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The Connectivity Map (CMAP) project profiled human cancer cell lines exposed to a library of anticancer compounds with the
goal of connecting cancer with underlying genes and potential treatments. Since the therapeutic goal of most anticancer drugs is
to induce tumor-selective apoptosis, it is critical to understand the specific cell death pathways triggered by drugs. This can help
to better understand the mechanism of how cancer cells respond to chemical stimulations and improve the treatment of human
tumors. In this study, using CMAP microarray data from breast cancer cell line MCF7, we applied a Gaussian Bayesian network
modeling approach and identified apoptosis as a major drug-induced cellular-pathway. We then focused on 13 apoptotic genes that
showed significant differential expression across all drug-perturbed samples to reconstruct the apoptosis network. In our predicted
subnetwork, 9 out of 15 high-confidence interactions were validated in the literature, and our inferred network captured two major
cell death pathways by identifying BCL2L11 and PMAIP1 as key interacting players for the intrinsic apoptosis pathway and TAXBP1
and TNFAIP3 for the extrinsic apoptosis pathway. Our inferred apoptosis network also suggested the role of BCL2L11 and TNFAIP3
as “gateway” genes in the drug-induced intrinsic and extrinsic apoptosis pathways.

1. Introduction

One goal of biomedical research is to better understand
human diseases such as cancer by studying gene patterns
associated with diseases and using them to find the best
potential treatments. Recently, Todd Golub and his col-
leagues at the Broad Institute initialized the “Connectivity
Map” (CMAP) project [1, 2] to make these disease-gene-
drug connections by utilizing microarray technology. High-
throughput microarrays are able to profile gene expression at
a whole-genome level and can be used to detect signatures
under certain perturbations or phenotypes in cells [3]. Since
the therapeutic goal of most anticancer drugs is to induce
tumor-selective cell death [4], it is reasonable to hypothesize
that apoptosis may be a major cellular mechanism targeted
by anticancer drugs. It is therefore critical to understand
the specific cell death pathways that are activated by drugs.

This would help to better understand the mechanism of how
cancer cells respond to chemical stimulations and improve
the treatment of aggressive human tumors. Because the
CMAP database contains profiles from a large collection
of human cancer cell lines containing information on how
cells respond to chemical stimulations, it can be used to
test the hypothesis that the apoptosis pathway might be a
major responsive program to drug perturbations in cancer
cells. One can do this by enrichment analysis of apoptotic
genes in drug-responsive genes or in differentially expressed
genes in drug-exposed cancer cells [5–10]. CMAP data also
contains dynamic transcriptional activities of most genes
across diverse conditions, giving sufficient data for associ-
ating the activities of genes of interest with each other and
for reconstructing parts of the apoptosis pathway in the
context of drug-exposed cancer cells. In this study, we used
CMAP gene expression profiles to test the hypothesis that
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apoptosis may be a major drug-induced cellular mechanism.
We then employed a Gaussian Bayesian network modeling
approach to reconstruct the subnetwork of the drug-induced
cell death pathway. To minimize the effects of heterogeneity
from different tumor types, our study focused on a single
breast cancer cell line, MCF7.

