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Heparanase is a β-D-endoglucuronidase that cleaves heparan sulfate, a complex

glycosaminoglycan found ubiquitously throughout mammalian cells and tissues.

Heparanase has been strongly associated with important pathological processes

including inflammatory disease and tumor metastasis, through its ability to promote

various cellular functions such as cell migration, invasion, adhesion, and cytokine release.

A number of cell types express heparanase including leukocytes, cells of the vasculature

as well as tumor cells. However, the relative contribution of heparanase from these

different cell sources to these processes is poorly defined. It is now well-established

that the immune system plays a critical role in shaping tumor progression. Intriguingly,

leukocyte-derived heparanase has been shown to either assist or impede tumor

progression, depending on the setting. This review covers our current knowledge

of heparanase in immune regulation of tumor progression, as well as the potential

applications and implications of exploiting or inhibiting heparanase in cancer therapy.
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INTRODUCTION

Heparanase is the only mammalian enzyme that directly cleaves heparan sulfate side chains of
heparan sulfate proteoglycans (HSPGs), key components of the extracellular matrix and basement
membrane. The cleavage of heparan sulfate by heparanase regulates a number of fundamental
cellular processes including cell migration (1, 2), cytokine production (3, 4), angiogenesis (5),
and wound healing (6). Furthermore, heparanase has also been implicated in cell adhesion
that is independent of its enzymatic activity (7, 8). The ability of heparanase to regulate these
processes also makes it a key player in several pathological settings such as inflammatory
disease and cancer. Heparanase contributes to various inflammatory diseases including delayed
hypersensitivity, vascular injury, chronic colitis, Crohn’s disease, sepsis, rheumatoid arthritis (9),
atherosclerosis (10), and diabetes (11–13). Furthermore, heparanase is upregulated in response
to pro-inflammatory cytokines, bacterial or viral infections, and modulates innate immune
cell function. For example, in sepsis heparanase is upregulated by tumor necrosis factor-α
(TNF-α) and induces shedding of the glycocalyx, thereby exposing the endothelial surface and
adhesion molecules which facilitate neutrophil recruitment (14). Heparanase has also been well-
characterized in cancer (15, 16), where the overexpression of heparanase often contributes to tumor
progression (17, 18). The overexpression of heparanase has been detected in almost all cancer types,
where it promotes metastasis (19–21), angiogenesis (19, 21, 22), and tumor proliferation (23). More
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recently, the role of leukocyte heparanase in tumor progression
has been more closely examined, with the suggestion that it can
be either pro- or anti-tumorigenic, depending on the setting.

HEPARANASE EXPRESSION BY
LEUKOCYTES

The first documentation of heparanase expression in
leukocytes was in T lymphocytes where the production of
an endoglycosidase was observed in assisting their migration
and penetration of the basement membrane and blood vessel
entry (24). Subsequently, heparanase expression has been further
characterized in T cells (25–30) as well as a number of other
leukocytes including B cells (31), natural killer (NK) cells (2),
monocytes (32), dendritic cells (DCs) (1, 32), macrophages
(29, 30, 33–37), neutrophils (38–40), mast cells (41), and
eosinophils (42). The expression of heparanase by leukocytes is
inducible by various cell activatory stimuli (2, 43, 44) and has
been shown to promote leukocyte migration (1, 45), cell rolling
and adhesion (46, 47), the upregulation of pro-inflammatory
cytokines (3), and activation of innate immune cells (34).
Heparanase has also been associated with inflammatory diseases
such as atherosclerosis (10) and diabetes (11–13). However,
despite this progress, much remains to fully understand the
role of heparanase in leukocytes and its contribution to disease.
It is well-established that leukocytes are important regulators
of tumor progression (48–51). An emerging area of significant
clinical interest is at the intersection of heparanase, leukocytes,
and cancer. We will now discuss how heparanase may regulate
leukocyte function in the context of tumor progression and its
relevance in cancer therapy.

