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Abstract

Persistent inflammatory environment and abnormal macrophage activation are characteris-

tics of chronic diabetic wounds. Here, we attempted to characterize the differences in mac-

rophage activation and temporal variations in cytokine expression in diabetic and non-

diabetic wounds, with a focus on interleukin (IL)-6 mRNA expression and the p38 MAPK

and PI3K/Akt signaling pathways. Cutaneous wound closure, CD68- and arginase-1 (Arg-

1)-expressing macrophages, and cytokine mRNA expression were examined in non-dia-

betic and streptozotocin-induced type 1 diabetic mice at different time points after injury.

The effect of IL-6 on p38 MAPK and Akt phosphorylation was investigated, and an in vitro

scratch assay was performed to determine the role of IL-6 in primary skin fibroblast migra-

tion. Before injury, mRNA expression levels of the inflammatory markers iNOS, IL-6, and

TNF-αwere higher in diabetic mice; however, IL-6 expression was significantly lower 6 h

post injury in diabetic wounds than that in non-diabetic wounds. Non-diabetic wounds exhib-

ited increased p38 MAPK and Akt phosphorylation; however, no such increase was found in

diabetic wounds. In fibroblasts from non-diabetic mice, IL-6 increased the phosphorylation

of p38 MAPK and levels of its downstream factor CREB, and also significantly increased Akt

phosphorylation and levels of its upstream factor P13K. These effects of IL-6 were not

detected in fibroblasts derived from the diabetic mice. In scratch assays, IL-6 stimulated the

migration of primary cultured skin fibroblasts from the non-diabetic mice, and the inhibition

of p38 MAPK was found to markedly suppress IL-6–stimulated fibroblast migration. These

findings underscore the critical differences between diabetic and non-diabetic wounds in

terms of macrophage activation, cytokine mRNA expression profile, and involvement of the

IL-6-stimulated p38 MAPK–Akt signaling pathway. Aberrant macrophage activation and

abnormalities in the cytokine mRNA expression profile during different phases of wound

healing should be addressed when designing effective therapeutic modalities for refractory

diabetic wounds.
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Introduction

Approximately 2.8% of the world population is reported to be affected by diabetes, and

approximately 15% of patients with diabetes have impaired cutaneous wound healing, which

poses a serious risk of limb amputation and compromised quality of life [1, 2]. Wound healing

is a complex series of spatially and temporally coordinated dynamic events, involving hemo-

stasis, inflammation, proliferation, and remodeling phases. A critical issue in non-healing dia-

betic wounds is a prolonged phase of inflammation and neutrophil infiltration, characterized

by an abundance of pro-inflammatory macrophages, cytokines, and proteases. Macrophages

are key modulators of host defense, wound healing, and immune regulation [3]. They are

involved in distinct immune functions such as inflammation and tissue repair, and are classi-

fied into two distinct phenotypes: classically activated macrophages (M1) and alternatively

activated macrophages (M2). The M1 phenotype secretes pro-inflammatory cytokines and

chemokines, toxic intermediates, and reactive oxygen intermediates, whereas the M2 pheno-

type is anti-inflammatory and involved in tissue repair and remodeling [4–11]. In non-diabetic

wounds, the M1 phenotype appears in the initial stage of wound healing, followed by the M2

phenotype at later stages. Diabetic wounds, however, exhibit abnormal macrophage activation,

showing insufficient M1 in the early stage and delayed activation of M2 [12, 13]. Macrophages

are a major source of cytokines in wounds, and their dysfunction is known to be a factor in the

pathogenesis of chronic wounds in diabetes [14–17]. Identifying the factors associated with

macrophage dysfunction and cytokine dysregulation is therefore crucial for preventing

wounds from becoming arrested at the inflammatory stage, as well as for promoting the heal-

ing of diabetic wounds [11, 18, 19].

Cytokines are known to transduce downstream signals via different signaling pathways

[20]. Two such important pathways are those of the protein kinase PI3K/Akt and the stress-

activated protein kinase p38 MAPK. The PI3K/Akt signaling pathway is involved in diverse

cellular functions and has been associated with fibroblast migration and proliferation in

wound healing [21, 22]. Although the role of the p38 MAPK signaling pathway in wound heal-

ing is not yet established, recent studies suggest its involvement in cellular migration in

wounds [23].