The death of mammalian cells is induced by intracel-
lular cysteine proteases known as caspases. Caspases are
first synthesized as largely inactive zymogens known as
procaspases and are later activated through posttranslational
mechanisms. Two principal pathways of caspase activation
have been recognized [11–13]. One pathway, which is of
more ancient origin and evolutionarily conserved, is known
as the stress pathway, mitochondrial pathway, or intrinsic
pathway. It is induced by developmental cues and diverse
intracellular stresses.This pathway begins with the activation
of caspase-9 on a scaffold formed by Apaf-1 in response
to cytochrome c release from damaged mitochondria. It is
known to be regulated primarily by proteins from the Bcl-2
family. The other pathway is known as the extrinsic pathway
and is triggered by the so-called “death receptors” on the cell
surface.Thedeath receptors are engaged by cognate ligands of
the tumor necrosis factor (TNF) family. This pathway begins
with the activation of caspase-8 (and caspase-10 in human
cells), via adaptor proteins including Fas-associated death
domain protein (FADD). Once activated, caspase-9 in the
intrinsic pathway or caspase-8 (-10) in the extrinsic pathway
activates downstream “effector caspases” including caspase-
3, caspase-6, and caspase-7. In an expanding cascade, these
caspases carry out the execution phase of cell death. To better
understand whether anticancer drugs target the intrinsic and
extrinsic apoptosis pathways and identify specific pathways
or interactions activated by anticancer drugs, we crossed our
predicted drug-triggered apoptosis network with literature-
validated interactions. We were able to identify key players
as well as interactions in the drug-induced intrinsic and
extrinsic pathways. Our results shed light on the mechanism
of action of drugs in cancer cells and may lead to improved
treatments that target key apoptotic proteins that are most
related to drug response.

2. Data

2.1. CMAP Dataset. The CMAP “build 02” gene expression
dataset (http://www.broad.mit.edu/cmap/) contains over
7,000 profiles of cancer cells that have been exposed to
perturbations by 1,309 compounds and contains data from
five human cancer cell lines:MCF7, PC3, SKMEL5,HL60, and
ssMCF7. The microarray platforms used include Affymetrix
HT HG-U133A and HT HG-U133A EA. To avoid the effects
of tumor heterogeneity and multiple microarray platforms,
without loss of generality, we only focused on samples from
the breast cancer cell line MCF7 that were profiled using
the Affymetrix HT HG-U133A platform. The dataset is
composed of 404 control and 2,417 compound-perturbed
samples. The HT HG-U133A microarray platform contains
22,268 Affymetrix probe sets representing 13,262 genes. The
GCRMAmethod [14] was used to normalize the data.

3. Results

3.1. Drug-Responsive Signature Analysis. To identify drug-
responsive signature genes at a transcriptional level in cancer
cells, one approach is to perform differential gene expression
analysis by comparing drug-perturbed samples with controls.
However, since the dataset contains samples tested with
over 1,000 chemical perturbations, it is important that we
take into account the diverse mechanisms of actions of the
different compounds. One solution would be to perform
differential expression analysis for each compound separately
and then combine the results together using a 𝑃 value-based
Fisher’s method or Stouffer’s 𝑧-score approach to obtain the
overall differential expression level for each gene across all
compounds. However, a limitation with this type of analysis
has to do with the fact that each compound only has a
limited number of perturbed samples and even smaller
number of control samples. This would cause the statistical
power to be extremely low for individual compound analysis
and would result in an inaccurate estimation of parameters
and a high false positive rate. Additionally, another known
issue with this type of “Separate-then-Combine” analysis is a
low precision rate, which means there is a high occurrence
of false positives among the most differentially expressed
genes or top-hits. One way to overcome this drawback is to
combine all compounds together at the beginning, as known
as a “complete pooling” method. Although different drugs
may have distinct mechanisms of action and different target
proteins, it may still be reasonable to group them together.
One reason is that there are a relatively limited number of
pathways or mechanisms through which cells respond to
chemical stimulations. Also, compounds tested for cancer
treatment are known to share some common characteristics.
For example, a large number of anticancer drugs are known
to induce cell death or repress cell growth programs. In
addition, the combination or “complete pooling” strategy
increases the sample size from less than 5 to thousands,
dramatically increasing the statistical power for inferring true
responsive genes across all compounds. This assumption is
also confirmed by the fact that most perturbed profiles are
clustered together as shown in Figure 1.These results indicate
that the variability of transcriptional profile for the same type
of cell (MCF7 in this study) due to drug heterogeneity ismuch
smaller than that caused by different chemical stimulations.

