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Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease. 
It is characterized by chronic pain at rest, skin ulcerations, and gangrene tissue loss. 
CLI is a highly morbid condition, resulting in a severely diminished quality of life and a 
significant risk of mortality. The primary goal of therapy for CLI is to restore blood flow 
to the affected limb, which is only possible by surgery, but is inadvisable in up to 50% 
of patients. This subset of patients who are not candidates for revascularisation are 
referred to as “no-option” patients and are the focus of investigation for novel therapeutic 
strategies. Angiogenesis, arteriogenesis and vasculogenesis are the processes whereby 
new blood vessel networks form from the pre-existing vasculature and primordial cells, 
respectively. In therapeutic angiogenesis, exogenous stimulants are administered to pro-
mote angiogenesis and augment limb perfusion, offering a potential treatment option for 
“no option” patients. However, to date, very few clinical trials of therapeutic angiogenesis 
in patients with CLI have reported clinically significant results, and it remains a major 
challenge. Ghrelin, a 28-amino acid peptide, is emerging as a potential novel therapeutic 
for CLI. In pre-clinical models, exogenous ghrelin has been shown to induce therapeutic 
angiogenesis, promote muscle regeneration, and reduce oxidative stress via the modu-
lation of microRNAs (miRs). miRs are endogenous, small, non-coding ribonucleic acids 
of ~20–22 nucleotides which regulate gene expression at the post-transcriptional level 
by either translational inhibition or by messenger ribonucleic acid cleavage. This review 
focuses on the mounting evidence for the use of ghrelin as a novel therapeutic for CLI, 
and highlights the miRs which orchestrate these physiological events.

Keywords: critical limb ischemia, peripheral artery disease, ghrelin, microRNAs, angiogenesis, regeneration, 
vascular disease, no-option critical limb ischemia patients

iNTRODUCTiON

Peripheral artery disease (PAD) is characterized by the narrowing or occlusion of systemic arteries 
impeding blood supply to the extremities (1). It is rapidly emerging as a significant global socio-
economic burden and currently affects over 202 million people (2). PAD is associated with significant 
cardiovascular morbidity and mortality (3), plus a severely diminished quality of life (4). PAD is most 
commonly a result of atherosclerosis and, as such, risk factors for the development of the disease 
include smoking, diabetes mellitus (DM), hypertension (5), and advanced age (6). With the number 
of people being diagnosed with DM expected to surpass 640 million by 2040 (7) and the acceleration 
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of global population aging (8), the PAD burden is expected to 
rapidly increase (2).

At the severest end of the PAD spectrum is critical limb 
ischemia (CLI), which describes patients with chronic pain at 
rest, skin ulcerations, and gangrene tissue loss (3). CLI accounts 
for 11% of patients with PAD, increasing to 20% in patients over 
70 years of age (9). The prognosis of CLI is very poor; at 6 months 
post-diagnosis, patients have a 25–40% chance of lower limb 
amputation and ~20% chance of mortality (10). The quality of life 
for CLI patients is also severely diminished, similar to those with 
terminal cancer (11). Management of CLI includes risk factor 
modification and aggressive pharmacological therapy, accompa-
nied with either an endovascular or surgical intervention (12, 13). 
However, revascularisation as a primary treatment approach is 
expensive, labour-intensive, and is often met with poor success 
(14). Unfortunately, up to 50% of CLI patients are not candidates 
for surgery due to extreme tissue damage, diffuse atherosclerotic 
disease, and co-morbidities (15, 16). This subgroup of patients is 
referred as “no-option” patients and is the focus of research for 
novel therapies.

Therapeutic angiogenesis is emerging as a potential treat-
ment approach for “no-option” CLI patients by stimulating 
neovascularization, improving limb perfusion, and aiding tis-
sue regeneration (17). Angiogenic agents, such as gene or cell 
therapy, have been the focus of investigation, with the aim of 
inducing a pro-angiogenic milieu in the affected ischemic limb. 
Regrettably, the results from clinical trials using such agents 
have shown little clinical benefit regarding primary outcome 
measures (i.e., patency, amputation-free survival, major limb 
adverse effects) (18–20). This highlights both the complexity of 
therapeutic angiogenesis and the need to develop new agents for 
the management of CLI.

The 28-amino acid peptide hormone ghrelin, first discovered 
in 1999 as the endogenous ligand for the growth hormone secre-
tagogue receptor (GHS-R) (21), has recently been proposed as 
a novel therapeutic for CLI (22–24). The GHS-R is a G-protein 
coupled receptor, ubiquitous throughout the cardiovascular and 
autonomic nervous systems (25, 26), which plausibly accounts for 
the diverse range of effects ghrelin has on cardiovascular function 
(25, 26).