LEUKOCYTE HEPARANASE AND TUMOR
PROGRESSION

Heparanase and Macrophage Activation
and Infiltration Into Tumors
Tumor associated macrophages (TAMs) are often found
within primary tumors and pre-metastatic sites, and their
presence frequently contributes to tumor progression (52, 53).
In heparanase knockout mice, macrophage infiltration into
implanted Lewis lung carcinoma tumors was impaired, and
tumors were smaller than in wild type animals (34). Macrophages
from heparanase knockout mice also expressed lower levels
of the pro-inflammatory cytokines TNF-α, interleukin-1 β

(IL-1β), C-X-C motif chemokine ligand 2 (CXCL2) and IL-
6 (34, 54). The opposite was observed in a model of
pancreatic cancer overexpressing heparanase. Pancreatic tumor
cells overexpressing heparanase were implanted into severe
combined immune deficiency (SCID) mice, which lack B and
T cells (55). Implanted tumors with heparanase-overexpressing
pancreatic cancer cells were observed to have more infiltrating
macrophages and larger tumors compared to tumors with normal
heparanase expression (54) (Figure 1A). The overexpression of
heparanase in these pancreatic tumors also led to increased
macrophage expression of IL-6, IL-10, C-C motif chemokine

ligand-2 (CCL-2), vascular endothelial growth factor (VEGF)
andmacrophage scavenger receptor-2 (MSR-2) (54) (Figure 1A).
Indeed, TAM expression of these cytokines is an indicator
of macrophage polarization to an M2 phenotype, which
facilitates tumorigenesis (52, 56, 57). These findings suggest that
both tumor-derived and macrophage-derived heparanase can
promote the recruitment of macrophages to tumors and facilitate
their entry to aid tumor progression.

During inflammation and inflammation-associated
tumorigenesis, the source of heparanase is often the epithelium
(58). This was identified in patients with inflammatory
bowel disease (IBD) (59), and in an IBD model, epithelial
cell-heparanase was found to drive the over-activation of
macrophages, inflammation, and ultimately tumorigenesis (60).
In this model of IBD, heparanase-overexpressing mice were
also observed to have more macrophages in the colon when
compared to wild type animals (60). This overexpression of
heparanase in the epithelium has been characterized in other
models of inflammation, including pancreatitis (61) and Barrett’s
epithelium in the esophagus (62). However, it remains to be
explored whether epithelial cell-heparanase in these settings
also influences immune cell activation. Furthermore, another
study found that recombinant heparanase added to colorectal
cancer cell lines could increase mRNA expression and release of
monocyte chemoattractant protein-1 (MCP-1) (63), supporting
the notion that heparanase may help to generate a chemokine
gradient to recruit macrophages to sites of inflammation.

Together, these findings show that heparanase from the
tumor cells, macrophages, and epithelial cells can promote
tumorigenesis. However, not all tumor cells overexpress
heparanase. Weissmann et al. found that Raji lymphoma
cells expressed low levels of heparanase in vitro, but when
implanted into mice, exhibited increased heparanase activity
(22) (Figure 1B). This may have been a result of the tumor cells
upregulating heparanase in response to stimuli from the tumor
microenvironment, which could include soluble factors such as
TNF-α and IL-1β (35, 43), or heparanase may have originated
from other cell types within the tumor microenvironment
(e.g., macrophages). Regardless of the source of heparanase, its
inhibition with the heparanase neutralizing antibody Ab 1453 in
these tumors was sufficient to reduce tumor growth (22). Again,
the source of heparanase in this example is unclear, but this
study supports the idea that tumor cells can utilize heparanase
from the tumor microenvironment with similar outcomes on
tumor progression.