To estimate the effect of each compound on gene expres-
sion and to test the significance of differential expression
for each probe set, we used a linear modeling method
with empirical Bayes moderated 𝑡-test [15]. A nonparametric
Bonferroni procedurewas employed formultiple comparison
correction. Using a false-discovery-rate (FDR) threshold
of 0.05, we identified 137 upregulated and 90 downreg-
ulated probe sets, representing 112 overexpressed and 79
underexpressed genes, respectively (Table S1, available online
at http://dx.doi.org/10.1155/2015/708563), in drug-perturbed
cancer cells.

3.2. Enrichment of Apoptosis Pathway. As described previ-
ously, one of the most important mechanisms induced by
oncotherapeutics is cell death programs. More specifically,
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Figure 1: Heatmap and PCAplots of drug-perturbed profiles in CMAPof 22,277 informative probe sets. Nonvariant probes across all samples
are filtered out by IQR < 0.5.The heat map of distances (a) and the PCA plot (b) between profiles of CMAP data including randomly selected
100 control and 100 drug-perturbed samples.

we hypothesized that the apoptosis pathway may be a major
drug-induced program. Enrichment analysis was proposed
to validate this hypothesis. Indeed functional enrichment
analysis by DAVID [16] confirmed that apoptosis or cell
death pathway is a major biological process triggered by
anticancer compounds as half of top enriched GO BP terms
(FDR < 0.1, 𝑃 < 0.001) by drug-responsive signature genes
are associated with apoptosis (Figure 2(a)). Furthermore, by
searching the Gene Ontology database [17], we obtained a
list of 380 human genes that were annotated with apoptosis-
related GO terms (Table S2). 211 genes were annotated as
proapoptotic by induction of apoptosis, positive regulation
of apoptosis, and negative regulation of antiapoptosis. 194
genes were annotated as antiapoptotic by negative regulation
of apoptosis and positive regulation of antiapoptosis. 25
genes were involved in both positive and negative regulation
of apoptosis. We then performed enrichment analysis with
differentially expressed genes of drug-perturbation in the
apoptosis pathway. Two methods were employed to do this
analysis: the first method was Fisher’s exact test to validate
whether known apoptotic genes were overrepresented in a
selected differentially expressed drug-responsive gene set.
The second method was to test the known apoptotic genes
using Gene Set Enrichment Analysis (GSEA), which does
not perform a selection on differentially expressed genes,
but instead it considers the entire set of genes and their
differential expression as the background. For Fisher’s exact
test, a set of previously identified 191 signature genes with a
threshold of FDR< 0.05 and all 12,632 genes in themicroarray
were used to fit the null hypergeometric distribution. For
GSEA, the mean of absolute value of differential expression

was used as enrichment score because apoptotic genes could
be either up- or downregulated in drug-perturbed samples.
The significance of the enrichment scores was tested against
10,000 permutations of gene names.

There are 13 genes (Table 1) that overlap between the
191 drug-inducement signature genes and the 368 human
apoptotic genes in our dataset. The significance level of
Fisher’s exact test for this overlap is approximately 0.001
(Figure 2(b)), consistent with the result from GSEA, which
had a 𝑃 value of 0.002 (Figure 2(c)).Therefore, both methods
confirm that the preidentified drug-induced signature genes
are significantly enriched in the human apoptosis pathway.
In other words, we were able to validate our hypothesis
that the apoptosis pathway is a major cellular mechanism
targeted by anticancer drugs. Furthermore, separate analysis
of pro- or antiapoptotic genes (Figures S1-S2) showed that
drug-responsive genes were enriched in both positively or
negatively regulated apoptosis gene sets. Since the analysis
was done using the combination or “complete pooling”
strategy, the significance of these results suggests that 13 drug-
induced apoptotic genes in our gene set are responsible for a
highly conserved response to multiple chemical compounds
in the context of breast cancer.