IL-6 is a crucial inflammatory cytokine in the early stages of wound healing; however, it is

also reported to be present in high abundance in chronic wounds [24]. The abundance of IL-6

implies involvement of the M1 phenotype and persistent inflammation in chronic wounds [17,

19, 25, 26]. There is overwhelming evidence highlighting the critical role of IL-6 in facilitating

wound healing [19, 27, 28]; however, not much information is available on the temporal varia-

tions in IL-6 expression in diabetic wounds or on the involvement of p38 MAPK or PI3K/Akt

signaling pathways in diabetes. We hypothesized that abnormal IL-6 mRNA expression, mac-

rophage activation, and p38 MAPK and PI3K/Akt signaling contribute to impaired wound

healing in diabetes.

This study aimed to investigate macrophage activation, temporal variations in the mRNA

expression of cytokines, and the phosphorylation of Akt and p38 MAPK in diabetic and non-

diabetic wounds. Efforts were also made to elucidate the effect of IL-6 on fibroblast migration

and on the stimulation of p38 MAPK or PI3K/Akt signaling pathways in diabetic and non-dia-

betic wounds.

Materials and methods

This study was approved by the Ethical Animal Care and Use committee of Juntendo Univer-

sity School of Medicine (permit number, 260136).
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Diabetic mouse model

C57BL/6J male mice (age: 10 weeks, weight: 20–25 g) were purchased from CLEA Japan

(Kawasaki, Japan). Intraperitoneal injections of 50 mg/kg streptozotocin (STZ) in 50 mmol/L

sodium citrate buffer (pH 4.5) were administered to mice for 5 consecutive days to obliterate

pancreatic β cells. Mice maintaining fasting glucose levels of 200 mg/dL for at least 4 weeks

before wounding were considered diabetic. Non-diabetic mice received intraperitoneal injec-

tions at the same time points with an equal volume of 50 mmol/L sodium citrate buffer. In

total, 48 mice were used in this experiment (n = 4 per group). Mice were inhalation-anesthe-

tized with 2% isoflurane to completely alleviate suffering. At the end of the experiment, mice

were euthanized with a high concentration of isoflurane.

Wound model

We used euglycemic and diabetic C57BL/6J male mice. Each mouse was anesthetized and dep-

ilated, and a set of bilateral 6-mm punch biopsy excisions was made on the dorsum to yield

full-thickness wounds, including the hypodermis and panniculus. India ink was applied intra-

dermally at the margins to permanently mark the wound edge. A silicone stent (Grace Bio-

Laboratories, Bend, OR, USA) with an inner diameter of 8 mm was sutured with 5–0 nylon

(Ethicon, Somerville, NJ, USA) around each wound to minimize skin contracture and to

ensure healing by secondary intention. Wounds were photographed with a DSC-T900 camera

(Sony, Tokyo, Japan) from a distance of 6.5 cm, with the lens oriented parallel to the wound.

The wound area was measured using Photoshop CS3 (Adobe Systems, San Jose, CA, USA).

The internal diameter of the silicone stent was used for calibration to correct for magnification,

perspective, or parallax effects. The percent wound closure [(1 − (wound area/original wound

area)) × 100] was measured photogrammetrically on days 0, 0.25, 1, 3, 5, 7, and 9. Wounds

were harvested from sacrificed animals on postoperative days 0, 0.25, 1, 3, 5, 7, and 9 (n = 4

per group at each time point). A full-thickness excision (3 mm beyond the margin of the

wound edge) was made. One-half of the wound was kept in liquid nitrogen for subsequent

PCR and western blotting.

Reagents

Primary antibodies against Akt, p38 mitogen-activated protein kinase (MAPK), cAMP

response element–binding protein (CREB), phosphoinositide 3-kinase (PI3K), p-Akt (Ser473),

p-p38 MAPK (Thr180/Tyr182), p-CREB (Ser133), and p-PI3K (Tyr458/p55 (Tyr199) were

purchased from Cell Signaling Technology (MA, USA). Anti-GAPDH was from Santa Cruz

Biotechnology Inc. (TX, USA). Anti-rabbit HRP-linked secondary antibody and anti-mouse

HRP-linked secondary antibody were purchased from Cell Signaling Technology. STZ and

mouse IL-6 were obtained from Sigma-Aldrich (MO, USA), and SB203580 was sourced from

Calbiochem (CA, USA).