This review presents the concepts of therapeutic angiogenesis 
and highlights the limitations associated with advancing current 
treatments for CLI. Furthermore, the emergence of ghrelin as a 
novel therapeutic for CLI is explored and the molecular mecha-
nisms that underpin ghrelin’s beneficial actions highlighted.

PATHOPHYSiOLOGY OF CLi

The pathological events which lead to the presentation of CLI 
are multifactorial, complex, and beyond the scope of this review 
[reviewed in Ref. (24)]. The underlying pathological events 
leading to CLI are macro- and microvascular circulation defects, 
resulting in diminished arterial perfusion. Consequently, the 
metabolic requirements of the distal tissue outweigh the oxygen 
and nutrient supply. Although the aetiology of CLI can be vas-
culitis, thromboembolic disease, trauma, popliteal entrapment, 
cystic adventitial disease, thromboangiitis, and Buerges disease, 

it is most commonly associated with diffuse atherosclerosis (27, 
28). The compensatory mechanisms against initial ischemia 
involve angiogenesis and arteriogenesis to increase blood flow 
to the affected tissue. However, these compensatory mechanisms 
are ineffective in CLI. Distal arterioles respond to ischemia by 
decreasing wall thickness, maximally vasodilating, subsequently 
becoming unresponsive to provasodilatory stimuli; a term 
referred to as vasomotory paralysis (29). Moreover, arterioles 
exhibit an inability to control vascular resistance as a result of 
blunted myogenic autoregulation (29). Combined, these factors 
lead to an orthostatic-dependent increase in hydrostatic pres-
sure in the distal part of the limb, resulting in the development 
of oedema (30). Furthermore, chronic inflammation and the 
production of free radicals further exacerbate endothelial dys-
function. Endothelial damage, inappropriate platelet activation, 
and leukocyte adhesion contribute to a microthrombi formation, 
distal oedema, and tissue damage.

THeRAPeUTiC ANGiOGeNeSiS

Angiogenesis is a precisely orchestrated process of events which is 
essential for optimizing or restoring organ perfusion. Artificially 
cultivating this complex process of events is the ultimate goal 
of therapeutic angiogenesis (31). Therapeutic angiogenesis is 
essentially the promotion of new blood vessel growth in an 
ischemic tissue bed to supply a local demand for oxygen and aid 
tissue recovery. This new vasculature can be induced by three 
distinct means: angiogenesis, arteriogenesis, and vasculogen-
esis. Angiogenesis is defined as the formation of new capillar-
ies from the pre-existing vasculature (32). It can occur by two 
distinct mechanisms: intussusception and sprouting (33–35). 
Intussusception defines the process in which transluminal tissue 
pillars develop in the capillaries resulting in the vessel splitting, 
thus creating new vasculature entries and increasing the vascular 
network (35). Sprouting angiogenesis is the growth of new capil-
lary vessels from a pre-existing vessel and occurs in the following 
stages: proteolytic degradation of extracellular matrix, endothe-
lial cell migration and proliferation, tubulogenesis, vessel fusion, 
vessel pruning, and functional maturation (32). Arteriogenesis is 
characterized by the growth of collateral arteries, in addition to the 
remodeling and enlargement of the pre-existing arterioles (36, 37).  
Finally, vasculogenesis is defined as the de novo formation of a 
primitive vasculature from endothelial precursor cells, which is 
traditionally considered only to take place during embryogenesis 
(38). These three events, which to some extent occur naturally in 
response to ischemia, are influenced by genetic factors but are 
also the targets of therapeutic agents.

THeRAPeUTiC POTeNTiAL  
OF ANGiOGeNiC FACTORS

In the Western nations, it is estimated that over 300 million people 
may benefit from a pro-angiogenic therapy (39). Despite consid-
erable research to develop a pro-angiogenic agent for the effective 
treatment of CLI, no therapeutic agents have been approved by 
the Medicines and Healthcare Products Regulatory Agency of 
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TAbLe 1 | Factors with an angiogenic potential.

Reference Year Cohort size Patient characterization Agent Route of administration Follow up

Teraa et al. (44) 2015 160 Critical limb ischemia (CLI) BMMNC IA 9 months
Gupta et al. (45) 2013 20 CLI BMMSC IM 24 weeks
Szabo et al. (46) 2013 20 Ves-Cell IM 22.6 months
Lara-Hernandez et al. (47) 2010 28 CLI EPC IM 14.7 months
Kinoshita et al. (48) 2012 17 CLI G-CSF-mobilized CD34+ IM 52 months
Kusumanto et al. (49) 2006 27 Diabetic CLI VEGF IM 14 weeks
Belch et al. (50) 2011 259 CLI FGF IM 12 months
Shigematsu et al. (51) 2010 40 CLI HGF IM 12 weeks
Rajagopalan et al. (52) 2007 34 CLI HIF-1α IM 12 months