3.3. Bayesian Network. We next asked the question of how
the 13 identified genes work together systematically and
whether we can recover the underlying network structure of
their interactions. This would help us to better understand
the mechanism of how cancer drugs induce the apoptosis
pathway at a global systems level. In order to infer the under-
lying signaling and transcriptional and causality network of
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Figure 2: (a) Top enriched (𝑃value < 0.001, FDR < 0.1) GO BP terms by top differentially expressed genes (FDR < 0.05) with apoptosis-related
processes highlighted in red; summary of (b) Fisher’s Exact Test and (c) Gene Set Enrichment Analysis (GSEA) to test whether apoptosis
pathway with 368 apoptotic genes is enriched in drug-induced signature genes. For GSEA method, absolute mean was used to summarize
the enrichment and 10,000 gene permutations were used to produce the significant level.

the 13 drug-induced apoptotic genes, we used one of the
best methods for network reconstruction in the literature, the
Bayesian Network or Graphical Model [18–22].The details of
the method are described below.

3.3.1. Data Modeling. A Bayesian network represents the
dependence structure of a joint probability distribution of
multiple variables, which can be factorized into a product
of distributions of each individual node conditioning on
its parents. To model the local distribution of each node
conditioned on its parents, a commonly used method for
continuous data is to discretize data points into bins and
then fit a multinomial distribution to the discretized data.
However, data discretization results in a loss of information
and can be highly sensitive to the number of bins the data
is split into. Furthermore, due to the continuous nature of
microarray data and the marginal normality of many genes

in this study as shown in Figure 4, we determined it would be
more accurate to employ a continuous model. We therefore
used a conditional linear Gaussian model [23] for the local
distribution of each node as shown below:
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This model can be recognized as a linear regression
model, in which node 𝑔

𝑖
is the response variable, its parents

are covariates, and the noise follows a white Gaussian distri-
bution with mean 0 and variance 𝜎

𝑖

2.

3.3.2. Parameter Learning. Given the linear regressionmodel
for the local distribution, a classical Maximum Likelihood
or Least Squares approach can be used to estimate its
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Table 1: The 13 selected differentially expressed or drug-responsive apoptotic genes.

Gene symbol probeId entrezId log FC 𝑡 𝑃 value FDR Apoptosis type∗

PMAIP1 204285 s at 5366 0.32 7.46 1.19𝐸 − 13 2.64𝐸 − 09 pro
VEGFA 210512 s at 7422 0.18 6.15 8.88𝐸 − 10 1.98𝐸 − 05 anti
SERINC3 221471 at 10955 0.06 5.62 2.08𝐸 − 08 4.64𝐸 − 04 pro
TNFAIP3 202644 s at 7128 0.24 5.39 7.61𝐸 − 08 1.70𝐸 − 03 anti
BNIP3L 221479 s at 665 0.12 5.04 4.88𝐸 − 07 1.09𝐸 − 02 both
GCLC 202923 s at 2729 0.08 4.91 9.42𝐸 − 07 2.10𝐸 − 02 anti
BCL2L11 222343 at 10018 0.14 4.83 1.41𝐸 − 06 3.14𝐸 − 02 pro
TAX1BP1 200976 s at 8887 0.07 4.76 2.01𝐸 − 06 4.47𝐸 − 02 anti
SON 214988 s at 6651 −0.06 −4.75 2.11𝐸 − 06 4.71𝐸 − 02 anti
NUP62 202153 s at 23636 −0.11 −4.83 1.41𝐸 − 06 3.14𝐸 − 02 anti
NOL3 59625 at 8996 −0.13 −5.32 1.13𝐸 − 07 2.53𝐸 − 03 anti
TUBB 212320 at 203068 −0.09 −5.55 3.11𝐸 − 08 6.92𝐸 − 04 pro
MSH6 202911 at 2956 −0.09 −6.40 1.87𝐸 − 10 4.16𝐸 − 06 pro
∗pro: annotated by GO terms: induction of apoptosis, positive regulation of apoptosis, and negative regulation of antiapoptosis; anti: annotated by GO terms:
negative regulation of apoptosis and positive regulation of antiapoptosis.

parameters. However, various studies in statistics have sug-
gested that Bayesian approaches or Bayes estimators are
more robust than a Frequentist maximum likelihoodmethod
[22], especially when the sample size is small or the data
is noisy. Therefore a Markov Chain Monte Carlo (MCMC)
simulation-based Bayesian computing method was used to
estimate parameters of the model. To select the priors for
the Bayesian model, two principles were followed: one is
conjugation for computing easily as the posterior will fall in
the same distribution family as prior, and in our case, the
prior would be Gaussian for conditional coefficient and Inv-
Gamma for variance; the other is global and local parameter
independence, parameter modularity, and likelihood equiva-
lence [24, 25].