Immunofluorescence

Dorsal wound skin samples were fixed in 4% paraformaldehyde overnight. This was followed

by treatment of the skin samples with 5–30% sucrose/phosphate-buffered saline (PBS) solution

overnight, embedding in tissue processing medium (OCT), and storage at −80˚C. Frozen

wound tissue sections were incubated with PBS containing 10% goat serum. Then, the sections

were further incubated overnight with a combination of anti-CD68 and anti-arginase 1 (Arg-

1) antibodies (Abcam Inc., Cambridge, MA, USA) at 4˚C. All antibodies were used at a dilu-

tion of 1:100. Tissue sections were incubated with Alexa 586–conjugated goat anti-rat antibody
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and Alexa 488–conjugated goat anti-rabbit antibody (1:200; Molecular Probes, Eugene, OR,

USA) at room temperature for 60 min and mounted with Hoechst 33342 for nuclear staining.

Negative controls without primary antibodies were used in each case to rule out nonspecific

labeling (S1 and S2 Figs). For positive staining, we used liver tissue for arginase staining and

spleen tissue for CD68 staining. The wound edge was analyzed using a LSM 510 two-photon

laser confocal scanning system (Zeiss, Thornwood, NY, USA).

Cell culture

Primary skin fibroblasts (non-diabetic fibroblasts) were derived from mice aged 19–20 weeks

and cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine

serum (FBS), and fibroblasts from mice with type 1 diabetes (diabetic fibroblasts) were cul-

tured in high-glucose DMEM (DMEM with 4.5 g/L glucose), 100 U/mL penicillin, and 100

mg/mL streptomycin in a humidified incubator at 37˚C with a 5% CO2 atmosphere. Cells

between passages 2 and 3 were used in the experiments.

Mouse wound healing assay

Confluent cells were cultured in 60-mm dishes (Becton Dickinson, NJ, USA). The cells were

serum-starved in DMEM for 16 h and then wounded with linear scratches (500 mm) by a ster-

ile pipette tip. The initial area devoid of cells was marked and quantified on images obtained at

the baseline, and treatments with IL-6 (10 ng/mL) or SB203580 (20 μM) were initiated in

DMEM [27]. Cells were imaged under an inverted phase-contrast microscope (Nikon Eclipse

Ti-u; Nikon Corporation, Japan) equipped with a Nikon SD-Fi2 camera. The area devoid of

cells was quantified using Adobe ImageReady CS2 software. The proportion of the initial area

devoid of cells to that occupied by cells after 0–24 h of treatment was expressed as the degree

of migration.

Western blot analysis

Whole-cell lysates and whole-skin lysates were subjected to SDS-PAGE, and the proteins that

migrated were electrically transferred to a polyvinylidene fluoride (PVDF) microporous mem-

brane (Life Technologies, MA, USA). The membrane was incubated at 4˚C for 18 h with anti-

bodies against the following proteins: p-Akt, Akt, p-p38 MAPK, p38 MAPK, p-CREB, CREB,

p-PI3K, PI3K (1:1000), and GAPDH (1:2000). After incubation, anti-mouse HRP-linked sec-

ondary antibody (1:2000, for GAPDH) or anti-rabbit IgG HRP (1:2000, for p-Akt, Akt, p-p38

MAPK, p38 MAPK, p-CREB, CREB, p-PI3K, and PI3K) was added, and the membrane was

incubated for 30 min at room temperature. The chemiluminescence of antigenic proteins on

the membrane was monitored using the Lumi-LightPLUS western blotting kit (Roche Diag-

nostics Co., Basel, Switzerland), and the images were analyzed using an image analyzer (LAS-

3000; Fujifilm Co., Tokyo, Japan).

RNA isolation and RT-PCR

Total RNA was extracted from skin, using TRIzol (Ambion RNA, Life Technologies). Real-

time RT-PCR was performed using the fluorescent dye SYBR Green I and the SYBR Premix

Ex Taq kit (Perfect Real Time; Takara Bio, Shiga, Japan) in a StepOne PCR system (Life Tech-

nologies, CA, USA). Information available from GenBank was used to design the primers (IL-

1, XM 006498795, IL-4, NM_021283, IL-6, NM_031168, IL-10, NM_010548, iNOS,

NM_010927, TNFα, AB023024, TGFβ, NM_009370, arginase, U51805). The primers were

synthesized by Life Technologies (Table 1).
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Statistical analysis

All data are expressed as the mean ± SE. The statistical difference between two groups was ana-

lyzed by Student’s t-test, and that among more than three groups by one-way analysis of vari-

ance (ANOVA) with Bonferroni multiple comparison tests. SPSS Software (IBM Software,

Tokyo, Japan) was used for the analysis. p< 0.05 was considered statistically significant.