BMMNC, bone marrow mononuclear cells; BMMSC, bone marrow mesenchymal stem cells; EPC, endothelial progenitor cell; G-CSF, granulocyte-colony stimulating factor; VEGF, 
vascular endothelial growth factor; FGF, fibroblast growth factor; HGF, hepatocyte growth factor; HIF-1α, hypoxia-inducible factor-1α.
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the United Kingdom or the Food and Drug Administration of 
the United States of America. However, in Russia, a plasmid 
DNA gene product encoding vascular endothelial growth factor 
(VEGF) 165 “Neovasculgen” (40) is approved for clinical use in 
the treatment of PAD. While this agent is approved in Russia, 
a recent meta-analysis of randomized control trials shows no 
consistent benefit of any gene therapy for promoting therapeutic 
angiogenesis in PAD (20).

Extensive research has identified numerous pro-angiogenic 
agents for CLI (Table  1 contains a partial list of the studies). 
However, to date, there is a clear disparity between pre-clinical 
trials and large randomized control trials. Few clinical trials report 
long-term positive effects or clinically significant results (18, 41). 
These disappointing findings with current angiogenic agents can 
be attributed to numerous factors, including suboptimal delivery 
strategies (42), disease mediated dysfunction (43), methodologi-
cal differences, and pre-clinical models which lack common CLI 
risk factors (41). To ensure the future success of therapeutic 
angiogenesis, it is imperative that clinical methods are standard-
ized (i.e., angiogenic agent selection, delivery method, in  vitro 
tracking) and focus on more applicable pre-clinical models 
which better mimic human CLI. Despite potentially promising 
outcomes in the early stages of some pre-clinical studies, current 
angiogenic agents had limited long-term success. Due to this 
limited success, hormone therapy is emerging as a novel treat-
ment strategy.

Ghrelin
The hormone ghrelin was first isolated from rat stomach in 1999 
and was subsequently identified as the endogenous ligand for 
the GHS-R type 1a (21). Ghrelin is predominantly produced by  
P/D1-like (X/A-like cells in the mouse) cells in the oxyntic glands 
of the gastric mucosa, but is also expressed in a smaller amount in 
other tissues including the myocardium, arteries, and veins (25, 
26). Ghrelin circulates in two distinct forms: acylated ghrelin 
(AG) and des-acylated ghrelin (Des-AG). AG possesses a novel 
octanoylation of serine-3, promoted by ghrelin O-acyltransferase 
(Figure 1). This is considered essential for facilitating the binding 
of the peptide to the GHS-R and eliciting its physiological func-
tions (53). Des-AG lacks GH-secretagogue activity and does not 
bind to the GHS-R type 1a. The mechanisms by which Des-AG 
exerts its biological functions remain largely unknown, as its 

target receptor is yet to be identified. Emerging evidence from 
the literature consistently advocates the therapeutic potential of 
ghrelin as a novel strategy for the treatment of various metabolic 
and cardiovascular disorders. These include anorexia, sarcope-
nia, cardiomyopathy, CLI, inflammatory disorders, metabolic 
syndrome, epilepsy, and neurodegenerative disorders (54–60).

GHReLiN AND CLi

Angiogenic Potential
Ghrelin has been shown to have a pro-angiogenic potential 
in several studies (22, 61–64), but limited potential in others 
(65–67). Ghrelin’s angiogenic potential was first shown in human 
microvascular endothelial cells (HMVEC) at a concentration of 
0.1 nM. At this concentration, it promoted migration, prolifera-
tion, and angiogenesis through phosphorylation and activation 
of the mitogen activated protein kinases ERK2, which regulates 
endothelial cell function (63). The same research group has also 
demonstrated that AG at 1 nM significantly reverses age-related 
impaired angiogenesis in HMVECs. This is mainly through the 
activation of the MAPK/ERK2 mitogenic signalling pathway, a 
central pathway for angiogenesis which promotes endothelial 
cell motility and survival (62). Using cardiac microvascular 
endothelial cells, AG at concentrations of 10  nM significantly 
stimulated proliferation, migration, and angiogenesis in  vitro. 
This was through the GHS-R1a type 1a-mediated kinase MEK 
and extracellular signal-regulated kinase ERK, in addition to 
the most commonly studied pro-survival phosphatidylinositol 
3-kinase/protein kinase B (PI3K/Akt) pathway, which regulates 
numerous cellular processes, including cell cycle, angiogenesis, 
and apoptosis (68). Taken together, these findings indicate exog-
enous ghrelin administration can activate several independent 
angiogenesis signalling pathways (61).