3.3.3. Structure Scoring and Search. To determine the
Bayesian network or graphicalmodel that can best fit the data,
we needed a scoring system to compare different potential
network structures. For structure learning, a Bayesian factor-
based method, which compares the conditional probability
of each graphical structure given observed data, was used.
As shown below, according to Bayes theorem, the odds
ratio between two possible structures, 𝐺

1
and 𝐺

2
, can be

decomposed as a product of structure prior odds ratio and
the Bayesian factor, which is the ratio of the likelihoods of
the two graphical models:
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Using the uniform distribution for structure prior, which
is reasonable because we have no preference on particular
graphical structure, the score for a network structure, 𝐺,
can be defined as the following formula, which is the log-
likelihood of the graphical model:

score (𝐺 : 𝐷) = log𝑝 (𝐷 | 𝐺) = ∫𝑝 (𝐷 | 𝜃, 𝐺) 𝑝 (𝜃 | 𝐺) 𝑑𝜃.
(3)

In our study with 13 variables, there were 1.86766𝑒 + 31
possible directed acyclic graphs [26], so it was not realistic
to enumerate the entire network structure space. To search
more efficiently, we used a classical heuristic algorithm: hill
climbing with random restarts [27, 28]. Using this stochastic
algorithm, the search-space was reduced dramatically. Using
2 restarts, we only needed to compare 12, 655 structures before
reaching a maximum score. One risk was that we had found
a local maximum, rather than the global maximum, but the
risk would be decreased further by increasing the number of
restarts.

3.3.4. Bootstrapping andModel Averaging. With the methods
outlined above, we obtained a Bayesian network structure
that best described the observed data. However, it is possible
that the model may be overfitted, which means that a small
change to the dataset could make the network structure
change dramatically. A way to solve this issue is to apply a
resampling method or simulating the dataset. The method
would learn the best graphical model for each sampled
dataset and generate a consensus network from the average
of the sample models. This method is also known as model
averaging.The simulationmethod we used to domodel aver-
aging was Efron’s bootstrapping method [29, 30]. To increase
robustness, the method only considered predicted network
structures with a score within 95% of the confidence interval.
The distribution of network scores is shown in Figure 5. In
generating the final combined consensus network, edgeswere
selected based on a confidence threshold of 75%.

3.4. Inferred Apoptosis Subnetwork. Using the described
Gaussian Bayesian network modeling framework, a network
model was generated for the 13 identified drug-responsive
apoptotic genes as shown in Figure 6(a). The network con-
tains 15 interactions and each edge has a confidence of
over 75%. The inferred interactions represent dependence
among these 13 genes of interest, which may be due to direct
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or indirect protein-protein interactions, transcriptional reg-
ulation, or signal transduction. To validate the inferred
interactions, we searched the interactions component of
NCBI Gene database (http://www.ncbi.nlm.nih.gov/gene),
which contains data from multiple interaction databases
such as BIND, HPRD, and BioGRID. We then generated
a validated interaction network of the 13 apoptotic genes
using their validated interactions (Figure 7). The validated
network contained 216 interacting genes, including our 13
genes of interest.The network also contained 243 interactions
after removing duplicate interactions (365 interactions with
duplicates, Table S3). When compared with our predicted
network, 9 out of 15 predicted interactions were found to
be direct or indirect interactions in the validated network
(marked in red, Figure 6(a)). An indirect interaction means
the network does not contain a direct edge between the two
genes, but there exists a path between them via intermediate
genes.