Results

Wound healing is delayed in diabetic mice

Gross images of wound healing and % wound closure in diabetic and non-diabetic mice are

shown in Fig 1A and 1B. On days 7 and 9 after injury, % wound closure significantly improved

in non-diabetic mice (65.9% ± 4.5% and 83.8% ± 2.6%, respectively) (Fig 1B). Diabetic mice,

however, showed significantly lower wound closure than non-diabetic mice; on 7 and 9 days

after injury, the percent wound closure values were just 22.5% and 61.1%, respectively, con-

firming delayed wound healing in diabetic mice. Furthermore, diabetic mice had significantly

lower percent wound closure than the euglycemic mice at all the time points studied.

Diabetic wounds display increased numbers of CD68+ cells and delayed

anti-inflammation phase

To identify wound-associated macrophages and macrophage polarization status, we performed

immunofluorescence staining for the macrophage marker CD68 and M2 marker Arg-1 in samples

from non-diabetic and diabetic wounds [29, 30]. There were more CD68-positive macrophages

(red) in diabetic wounds than in non-diabetic wounds at the corresponding time points (Fig 2A),

indicating that although macrophages were present in both groups, there was a higher abundance

of macrophages in diabetic wound skin. In non-diabetic wounds, the expression of Arg-1 (green)

was highest 3–5 days after wounding, whereas in diabetic wounds, strong expression of Arg-1 was

observed at approximately 7–9 days after wounding (Fig 2A). As shown in Fig 2B and 2C, although

the number of CD68+ cells was significantly increased in DM mice, that of Arg-1+ cells was decre-

ased. Furthermore, the number of CD68+Arg double-positive cells was significantly lower in dia-

betic mice until day 3 and begin to increase only after day 5 (Fig 2D). These data indicate that the

appearance of the anti-inflammatory macrophage phenotype M2 is delayed in diabetic wounds.

Expression of IL-6 mRNA is decreased in diabetic mouse skin

immediately after wounding

To determine the effect of the cutaneous inflammatory environment on wound healing, we

measured the expression of inflammatory cytokine mRNA in pre- and post-injury skin by

Table 1. Primer sequences used for real-time PCR.

Marker Forward and reverse sequences

IL-1 50- ATTAGGCAGCACTCTCTAGAACAGA -30 and 50-TTCCTGTGCAAACTCTAAGAGAAGT-30;

IL-4 50-TAGTTGTCATCCTGCTCTTCTTTCT-30 and 50-GATCTCTCTCAAGTGATTTTTGTCG-30

IL-6 50-GTTGCCTTCTTGGGACTGATG-30 and 50-TGGGAGTGGTATCCTCTGTGAA-30;

IL-10 50-ATCTTAGCTAACGGAAACAACTCCT-30 and 50- TAGAATGGGAACTGAGGTATCAGAG-30

iNOS 50-GGCAGCCTGTGAGACCTTTG-30 and 50- CGTTTCGGGATCTGAATGTGA-30

TNF-α 50-ACCCTCACACTCAGATCATCTTC-30 and 50-TGGTGGTTTGCTACGACGT-30

TGF-β 50-GAGATTCCAGCTGTTGTTCTGTTAT-30 and 50-CTGTACTGCACTCCCAAACTATTCT-30

Arginase 50-CTCCAAGCCAAAGTCCTTAGAG-30 and 50-AGGAGCTGTCATTAGGGACATC-3

https://doi.org/10.1371/journal.pone.0178232.t001
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real-time RT-PCR. Before wounding (at 0 h), the mRNA expression of iNOS, TNFα, and

IL-6 was significantly higher in the skin of diabetic mice than in the skin of non-diabetic

mice (Fig 3A, 3B and 3G; 0 h). These data correspond with persisting hyperglycemia–

induced inflammatory alterations and perpetuation of chronic autoimmune responses in

various tissues, including the skin [21, 31, 32]. Notably, however, the mRNA expression

levels of IL-10, IL-4, and TGFβ were significantly elevated in diabetic mice compared to

those in the non-diabetic mice before wounding (Fig 3D, 3E and 3F; 0 h). The non-diabetic

mice showed significantly higher expression levels of Arg-1 mRNA at several time points as

compared with diabetic mice: before injury (1.00 ± 0.00 vs. 0.19 ± 0.19), 6 h after injury