Tumor Cells Modulate Heparanase
Expression in Lymphocytes
Tumor cells can influence leukocyte function via direct cell-cell
interaction (64), or through secreted factors (65). A study by
Theodoro et al. found that lymphocytes from peripheral blood
mononuclear cells (PBMCs) of breast cancer patients displayed
higher heparanase expression than lymphocytes from healthy
patients (66). The study also found that heparanase expression
was higher in lymphocytes from patients with metastases,
and that heparanase expression in circulating lymphocytes was
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FIGURE 1 | Effects of heparanase on immune cells and the consequences on tumor progression. (A) Heparanase from macrophages and from tumor cells increase

macrophage infiltration into tumors, cytokine secretion and phagocytic ability. (B) Cells of the tumor microenvironment increase tumor cell-heparanase and increase

tumor cell proliferation. (C) Heparanase enhances NK cell infiltration into tumors and consequent tumor cell clearance. (D) Tumor cell-heparanase can block NCR

signaling and consequent activation of NK cells. (E) Applications of immune cell-heparanase include use in CAR T cells, dendritic cell vaccines, and viral delivery of

anti-tumorigenic agents. ECM, extracellular matrix; NCR, natural killer cytotoxicity receptor; HS, heparan sulfate; CAR-T, chimeric antigen receptor-T.
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reduced following surgical resection of tumors (66). Breast tumor
cells when co-cultured with lymphocytes from healthy donors
were shown to induce heparanase expression by the lymphocytes.
Furthermore, these experiments suggested that the breast tumor
cells induced the lymphocytes to produce soluble factors that
were responsible for upregulating heparanase expression (66).
It was proposed that by increasing expression of heparanase
in tumor-infiltrating lymphocytes, the tumor would have the
ability to alter gene expression of many other neoplastic and
non-neoplastic cells (66). The impact of these high-heparanase
expressing lymphocytes was not tested. However, since these
patients had higher instances of metastasis, it suggests that
these lymphocytes may be preparing to seek out tumor cells for
clearance, given that heparanase is often upregulated upon T cell
activation (24, 25, 27, 28).

Heparanase and NK Cell-Mediated
Clearance of Tumors
NK cells efficiently kill tumor cells of many origins, and
their presence within tumors often correlates with improved
survival (67). We recently reported that mice deficient in NK
cell-heparanase exhibited reduced NK cell tumor infiltration,
resulting in impaired clearance of B16F10 melanoma tumors and
metastases (2) (Figure 1C). Furthermore, immune checkpoint
inhibitors targeting the programmed death ligand-1 (PDL-1) and
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) axes were
less effective in the absence of NK cell-heparanase (2). These
data suggest that using heparanase inhibitors concomitantly with
checkpoint inhibitors would be ineffective. To our knowledge,
this is the first description of a tumor suppressive role
for heparanase.

Heparanase Blocks NK Cell Activation
The role of heparanase in NK cell function does not appear to be
simply in cell migration and invasion, but may also regulate NK
cell activation and cytotoxicity.

Heparan sulfate on the plasma membrane of NK cells can
act in a -cis manner as a co-ligand for the NK cell cytotoxicity
receptor (NCR) (68). However, surface heparan sulfate must
compete with soluble or -trans heparan sulfate for NCR binding,
which dampens NK cell activation. By cleaving heparan sulfate
on the surface of NK cells, heparanase secreted by tumors
can increase levels of soluble heparan sulfate, and consequently
inhibit NK cell activity and cytotoxicity against tumor cells
(69) (Figure 1D). It appears that low levels (69) or high
levels (68) of -cis heparan sulfate-NCR interaction dampens
NK cell activation, and that maintaining optimal levels of
membrane-bound heparan sulfate is important for optimizing
NK cell activation.

Despite these advances, further investigation is required to
fully understand the role of heparanase in leukocyte function
during cancer progression. Given the ability of heparanase to
modulate pro-inflammatory cytokine levels (3, 60), and activate
and recruit tumor-promoting leukocytes (34, 54), it is likely that
heparanase plays a greater role inmodulating the immune system
and immune suppression during cancer progression.