In a rat model of chronic myocardial ischemia, following 
permanent occlusion of the left anterior descending artery, AG 
(100 µg/kg, twice daily for 4 weeks) increased VEGF expression, 
inhibited apoptosis, and increased angiogenesis in the myocardial 
infarct and peri-infarct zones (64). In a murine model of CLI, AG 
(150 µg/kg, daily for 2 weeks) promoted angiogenesis through the 
up-regulation of pro-angiogenic microRNAs (miRs)-126 and-
132, while preventing the activation of antiangiogenic miRs-92a 
and -206 (22).
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FiGURe 1 | Schematic representation of the structure of acylated and des-acylated ghrelin and the proposed molecular events activated by exogenous ghrelin 
treatment following critical limb ischemia. miR, indicates microRNA; VEGF, vascular endothelial growth factor; Akt, protein kinase B; Bcl-2, B-cell lymphoma 2; 
SIRT1, surtuin 1; VCAM-1, vascular cell adhesion molecule 1; SOD-2, superoxide dismutase-2; ROS, reactive oxygen species.
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Interestingly, Des-AG (100 µg/kg daily for 2 weeks) also exerted 
a protective vascular effect in a murine model of CLI, evident 
from a comparatively similar blood vessel density in the ischemic 
versus contralateral (non-ischemic) limbs (69). However, Des-AG 
did not change large vessel perfusion or induce neovasculariza-
tion, possibly due to its up-regulation of antiangiogenic miRs-221 
and -222 (70). This suggests Des-AG may limit adverse changes 
in the vasculature in response to ischemia, rather than initiate 
angiogenesis (69, 71).

Although the majority of studies advocate the angiogenic 
potential of AG, conflicting reports from one research team 
propose that AG may have antiangiogenic properties. This is 
based on the observation that AG (10 nM) impeded the in vitro 
activation of angiogenesis induced by fibroblast growth factor-2 
in human umbilical vein endothelial cells (HUVEC), and in rat 
neuromicrovascular endothelial cells, via inhibition of tyrosine 
kinase and MAPK pathways (65, 67).

The discrepancy between studies, especially in vitro studies, 
concerning the angiogenic properties of ghrelin is unques-
tionably confounded by experimental factors. These include 
differing cell types, culture conditions, different concentra-
tions, and differing methodological approaches. However, it 
is clear from in vivo animal models of MI and CLI that ghrelin 
exerts beneficial effects through vascular protection and 
neovascularization.

Skeletal Muscle and Peripheral Nerve 
Regeneration
Impaired perfusion of the lower limbs results in significant 
atrophy of the calf muscle and increased fat composition, causing 
severe functional impairment (72). Circulating levels of ghrelin 

are reduced in diseases of muscle wasting (650 vs. 899 pg/mL) 
(73). Yet, the therapeutic administration of exogenous ghrelin in a 
murine model of muscular atrophy induces AktS473 phosphoryla-
tion- a direct anti-atrophic signalling pathway in skeletal muscle, 
blocking skeletal muscle atrophy (74). In murine models of CLI, 
Des-AG has been shown to induce skeletal muscle regeneration 
through increased superoxide-dismutase-2 (SOD-2) induced 
expressions of miRs-221 and-222 (69). AG has been demon-
strated to significantly up-regulate anti-fibrotic miR-30a, inhibit 
pro-fibrotic miR-21, and inhibit miR-206 resulting in increased 
proliferation of myocytes and aiding in tissue repair (22).

In patients who have DM as a comorbidity with CLI, peripheral 
neuropathy commonly leads to a delayed clinical presentation of 
the disease, resulting in severe muscular and vascular damage (75). 
Several studies have reported that AG administration (300 nmol/
kg) ameliorated polyneuropathy in rodent models of diabetic 
polyneuropathy, evident by increased nerve conduction velocities 
and temperature sensation (76, 77). Although the mechanisms by 
which ghrelin alleviates polyneuropathy remain to be identified, 
these findings further support ghrelin as a potential treatment 
option for an otherwise intractable disorder. Recently, these find-
ings have also been confirmed in a human study (78), with ghrelin 
treated patients (1.0 µg/kg for 14 days) having increased motor 
nerve conduction velocity of the posterior tibial nerve compared 
with controls. Total symptom score also significantly improved in 
the treated group compared to controls, suggesting that ghrelin 
may be a novel therapeutic option for diabetic polyneuropathy. 
However, a double-blind, placebo-controlled trial is needed in 
the future.

The results from these studies demonstrate that ghrelin acts to 
protect against skeletal muscle atrophy, neuropathy, and impor-
tantly, aids in muscle regeneration.
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Anti-inflammatory and Antioxidant Actions
The diminished supply of blood to the periphery in CLI and the 
highly oxidative environment result in severe skeletal muscle 
damage. SOD-2 is the main antioxidant defence against reac-
tive oxygen species (ROS) production and has been shown to 
be inhibited in skeletal muscle affected by CLI (79). The two 
isoforms of ghrelin, AG and Des-AG, have been shown to exert 
potent anti-inflammatory and antioxidant effects throughout the 
vasculature.