(1.65 ± 0.16 vs. 0.01 ± 0.00), 1 day after injury (1.86 ± 0.10 vs. 0.13 ± 0.06), 3 days after

injury (4.36 ± 0.15 vs. 0.92 ± 0.08), and 5 days after injury (20.75 ± 3.45 vs. 2.33 ± 0.40) (Fig

3H). Remarkably, non-diabetic wounds displayed significantly increased IL-6 expression 6

h after injury (Fig 3G). These findings therefore indicate immediate initiation of an inflam-

matory phase of wound healing in non-diabetic mice and the absence of a similar phenom-

enon in diabetic mice post injury [33].

Fig 1. Representative images and graph showing wound healing in non-diabetic and diabetic mice.

(A) Representative images of wounds photographed at the time points indicated between day 0 to day 9 in

euglycemic mice (Con) and diabetic mice (DM). (B) The graphs show the comparison of percent wound

closure between euglycemic mice and diabetic mice. The data represent the mean ± SE [n = 4, *p < 0.05 vs.

Con (6 h), # p < 0.05 Con vs. DM].

https://doi.org/10.1371/journal.pone.0178232.g001
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Fig 2. Identification of macrophages in non-diabetic and diabetic wounds. (A) Representative

immunostaining for CD68 (red) and Arg-1 (green). Nuclear counterstaining was performed using DAPI (blue).
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Wounding causes phosphorylation of Akt and p38 MAPK in non-diabetic

but not diabetic wounds

To determine the role of kinases in impaired diabetic wound healing, we analyzed key kinases

associated with the regulation of wound healing. Non-diabetic wound skin exhibited increased

phosphorylation of Akt at Ser473 by approximately 2.5 fold at 3–9 days, but this increase was

absent in diabetic wounds (Fig 4A and 4B). In non-diabetic wounds, the phosphorylation of p38

MAPK was approximately 2.5-fold higher at 6 h after wounding. Again, this was not observed in

diabetic wound skin (Fig 4C and 4D). These results implicate the Akt and p38 MAPK pathways

in the healing of non-diabetic wounds, and such pathways are absent in diabetic wounds.

IL-6 stimulates migration by primary skin fibroblasts via the p38 MAPK

pathway

We performed a scratch assay using primary cultured skin fibroblasts from non-diabetic mice

to determine the effect of IL-6 on fibroblast activity. The cells treated with 10 ng/mL IL-6

showed increased migration at 12 h and 24 h compared to the cells not treated with IL-6 (Fig

5A and 5B). Next, fibroblasts were pre-treated with SB203580 (20 μM), a p38 MAPK inhibitor,

to test the effect of p38 MAPK signaling on IL-6–induced cell migration. Notably, the IL-6–

induced cell migration was significantly suppressed by pre-incubation of the fibroblasts with

SB203580 (Fig 5A and 5B). These findings therefore indicate that IL-6 promotes fibroblast

migration, and thus wound healing, via the p38 MAPK pathway.

p38 MAPK, CREB, Akt, and PI3K are activated by IL-6 in primary non-

diabetic but not diabetic skin fibroblasts

We identified IL-6 to play an important role in wound healing in the early stage. We next

examined the target molecules of IL-6. Akt and p38 MAPK are regulatory kinases that appear

to promote the migration of fibroblasts and respond to inflammation [27, 28]. To confirm the

role of IL-6 in p38 MAPK and Akt signaling in fibroblasts, we analyzed the phosphorylation of

p38 MAPK and its downstream factor CREB, as well as Akt and its upstream factor PI3K.

Treatment of non-diabetic skin fibroblasts with 10 ng/mL IL-6 activated phospho-p38 MAPK

at 30 min after application, and the phosphorylation of CREB significantly increased from 30

min to 8 h after treatment (Fig 6A and 6B). As shown in Fig 6C and 6D, the level of Akt phos-

phorylation increased by approximately 2–3 fold with 10 ng/mL IL-6 treatment for 2–8 h. The

upstream protein PI3K was also upregulated over time in non-diabetic skin fibroblasts. IL-6

treatment of primary cultured skin fibroblasts from diabetic mice did not induce phosphoryla-

tion of p38 MAPK or Akt (Fig 6E and 6F). These data indicate that IL-6-activated phosphory-

lation of p38 MAPK and Akt was absent in diabetic skin fibroblasts.