EXPLOITING HEPARANASE IN CANCER
IMMUNOTHERAPY

Despite the complex pro/anti-tumorigenic axis of heparanase,
exploiting heparanase has shown promise in leukocyte-based
anti-cancer therapies.

Heparanase in CAR-T Cell Therapy of Solid
Tumors
Chimeric antigen receptor (CAR)-T cell therapy utilizes
engineered recombinant receptors expressed on T cells
containing an antigen-recognition domain of a monoclonal
antibody and a T cell-activating domain (70). These CARs
enable T cells to specifically and efficiently recognize tumor
cells and maximize T cell function. Whilst this therapy has
shown promise in many hematological malignancies (71, 72),
it is relatively ineffective against solid tumors, partly attributed
to the low penetration of CAR-T cells into the tumor (70). To
address this, Caruana et al. overexpressed heparanase in human
CAR-T cells, and found this to assist CAR-T cell infiltration
into neuroblastoma patient-xenograft tumors and enhance
anti-tumor activity (73) (Figure 1E). This strategy of using
heparanase to increase the penetration of CAR-T cells into
tumors shows promise to increase efficacy of the therapy.

Heparanase in DC Vaccines
Heparanase overexpression has been documented across the
majority of tumor types, including solid tumors (74–77) and
hematological tumors (22, 78). Thus, heparanase represents a
potential tumor associated antigen (TAA) that could be exploited
across multiple cancer types. Dendritic cell vaccines are a novel
approach to selectively target tumor cells overexpressing TAA.
Engineered dendritic cells overexpressing TAA can generate
antigen-specific T cells that have increased cytotoxicity against
tumor cells (79–81).

Heparanase-specific and reactive CD8+ T cells were identified
in the bone marrow of a sample of breast cancer patients, and
were functionally reactive to heparanase-overexpressing tumor
cells (82). The overexpression of heparanase in DCs isolated
from PBMCs was shown to enhance the activation of T cells
from matching donors, and consequent cytotoxicity against
target gastric cancer cells (83). This finding also held true in
an animal model, where murine DCs were pulsed with murine
heparanase peptides and injected into mice. This vaccine could
induce cytotoxic T lymphocytes (CTLs) in mice specific to H-
2kb-expressing mouse tumor cell lines (B16, LLC, and EL-4)
(84). In addition, administering heparanase peptide-pulsed DCs
after injecting B16 tumor cells could slow tumor growth (84).
Furthermore, the immunogenicity and efficacy of these peptides
was increased when generated in the branched multiple antigenic
peptide conformation (85, 86).

The heparanase peptide has also been tested as a TAA
in a prophylactic vaccine. Priming mice in vivo with human
heparanase peptides (Hpa525, Hpa277, and Hpa405) generated
CTLs that specifically targeted human tumor cell lines presenting
heparanase on either HLA-A∗0201 (87) or HLA-A2 (88)
(Figure 1E). Injecting heparanase-pulsed DCs into mice before
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administering B16 tumor cells was shown to protect animals
from tumor growth (84).

These data suggest that heparanase could be a robust tumor
antigen, as when targeted, shows both reduction and protection
against tumor growth in animal and human systems. However,
targeting heparanase via a vaccine approach will rely on tumors
maintaining heparanase expression to allow T cell recognition
of heparanase-positive tumor cells. Regardless, the selective
pressure from these vaccines on tumor cells to downregulate
heparanase expression would still be advantageous in blocking
tumor progression.