AG has been shown to exhibit anti-apoptotic effects through 
the strong activation of Akt and ERK, mediated by the PI3K and 
MAPK pathways (80), and to inhibit pro-inflammatory cytokine 
production in vitro through the inhibition of nuclear factor-kappa 
B (81). AG has been shown to inhibit apoptosis, and blunt ROS 
production in HUVECs treated with high glucose, replicating 
diabetic vascular complications, via the PI3K/Akt pathway (82). 
AG (106 M) inhibits advanced glycation end products-mediated 
cell apoptosis via the ERK1/2 and PI3K/Akt pathways (83). 
Moreover, ghrelin has been shown to inhibit vascular oxidative 
stress through inhibition of vascular NAD(P)H oxidases (84).

Des-acylated ghrelin has been shown to protect against 
oxidative stress-induced apoptosis through the class III histone 
deacetylase sirtuin (SIRT1), a nicotinamide adenine dinucleotide 
dependent histone/protein deacetylase signalling pathway (85). 
Activation of this pathway has been shown to reduce apoptosis 
and protects endothelial progenitor cells from ROS-mediated 
damage under conditions of diabetes (86, 87). In a murine model 
of CLI and glucose intolerance, Des-AG was also demonstrated to 
rescue miR-126 expression, a regulator SIRT1 and SOD-2, leading 
to improved oxidative stress levels and improved recovery (71).

Dysregulation of Ghrelin in Atherosclerosis
Atherosclerosis underlies most of CLI. Circulating ghrelin 
concentrations have been shown to be reduced in several ath-
erosclerotic diseases (88–92). To date, the circulating ghrelin 
levels in patients with PAD or CLI remain unknown. However, 
in diseases with a similar aetiology, ghrelin levels have been 
shown to be dysregulated. These include patients with unsta-
ble angina (1.04  ±  0.08  ng/mL), acute myocardial infarction 
(1.07 ± 0.11 ng/mL), and asymptomatic coronary artery disease 
(2.1 ± 0.8 ng/mL), which have all been shown to have lower total 
ghrelin concentrations compared to controls (6.2 ± 4.1 ng/mL)  
(88). In addition to total ghrelin, low circulating levels of Des-AG 
(~78.2 fmol/mL) have been shown to be associated with increased 
risk of cardiovascular events in older hypertensive individuals 
(89). However, further studies are warranted to elucidate the 
pathogenic mechanisms underlying this association, giving clar-
ity to the clinical value of the measure. In contrast, high plasma 
concentration of ghrelin has been shown to protect against coro-
nary heart disease (90), and AG is significantly higher in patients 
with ischemic heart disease (coronary artery disease) compared 
to controls (valvular heart disease; 32  ±  3 vs. 16  ±  2  pg/mL) 
(91), potentially demonstrating a role for ghrelin in auto- and 
paracrine self-protective mechanisms of the ischemic heart. In 
addition, total circulating ghrelin concentrations are decreased 
in patients with acute ischemic stroke compared to age- and sex-
matched controls (3.47 ± 1.44 vs. 5.93 ± 2.78 ng/mL) (92).

In a murine model of atherosclerosis, AG (10−9 mol/kg/day for 
4 weeks) has also been shown to reduce the formation of athero-
sclerotic lesions, increase plaque stability, ameliorate activation 
of endoplasmic reticulum stress, and decrease intima-media 
thickness (93, 94).

Collectively, this evidence from the literature suggests that 
plasma ghrelin concentration may be a novel prognostic marker 
of the extent and severity of various forms of atherosclerotic 
disease. Additionally, ghrelin may be a promising adjunct therapy 
for the treatment of CLI and the underlying mechanisms of CLI, 
atherosclerosis (95).

vascular Calcification Reduction
Vascular calcification is characterized by the progressive enlarge-
ment of calcium deposits in the major arteries, and is an inde-
pendent risk factor for CLI (96). Serum ghrelin level decreases 
with the severity of the tibial artery stenosis in diabetic patients 
(mild stenosis, 167.71 ± 16.73; moderate stenosis, 105.72 ± 10.51; 
severe stenosis/occlusion, 53.11 ± 5.65 ng/mL) (97). In vivo and 
in vitro models of vascular calcification consistently demonstrate 
that ghrelin peptide levels and mRNA expression are significantly 
reduced during calcification. However, treatment with exogenous 
AG (10−8–10−5  mol/L) effectively attenuates the severity of this 
calcification (97–99). This attenuation is likely mediated through 
the osteoprotegerin, receptor activator of nuclear factor-kappa B 
ligand, and the receptor activator of NF-κB axis which regulates 
vascular calcification.

Combined, it is shown that serum ghrelin may be a novel 
predictor of vascular calcification in diabetic patients and that 
exogenous administration of ghrelin may be an effective agent in 
attenuating calcification.