SB203580 attenuates IL-6–stimulated phosphorylation of Akt

To further confirm the function of p38 MAPK in wound healing, a p38 MAPK inhibitor was

used to suppress the effect of IL-6. As shown in Fig 7A, when fibroblasts were pre-treated with

20 μM SB203580, a p38 MAPK inhibitor, IL-6–stimulated phosphorylation of p38 MAPK was

Scale bar = 30 μm. Non-diabetic wound macrophages on days 3 and 5 after wounding stained positive for

Arg-1. CD68 expression at almost all time points increased in diabetic wounds compared with that in non-

diabetic wounds. (B) and (C) quantitation of CD68- and Arg-1single positive cells (D) quantitation of CD68-

and Arg-1double positive cells The data represent the mean ± SE [n = 3, *p < 0.05 vs. Con (6 h), #

comparison between two groups p < 0.05)].

https://doi.org/10.1371/journal.pone.0178232.g002
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Fig 3. mRNA expression of M1 and M2 cytokines in non-diabetic and diabetic wounds. mRNA

expression of cytokines in skin from non-diabetic mice and diabetic mice. The skin of the wound sites was
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significantly blocked. The IL-6–stimulated phosphorylation of Akt was also attenuated by

SB203580 (Fig 7B). These observations imply that p38 MAPK mediates the effect of IL-6 on

signaling pathways in a p38 MAPK-Akt–dependent manner.

Discussion

Refractory diabetic wounds are characterized by a persistent inflammatory response, leading

to impaired progression of the healing process [3, 11, 12, 16]. This study shows that the macro-

phage polarization status and expression of IL-6 significantly differ between non-diabetic and

diabetic mice during pre-injury and in the early phase of wound healing. Our results provide

the first evidence that IL-6 stimulates the migration of non-diabetic fibroblasts through activa-

tion of the p38 MAPK and PI3K/Akt signaling pathways (Fig 8); however, in diabetic fibro-

blasts, these signaling pathways are dysfunctional.

Macrophage depletion and/or aberrant activation are known to result in impaired wound

healing [12, 16, 34]. In diabetic wounds, we noted significantly increased expression of the

macrophage marker CD68 at almost all time points, ruling out a role for macrophage deple-

tion–associated impairment in diabetic wound repair [35]. However, the inflammatory mark-

ers iNOS, IL-6, and TNF-α were upregulated in pre-injury diabetic skin, suggesting persistent

inflammation. Interestingly, we also noted increased mRNA expression of the anti-inflamma-

tory cytokines IL-10, IL-4, and TGFβ in pre-injury skin of diabetic mice. Such an increase indi-

cates the presence of a compensatory but futile counter-regulation of proinflammatory

stimuli, as postulated by Herder et al. [36]. Non-diabetic mice also showed significantly higher

expression levels of Arg-1 mRNA at several time points than diabetic mice. Furthermore,

increased expression of Arg-1, an M2-related gene, appeared earlier in the non-diabetic mice

compared to the diabetic mice, suggesting delayed activation of the M2 phenotype in diabetic

wounds. Taken together, these results confirm that post injury, the temporal cytokine profile

considerably differs between diabetic and non-diabetic wounds, and that M1/M2 macrophage

polarity is skewed in favor of M1 in diabetes [12, 37, 38].

At 6 h post-wounding, the expression of IL-6 was significantly higher in non-diabetic

wounds than in diabetic wounds. The suppressed expression of IL-6, an M1-related inflamma-

tory cytokine, reflects the abnormal initiation of the inflammatory phase in diabetic wounds.