Since we only considered 13 apoptotic genes in network
inference, it is highly possible that the inferred interactions
are indirect, but they illustrate the dependence or information
transmission between the two corresponding genes. More
precisely, a subvalidated network that includes only evidence
(20 nodes and 28 interactions) for our predicted interactions
was extracted as shown in Figure 6(b). For indirect evidence,
we only counted the shortest paths between two apoptotic
genes of interest.

3.4.1. Known Direct Interactions. Two edges in our predicted
network (marked in thick red, Figure 6(a)) have been val-
idated as direct interactions in literature and are clearly
annotated in the functional summary of corresponding genes
as shown below.

TAX1BP1 → TNFAIP3. As seen in the annotation of
TAX1BP1, Tax1 (human T-cell leukemia virus type I) bind-
ing protein 1, from the NCBI Gene database, this protein
inhibits TNF-induced apoptosis by mediating TNFAIP3’s
antiapoptotic activity [31, 32]. In vivo experiments and in vitro
yeast two hybrid assays also confirm the interaction between
TNFAIP3 (zinc finger protein A20) and TAX1BP1. TNFAIP3
also interacts with TXBP151, an antiapoptotic protein, and
may inhibit inflammatory signaling pathways such as TNF-
induced NF-𝜅B activation [33, 34]. TNFAIP3 and TAX1BP1
inhibit the inflammatory signaling pathway by interacting
with Ubc13 and UbcH5c and triggering their ubiquitination
and proteasome-dependent degradation [35].

PMAIP1 → BCL2L11.Although there is no evidence showing
direct interaction between PMAIP1 (also known as NOXA)
and BCL2L11 (also known as BIM), the functional annotation
of PMAIP1 [36] from the UniProtKB/Swiss-Prot database
shows that the PMAIP1 competes with BCL2L11 to bind
with MCL1 and can displace BCL2L11 from its binding site
on MCL1. The predicted interaction between PMAIP1 and
BCL2L11 may be explained by the competition between
PMAIP1 and BCL2L11 in binding MCL1. The competition
may occur either through a direct interaction between the
two proteins or through a third protein that is able to bind

both. In addition, both PMAIP1 and BCL2L11 have been
shown to interact directly with many other BCL2 protein
family members including BCL2, BCL2A1, BCL2L1, and
BCL2L2 [37, 38]. This indicates that NXOA and BIM may
share common binding regions to BH3-only BCL2 family
proteins. NOXA and BIM as BH3-only proteins have been
recognized as critical mediators of anticancer drug- and p53-
induced apoptotic responses [39, 40], which are consistent
with our findings in this study that both of them are
differentially expressed drug-responsive genes.

3.4.2. Consistency with Two Major Cell Death Pathways. As
described previously, there are twomajor apoptosis programs
in mammalian cells: the intrinsic or mitochondrial stress-
induced pathway and extrinsic or death receptor-triggered
pathway. Our predicted network captures the important
players and key interactions in both apoptosis programs.
For the intrinsic pathway, our predicted network identifies
two of the most important mediators, BLC2L11/BIM and
PMAIP1/NOXA, and their competing interaction in terms
of regulating many other BH3-only BCL2 family member
proteins including BLC2, BCL2L1, BCL2L2, BCL2A1, and
MCL1, which is illustrated as well in the validated network
(Figure 6(b)). For the extrinsic death receptors-triggered
pathway, we successfully recovered one representative of
cancer-therapy or drug-induced cell death pathway: TNF-
induced apoptosis. TNFAIP3/A20 and TAX1BP1/TXBP151
are two key players of this pathway, and they interact with
each other to turn on the downstream cell death machinery.

