonism over MC4R, a useful design motif for the development of MC3R-selective
ligands that may serve as novel probe and lead ligands in the treatment of various disorders of altered
energy balance.
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