IL-6 regulates the hypothalamic-pituitary-adrenal axis and is involved in monocyte chemo-

taxis, angiogenesis, and collagen accumulation, which are critical for wound regeneration [39–

42]. Therefore, reduced IL-6 levels in the early stage of wound healing have the potential to

adversely affect the subsequent phases of wound healing, including the activation of macro-

phages [43, 44]. Furthermore, because the diabetic wound site is chronically exposed to higher

IL-6 levels, the IL-6 receptor (IL-6R) response might be attenuated, desensitizing cells to the

post-wounding increase in IL-6 levels [41, 45]. All of these factors strongly indicate that pre-

injury chronic exposure to IL-6 and low abundance of IL-6 post injury both contribute to

delayed wound healing [44, 46, 47]. However, further research is needed to fully establish why

the balance between proinflammatory and anti-inflammatory cytokines is shifted toward

proinflammation in diabetes and whether the chronic proinflammatory environment in diabe-

tes affects cytokine function in cell signal transduction, IL-6R response, macrophage activa-

tion, and chemotaxis [37, 38, 48, 49].

retrieved at 0 h, 6 h, 1 day, 3 days, 5 days, 7 days, and 9 days. Proinflammatory mRNA expression was

measured by real-time RT-PCR; (A) iNOS, (B) TNFα, (C) IL-1, (G) IL-6. Anti-inflammatory cytokine

expression was measured by real-time RT-PCR; (D) IL-10, (E) IL-4, (F) TGFβ, (H) arginase. The data

represent relative expression of each cytokine after normalization with GAPDH levels in mean ± SE (n = 3,

*p < 0.05 vs. Con (0 h), # p < 0.05 Con vs DM).

https://doi.org/10.1371/journal.pone.0178232.g003
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Fig 4. Akt and p38 MAPK activity after skin wounding. (A), (B) Phosphorylation of Akt was analyzed at

0–9 days after wounding in non-diabetic and diabetic mice. Skin lysates were analyzed by western blotting

using anti-phospho-Akt and anti-Akt antibodies. (C), (D) Phosphorylation of p38 MAPK was analyzed at 0–9

days in non-diabetic and diabetic mice after wounding. Skin lysates were analyzed by western blotting using

anti-phospho-p38 MAPK and anti-p38 MAPK antibodies. The data represent the mean ± SE (n = 6, *p < 0.05

vs. Con (0 h)).

https://doi.org/10.1371/journal.pone.0178232.g004
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Phosphorylation of Akt and p38 MAPK was observed in the non-diabetic but not diabetic

wounds. We investigated the role of IL-6 in stimulating the signaling pathways of the protein

kinases PI3K/Akt and stress-activated protein kinase p38 MAPK in diabetic and non-diabetic

fibroblasts. In non-diabetic fibroblasts, IL-6 increased the phosphorylation of p38 MAPK and

the levels of its downstream factor CREB. It also significantly increased Akt phosphorylation

and the levels of its upstream factor P13K. These effects of IL-6 were not detected in diabetic

fibroblasts. Furthermore, in scratch assays, we found that IL-6 stimulated fibroblast migration

and that this IL-6-stimulated migration was blocked by the selective p38 MAPK inhibitor

SB203580, confirming the involvement of p38 MAPK pathways in non-diabetic fibroblast

Fig 5. Effect of IL-6 and inhibition of p38 MAPK on fibroblast migration. A: Photos of plates seeded with

fibroblasts. Vertical area indicates linear wounds made with a 1-mL pipette tip. Cells were exposed to 10 ng/

mL IL-6 with or without pretreatment with 20 μM SB203580 (SB, a p38 MAPK inhibitor) for 0, 6, 12, and 24 h.

Vertical scratch width = 500 μm. B: The migration rate of IL-6–stimulated cells treated with or without the p38

MAPK inhibitor was determined by measuring the acellular area at 0, 6, 12, and 24 h. The data represent the

mean ± SE of 3 different experiments (*p < 0.05, **p < 0.01 compared with the non-diabetic group).

https://doi.org/10.1371/journal.pone.0178232.g005
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Fig 6. Effect of IL-6 on p38 MAPK and Akt signaling in primary skin fibroblasts. Primary skin

fibroblasts from control mice (A, B, C, D) and diabetic mice (E, F) were serum-starved for 16 h. Cells
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activity. MAPKs are known to be involved in inflammation, cell proliferation, migration, and

differentiation, and several reports have confirmed the role of the p38 pathway in influencing

the migration of different cell types [50–56]. Our study therefore demonstrates that IL-

6-induced fibroblast migration requires p38 MAPK and Akt activation, and that this effect is

impaired in diabetic fibroblasts.