THe iNFLUeNCe OF GHReLiN  
ON MiCRORNAs (miRs)

MicroRNAs are endogenous, small, non-coding RNAs of ~20–22 
nucleotides which regulate gene expression at the post-transcrip-
tional level, by either translational inhibition or by messenger 
ribonucleic acid cleavage (100, 101). So far, 2,588 mature human 
miRs have been registered at miRBase in release 21,1 which are 
believed to regulate the expression of 30~50% of human genes 
(102). Since their discovery in 1993 (103, 104), miRs have gained 
considerable interest as key modulators in a range of pathological 
and physiological events (105, 106). A single miR can regulate a 
plethora of targets and, in doing so, evoke a complex multifactorial 
physiological process (106). miRs are incredibly stable in circula-
tion due to their transport in small membrane vesicles (exosomes 
and microvesicles) (107, 108) and, therefore, show promise as 
clinical biomarkers of disease (105, 109–112). Numerous miRs 
have been shown to be differentially expressed between PAD/CLI 
patients and control subjects (113–116). However, the functional 
significance of these miRs is yet to be truly elucidated. In addition 
to being biomarkers of disease, miRs have also been shown to be 
modulated by therapeutic agents.

1 http://www.mirbase.org.
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TAbLe 2 | Overview of the confirmed targets for micoRNAs regulated by ghrelin.

MicroRNA Confirmed targets biological processes 
affected

hsa-miR-126 VCAM1 (117), SPRED1, and 
PIK3R2 (118–120)

Pro-angiogenic and 
vascular integrity

hsa-miR-132 p120RasGAP (121) Pro-angiogenic

hsa-miR-206 VegfAa (122, 123) Antiangiogenic

hsa-miR-92a Integrin α5 (124) and SIRT1 
(125, 126)

Antiangiogenic

hsa-miR-221/222 p27 (Cdkn1b) (126), 
p57(CDKN1C) (127), and 
c-Kit (70)

Muscle regeneration and 
antiangiogenic

hsa-miR-30a Snail 1 (128–130) Anti-fibrotic

hsa-miR-21 Spry1 (131) and PTEN (132) Pro-fibrotic

VCAM, vascular cell adhesion molecule; SPRED1, sprouty-related protein 1; PIK3R2, 
phosphoinositol-3-kinase regulatory subunit 2; VegfAa, Vascular endothelial growth 
factor Aa; SIRT1, surtuin 1; Spry1, Sprouty homolog; PTEN, phosphatase and tensin 
homolog.
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In murine models of CLI, ghrelin administration has been 
shown to regulate a variety of miRs (Table 2), leading to a multi-
tude of physiological responses (22, 69). Figure one summarizes 
the beneficial effects ghrelin has on the expression of several 
miRs, with the preceding section describing each miR in detail.

MicroRNA-126
AG has been shown to induce post-ischemic angiogenesis 
through the up-regulation of miR-126 (22), the most charac-
terized and abundant pro-angiogenic miR in endothelial cells 
[reviewed in Ref. (117)]. miR-126 resides within intron seven 
of the epidermal growth factor-like domain, multiple 7 gene on 
chromosome 9q34.3, and gives rise to two mature miRs; miR-
126-3p and miR-126-5p. miR-126-3p has been well studied for 
its role in vascular remodeling [reviewed in Ref. (133)]. miR-126 
is essential for blood vessel growth in zebrafish (118) and mice 
(119). Specific deletion of miR-126 is 50% embryonic lethal, with 
surviving mutants expressing fragile, leaky vessels, and severe 
haemorrhage (120, 134). These findings highlight the funda-
mental role of miR-126 in regulation of vascular integrity and 
angiogenesis. Consequently, this fundamental role of miR-126 
in the vasculature has led to research investigating its regenera-
tive potential, which was confirmed in several animal models of 
ischemic vascular injury (135, 136, 137).

Mechanistically, miR-126 targets sprouty-related protein 1 
(SPRED1) and phosphoinositol-3-kinase regulatory subunit 2 
(PIK3R2/p85β), both of which suppress VEGF, via PI3K and 
Akt signalling pathways, respectively. Thus, miR-126 promotes 
VEGF expression by targeting several pathways, which promotes 
an angiogenic response (118).

Des-acylated ghrelin has been shown to exhibit an athero-
protective effect by restoring miR-126 expression. In a murine 
model of CLI, Des-AG administration increased miR-126, which 
increased SIRT1 expression and prevented cell senescence via 
reduced p53 and H3K56 acetylation, protecting deoxyribonucleic 
acids from damage (71, 138). Furthermore, Des-AG induced an 
anti-adhesive and anti-inflammatory endothelial phenotype, via 

miR-126 regulated VCAM-1 post-transcriptional regulation (71). 
Finally, Des-AG administration also restored SOD-2 expression 
by diminishing ROS production (71).