3.4.3. BCL2L11/BIM as a Gateway Gene to Drug-Induced
Intrinsic Apoptosis. As shown in our inferred drug-induced
apoptotic subnetwork, BCL2L11 is located downstream of
most cell death subpathways, which includes drug-affected
apoptotic genes such as BNIP3L, NOL3, PMAIP1, NUP62,
and SON. This suggests that BCL2L11 may act as a down-
stream gate or switch for drug- or stress-induced apoptosis
programs. This finding is consistent with the main role of
BCL2L11 as an apoptosis facilitator. The mechanism through
which BCL2L11, a BH3-only protein, activates cell death
is by inactivating Bcl-2-like proteins, keeping them from
restraining Bax and Bak. Bax or Bak can cause the outer
membrane of the mitochondria to become permeable. This
releases cytochrome c, which provokes Apaf-1 (apoptotic
protease-activating factor 1) to activate caspase-9 [12]. The
gateway role of BCL2L11 has also been illustrated in our
literature-generated validation network (Figure 6(b)).

3.4.4. TNFAIP3/A20 as a Gateway Gene to Drug-Induced
Extrinsic Apoptosis. As shown in both our predicted network
and validated network (Figure 6), TNFAIP3, a zinc finger
protein, acts as a hub by transmitting upstream signals
from cell death receptors to downstream cell death cascades.
This suggests that TNFAIP3 may be a gateway protein for
drug-induced extrinsic apoptosis. TNFAIP3/A20 acts as a
key player in TNF-induced apoptosis by inhibiting NF-𝜅B
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activation. These results indicate that TNF-induced signal-
ing may be the most common anticancer drug or chemi-
cal compound-triggered cell death program. Many studies
have demonstrated the involvement of the TNF-mediated
apoptosis in cancer therapies such as ionizing radiation or
the chemotherapeutic agent, daunorubicin [31]. This again
confirms that anticancer drugs induce apoptosis of cancer
cells and that apoptosis pathways can be inferred from drug-
perturbed gene expression profiles.

4. Discussion

We have demonstrated the value of CMAP data for studying
drug-response in mammalian cancer cells. We have also
validated the hypothesis that the apoptosis pathway may be a
main program targeted by anticancer drugs. Furthermore, we
have shown that CMAP data contains sufficient information
about the dynamic activities of human genes for reconstruct-
ing gene-gene interactions in drug-perturbed cancer cells.We
have also successfully applied a Gaussian Bayesian network
framework to reconstruct a subnetwork containing validated
interactions between genes with known roles in the apoptosis
pathway. In addition, our network successfully predicted key
players and interactions in drug-induced apoptosis, including
both intrinsic and extrinsic apoptosis pathways.

Our framework may be improved in a few ways. First,
we only considered the general effects of drugs based on
the assumption that cancer cells have a similar response
mechanism to different drugs. However this assumptionmay
be overgeneralized, since there are some drugs to which the
cells have no response. This can be clearly seen in Figure 3,
which contains a heat map of signature genes across all
drugs. One way to deal with this limitation may be to cluster
drugs by their expression profiles or by their physical or
chemical properties. A similar comparison analysis may be
performed but would take into account the effects of different
drug groups. Second, to reduce computational complexity, we
limited our analysis to apoptotic genes that were differentially
expressed with a Bonferroni-corrected 𝑃 value threshold
of 0.05. This threshold might have been overly stringent
and may have caused us to filter informative genes from
the analysis. One way to deal with this problem might be
to include more candidate genes, but this would increase
complexity and computation.

We have shown that Bayesian network modeling can
be a powerful tool for reconstructing biological networks
fromnoisy high-throughputmicroarray data. In the Bayesian
network modeling approach to network reconstruction, we
have found that a linear Gaussian model for local probability
distribution is able to give a more accurate description for
continuous data and is also able to reduce the number of
parameters when compared to discrete methods. In discrete
methods, data points are separated into multiple levels, and
this can result in the loss of information, especially in cases
where the variable has a large range of values and has many
parent variables [10–14]. However, one limitation with the
linear Gaussian model is that although it works well in cases
where the data fits a normal distribution and there are linear
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Figure 3: Heat map of top differentially expressed genes (FDR <
0.05) in drug-perturbed and control samples. The genes are ranked
from most upregulated (labeled in dark red on right panel) to most
downregulated (labeled in dark green) in drug-perturbed samples,
and the 13 selected apoptotic genes are labeled on the right with their
ranks in the list.