In conclusion, our study demonstrated for the first time that diabetic wounds show consid-

erably abnormal temporal cytokine profiles. In particular, 6 h post injury, IL-6 mRNA expres-

sion was significantly lower in diabetic wounds. Abnormal macrophage activation, but not the

lower abundance of CD68-expressing macrophages, was found to be characteristic of diabetic

wounds. IL-6 played a key role in facilitating non-diabetic fibroblast migration during wound

healing via the p38 MAPK-Akt pathway. This signaling pathway was found to be dysfunctional

in diabetic fibroblasts/wounds. Taken together, our results indicate that the regulation of IL-6

activity, functioning of p38 MAPK signaling pathways, and resolution of impaired macro-

phage activation should be considered when developing therapeutic strategies for non-healing

diabetic wounds.

were treated with 10 ng/mL IL-6 and incubated for 0.5, 1, 2, 4, and 8 h. A: Cell lysates were analyzed by

western blotting using anti-phospho-p38 MAPK and anti-p38 MAPK antibodies. The data represent the

mean ± SE of 3 different experiments (*: p < 0.05, **: p < 0.01 vs. 0 h). B: Cell lysates were analyzed by

western blotting using anti-phospho-CREB and anti-CREB antibodies. The data represent the mean ±
SE of 3 different experiments (*: p < 0.05, **: p < 0.01 vs. 0 h). C, D: Cell lysates were analyzed by

western blotting using anti-phospho-Akt, anti-phospho-PI3K, anti-Akt, and anti-PI3K antibodies. The

data represent the mean ± SE of 3 different experiments (**: p < 0.01 vs. 0 h). E, F: DM cell lysates were

analyzed by western blotting using anti-phospho-p38 MAPK, anti-phospho-Akt, anti-p38 MAPK, and

anti-Akt antibodies. The data represent the mean ± SE of 3 different experiments.

https://doi.org/10.1371/journal.pone.0178232.g006

Fig 7. Effect of IL-6 and inhibition of p38 MAPK and Akt phosphorylation in primary skin fibroblasts.

Primary skin fibroblasts were serum-starved for 16 h. Cells were treated with 10 ng/mL IL-6 and incubated for

0.5, 1, 2, 4, and 8 h. For inhibitor treatment, primary skin fibroblasts were pretreated with 20 μM SB203580 for

1 h, after which the medium was changed to fresh medium containing 10 ng/mL IL-6. The cells were then

incubated for another 8 h. A: Cell lysates were analyzed by western blotting using anti-phospho-p38 MAPK

and anti-p38 MAPK antibodies. The data represent the mean ± SE of 3 different experiments (* p < 0.05). B:

Cell lysates were analyzed by western blotting using anti-phospho-Akt and anti-Akt antibodies. The data

represent the mean ± SE of 3 different experiments (* p < 0.05).

https://doi.org/10.1371/journal.pone.0178232.g007
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Supporting information

S1 Fig. Positive and negative immunostaining for Arg-1 (green). Nuclear counterstaining

was performed using DAPI (blue). Scale bar = 100 μm. Liver tissue sections were stained with

Arg-1 antibodies. Negative controls lacked the primary antibody for Arg-1.

(TIF)

S2 Fig. CD68 staining of Mouse spleen tissue. Positive and negative immunostaining for

CD68 (red). Nuclear counterstaining was performed using DAPI (blue). Scale bar = 100 μm.

Spleen tissue sections were stained with CD68 antibodies. Negative controls lacked the pri-

mary antibody for CD68.

(TIF)
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wound healing mediator in an in vitro scratch assay. Exp Eye Res. 2014; 125: 183–192. https://doi.org/

10.1016/j.exer.2014.06.012 PMID: 24971496

28. Das LM, Rosenjack J, Au L, Galle PS, Hansen MB, Cathcart MK, et al. Hyper-inflammation and skin

destruction mediated by rosiglitazone activation of macrophages in IL-6 deficiency. J Invest Dermatol.

2015; 135(2): 389–399. Epub 2014/09/04. PubMed Central PMCID: PMC4291681. https://doi.org/10.

1038/jid.2014.375 PMID: 25184961

29. Katakura T, Miyazaki M, Kobayashi M, Herndon DN, Suzuki F. CCL17 and IL-10 as effectors that

enable alternatively activated macrophages to inhibit the generation of classically activated macro-

phages. J Immunol. 2004; 172(3): 1407–1413. PMID: 14734716
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