MicroRNA-132
MicroRNA-132 Is a Highly Conserved miR, Encoded 
in an Intergenic Region on Chromosome
17p13.3 by the transcription factor cAMP response element-
binding protein (CREB) (121). Angiogenic factors such as VEGF 
and basic fibroblast growth factor lead to phosphorylation of 
CREB and rapid transcription of miR-132. This transcription 
suppresses the endothelial GTPase-activating protein p120Ras-
GAP, resulting in Ras activation, and subsequent endothelial 
cell proliferation and angiogenesis (139). In a murine model 
of CLI, miR-132/221cluster knockout has been shown to delay 
perfusion recovery, attributable to the modulation of the Ras-
MAPK signalling pathway, a key pathway in neovascularization 
following ischemia. Katare et al. (22), demonstrated exogenous 
AG treatment significantly up-regulated miR-132, resulting in 
angiogenesis in a murine model of CLI, while in vitro inhibition 
of miR-132 reduced the angiogenic potential of AG, evident from 
decreased proliferation, tube formation, and survival of HUVECs.

MicroRNA-206
MicroRNA-206 is an evolutionally conserved miR, sharing com-
mon expression in muscle from Caenorhabditis elegans to human 
(122). miR-206 is also similar to miR-1, only differing by four 
nucleotides as mature miRs. miR-206 is found in the intergenic 
region on chromosome 6p12.2 and has been proposed to be a 
negative regulator of angiogenesis. This is shown to be through 
the modulation of the potent angiogenic factor VEGF (122, 
123). Further, miR-206 has been shown to specifically suppress 
VEGF expression in several types of cancer and smooth muscle 
cells (140), clearly demonstrating the role of miR-206 as a nega-
tive regulator of angiogenesis. AG has been shown to suppress 
miR-206 expression, leading to increased VEGF expression and 
angiogenesis (22). This indicates that AG up-regulates several 
pro-angiogenic miRs and down-regulates antiangiogenic miRs 
leading to a pro-angiogenic environment.

MicroRNA-92a
MicroRNA-92a is a conserved endothelial cell-specific miR, in 
the miR-17~92 cluster located at chromosome 13q31.3 (124). 
miR-92a inhibits endothelial cell sprouting and neovascu-
larization following ischemia, through targeting of the protective 
endothelial genes integrin α5 and SIRT1 (124, 141). Inhibition of 
miR-92a has been shown to improve angiogenesis and recovery 
in murine models of chronic ligation of the anterior descending 
coronary artery (124), CLI (124), vascular injury (142), and in a 
porcine model of ischemia/reperfusion injury (143).

Exogenous AG treatment has also shown to decrease miR-
92a, which negatively modulates integrin α5, which is crucial for 
the activation of Akt (144). This leads to improved cell survival 
through the anti-apoptotic factor B cell lymphoma 2 (145) and 
improved angiogenesis. Combined, ghrelin’s ability to reduce 
miR-92a expression leads to further regulation of integrin α5 
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FiGURe 2 | A schematic overview summarizing the role of ghrelin administration in the treatment and management of critical limb ischemia (CLI). Ghrelin is 
predominantly produced in the stomach and circulates in two forms, Acylated ghrelin (AG) and des-acylated ghrelin (Des-AG). Most of the biological effects of AG 
and Des-AG in pre-clinical models of CLI appear to be closely related to alterations in several pro-survival microRNAs (miRs). Given ghrelin administration can 
regulate several miRs, which in turn control a significant proportion of genes, ghrelin administration can result in improved limb perfusion, muscle quality, and 
ultimately, survival.
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and SIRT1, both of which critically influence endothelial cell 
proliferation and migration (146).

MicroRNA-221/-222 Cluster
The miR-221/-222 cluster is encoded by a highly conserved gene 
cluster on the human Xp11.3 chromosome (147). miR-221/-222 
have been shown to control the differentiation and maturation 
of skeletal muscle cells, by modulating the protein levels of the 
cell-cycle inhibitors p27 and p57 (126). Des-AG has been shown 
to induce skeletal muscle regeneration via SOD-2 expression 
and miR-221/-222 driven post-transcriptional regulation of the 
Cip/Kip family members P27KIP1 (also known as CDKN1B) and 
P57KIP2 (also known as CDKN1C) (127), leading to satellite cell 
differentiation and myofiber regeneration (69). This indicates 
Des-AG may benefit CLI in that it can up-regulate miR-221/-222, 
leading to skeletal muscle regeneration. However, miR-221/-222 
inhibits endothelial cell proliferation and motility, thus blocking 
angiogenesis by targeting the pro-angiogenic c-kit (70, 147), sug-
gesting that Des-AG may improve the skeletal muscle recovery 
following CLI, but at the same time may have detrimental effects 
on the neovasculature.