dependencies between nodes and their parents, the model
can easily overfit the data if these dependencies are not met.
In this study it was reasonable to apply Gaussian distribution
because most candidate genes fit a normal distribution, as
shown in Figure 1. However, a possible improvement may
result fromperforming graphical diagnosis and further trans-
formation on the data or employing other statistical models
to fit the data. An alternative approach to deconvoluting the
structure of the Bayesian network is simulated annealing
with Markov chain Monte Carlo (MCMC) sampling. This
method may overcome the limitation of the hill-climbing
method used in this study. In hill-climbing method, the
function finds the nearest optimum value. Depending on the
starting point, this peakmay or may not be the true optimum
value. However, one limitation with MCMC sampling is
that it is significantly more time-consuming than the hill-
climbing method. For network comparison or scoring, other
asymptotic criteria such as AIC, BIC, or DIC could be tried
as well.

The two major apoptosis subpathways of mammalian
cells are largely independent because overexpressed Bcl-2
does not protect lymphocytes from apoptosis induced by
death receptor ligands. Literature has shown that in certain
other cell types, such as hepatocytes, the two pathways inter-
sect; CASP8 can process the proapoptotic Bid into its active
truncated form (tBid) and prevent catastrophic untimely cell
death [11]. However, cross talk between these two programs
has been rarely studied in the context of drug-perturbations.
Our computationally predicted apoptosis network might
shed light on how both pathways are regulated together
by identifying cross talk interactions such as PMAIP1 and
TNFAIP3 and BCL2L11 and TNFAIP3 via SON.
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Figure 4: Marginal distributions of the 13 selected drug-responsive apoptotic genes across all samples in CMAP data.
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Figure 6: (a) Predicted subnetwork of 13 selected drug-responsive apoptotic genes: edges in red are validated interactions in literature and
edges in dark red are strong validated direct interactions. (b) A subnetwork from literature showing evidences for validated interactions in
predicted network including candidate genes (colored in yellow) with their validated interactants (in brown). Each validated edge in predicted
network (red in (a)) can be mapped to one path in evidence network (b) between the two corresponding interacting candidate genes.

In summary, we have extended the usage of CMAP data
and reconstructed a subnetwork of drug-induced apoptosis
in mammalian cancer cells using a computational statistical
modeling approach. Our findings have added new knowledge
of how cancer cells respond to compounds and provide
potential specific targets in the apoptosis pathway for tailored
therapeutics. Additionally, as a final consideration, cell death
might not be the only drug-induced program in cell response,
so our computational framework to CMAP data could be

extended to other interesting biological pathways related to
cancer treatment by drugs.

5. Conclusions

Anticancer therapeutic drugs are designed to induce tumor-
selective cell death programs. Hence, it is critical to under-
stand what specific apoptosis proteins and pathways are
stimulated in cancer cells by chemical compounds and how
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in red are evidence for validation of interactions in predicted apoptosis network.

these pathways act. The Connectivity Map (CMAP) project,
aiming to connect diseases, genes, and drugs, makes it possi-
ble to address this question systematically, with large-scaled
genome-wide gene expression profiles of human tumor cells
exposed to a library of anticancer compounds. Using the
CMAP data, we confirm that indeed cell death is one
major program trigged by anticancer agents. Furthermore,
we demonstrate that the drug-induced cell death subnetwork
can be computationally inferred using a Bayesian network
modeling approach. Our predicted subnetwork successfully
captures the twomajor intrinsic and extrinsic cell death path-
ways and identifies key “gateway” players and interactions
in each. This study provides a computational framework to
recover underlying drug-induced biological networks from
perturbation of gene expression data and to better understand
the mechanism of action driving drug compound effects on
cells.
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