MicroRNA-30a
MicroRNA-30a is a member of the miR-30 family, located on 
chromosome 6q13 (148). miR-30a has recently been shown to 
play a fundamental role in myocardial (129), peritoneal (130), 
and hepatic fibrosis (149) through the negative regulation of its 
target protein Snail 1. AG has been shown to increase miR-30a in 
a model of CLI, leading to diminished skeletal muscle fibrosis and 
improved recovery (22).

MicroRNA-21
MicroRNA-21 is a well characterized pro-fibrotic miR [reviewed 
in Ref. (150)], located on chromosome 17q23.2, within an intron 
of the transmembrane protein 49 gene (151). miR-21 promotes 

fibrosis in several tissues including the heart (132, 151), kidneys 
(150), and skeletal muscle (152) through fibroblast proliferation 
by activation of ERK–MAPK pathway (131). Sprouty homolog 
1 (SPRY1), a potent inhibitor of the Ras/MEK/ERK pathway, 
has been shown to be a direct target of miR-21 (131, 153). Thus, 
miR-21 mediates ERK–MAP kinase activity by means of an effect 
on SPRY1, leading to fibrosis. Moreover, phosphatase and tensin 
homolog (PTEN) a well-established target of miR-21, is involved 
in fibrosis by stimulation of the epithelial-to-mesenchymal 
transition (132) and interrupts the down- stream activation of 
Akt, a regulator in fibrotic diseases. Pro-fibrotic TGF-β signalling, 
which contributes to the progression of fibrosis by promoting 
fibroblasts activation, has been shown to be regulated by miR-
21 via a PTEN/Akt-dependent pathway (154). AG has been 
demonstrated to reduce miR-21 in a model of CLI, thus reducing 
the TGF-β induced fibrotic signalling cascade (22), leading to 
decreased fibrosis and improved recovery.

AG and Des-AG exhibit pleiotropic beneficial effects, which 
all may contribute to improved recovery following CLI. The influ-
ence of ghrelin on miRs sheds light on the molecular mechanisms 
that underpin ghrelin’s therapeutic actions.

GHReLiN AS A NOveL THeRAPeUTiC 
AGeNT

Mounting evidence advocates ghrelin as a novel therapeutic 
candidate for the treatment of CLI, given ghrelin’ potent ability 
to repair, restore, and regenerate both the vasculature and skeletal 
muscle. Despite the vast majority of data presented in this review 
being from in vitro and pre-clinical models, ghrelin has been rou-
tinely administered to humans for over a decade with no adverse 
effects (155). To date, over 400 clinical trials2 are registered under 

2 https://clinicaltrials.gov.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://clinicaltrials.gov


8

Neale et al. Ghrelin Modulates miRs

Frontiers in Endocrinology | www.frontiersin.org December 2017 | Volume 8 | Article 350

the term “ghrelin” in a broad range of conditions. Whether 
ghrelin can produce the beneficial effects for CLI in humans as 
presented in this review remains uncertain but is a promising area 
of clinical research.

To ease to the transition from mouse to man, further investiga-
tion of ghrelin biology in humans with PAD will give valuable 
insight into the ghrelin systems role in the disease. Future pre-
clinical studies will also aim to examine ghrelin administration 
in an overt diabetic model of CLI, adding to the evidence base 
for the use of ghrelin mimetics for treating CLI and similar condi-
tions. Ghrelin has also recently been implicated as a therapy for 
numerous other diseases [see Ref. (59) for a review]. However, 
few human studies have truly explored its therapeutic potential, 
leaving an apparent gap in the literature into its efficacy as a treat-
ment option for human disease.

CONCLUDiNG ReMARKS

In this review, we have described the multifactorial roles of ghrelin 
in CLI, as demonstrated by its role in multiple regenerative and 
regulatory processes. Post-ischemic vascular and skeletal muscle 
remodeling is stimulated by ghrelin, while it inhibits antiangio-
genic and pro-fibrotic signalling pathways. With the incidence of 
CLI continuing to increase, driven by the rapid increase in DM 
and population aging, the resulting global socio-economic burden 
of CLI is significant. Current treatment options for CLI patients 
are costly and often met with poor success, while emerging novel 

angiogenic agents have limited success in large clinical trials. If 
the global burden of CLI is to be tackled, novel therapeutic strat-
egies are urgently required. Collectively, the identification and 
characterization of novel biological properties of ghrelin opens 
the door for its administration to be a potential therapeutic agent 
in the treatment of CLI (Summarised in Figure 2).

The pleiotropic actions of ghrelin as presented in this review 
will hopefully stimulate further clinical studies to explore the 
potential of ghrelin as a novel therapeutic agent for the treatment 
of this highly morbid disease.
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