Heparanase in Viral-Therapeutic Delivery
The delivery of gene therapy as a cancer treatment requires
specific targeting to tumor cells. A promising approach to
target therapies toward tumors is through viral particles via
attachment to T cells (89). An important step in the delivery
of these therapies is the release or “hand off” (transfer of viral
particles from T cells to target tumor cells), when T cells release
their viral cargo at the tumor site (89). Heparanase present in
the tumor microenvironment, either from malignant cells or
activated T cells, was shown to promote viral “hand off” for the
successful delivery of anti-tumor molecules to the tumor cells
(89) (Figure 1E). Another study using viral gene therapy to treat a
murine model of malignant plural mesothelioma found that co-
infection with a heparanase-expressing adenovirus vector could
enhance efficacy of virotherapy and penetrance into tumors (90),
a previous limitation of this therapy. This approach showed a
reduction in tumor weight, and an increase in overall survival
of animals inoculated with mesothelioma. This is likely a result
of heparanase increasing ECM breakdown, as heparanase was
shown to enable viral particles to penetrate deeper into tumor
spheroids (90).

The robust expression of heparanase across multiple cancer
types and cell types makes it a useful target to manipulate and
utilize its anti-cancer properties. All of these therapies described
will rely on maintained heparanase expression for efficacy. As
we will describe, heparanase inhibitors currently used to reduce
tumor burdenmay not always have favorable outcomes on tumor
progression, especially for patients undergoing the therapies
described above.

HEPARANASE INHIBITORS AND
LEUKOCYTE FUNCTION

Our understanding of the relationship between heparanase and
leukocytes during tumor progression remains limited. Similarly,
much is still unknown about how heparanase inhibitors affect
the anti-tumor immune response, despite their current use in
clinical trials against a range of cancers (91–94). A number of
heparanase inhibitors in anticancer therapy have been recently
reviewed (95–97). These include the heparan sulfate mimetic
Roneparstat (SST0001), 2-O-,3-O-desulfated heparin (ODSH,
also known as CX-01), Necuparanib (M402), PG545 (a heparan
sulfate mimetic conjugated to a lipophilic cholestanol aglycone

moiety, also known as Pixatimod) (21), and PI-88 (a heparan
sulfate mimetic, also known as Muparfostat) (98).

Preclinical animal models show PG545 can reduce tumor and
metastatic burden in several tumor models, including breast,
prostate (21), liver (21), lung (21), colon (21), ovarian (94), head,
and neck cancers (21, 99, 100), melanoma (21, 101), pancreatic
cancer (102, 103), and colon cancer (104). Interestingly, the
mechanism by which PG545 exerts its anti-tumor properties has
been shown to be multifactorial. In addition to directly blocking
heparanase activity (105), PG545 has been shown to reduce
heparanase expression, possibly by inhibiting VEGF and FGF2
signaling (99). PG545 has also been shown to inhibit macrophage
infiltration into pancreatic tumors (102), activate NK cells via
DCs (106), and activate lymphocytes (100), as part of its anti-
tumor activity. A phase I clinical trial against a range of advanced
solid tumors showed that PG545 stimulated the innate immune
response, resulting in an at least a two-fold increase of circulating
plasmacytoid DCs and NK cells in majority of patients (93). It
is perhaps predominantly through this mechanism of leukocyte
activation that this inhibitor exerts its anti-cancer activity, rather
than direct tumor cell-heparanase inhibition. Given its modest
effects as a monotherapy (93), PG545 will most likely be used
in combination with chemotherapy to treat advanced cancers for
maximum efficacy.

Other clinically relevant heparanase inhibitors such as
Roneparstat and ODSH also display immunomodulatory effects.
Roneparstat, in development for the treatment of multiple
myeloma, has been observed to effect macrophage polarization
by inhibiting the expression of M1 related genes in LPS-
stimulated U937 macrophages (107). In a mouse model of
ischemia/reperfusion injury, inhibition of heparanase with
Roneparstat reduced the number of infiltrating M1 macrophages
in the kidney, resulting in lower levels of pro-inflammatory
cytokines (107). ODSH is another heparanase inhibitor (108)
which blocks multiple steps of inflammation. As described
for heparin, ODSH reduces leukocyte rolling, adhesion, and
accumulation (109, 110). ODSH has also been shown to inhibit
neutrophil elastase and inflammation in a mouse model of
neutrophil elastase-induced airway inflammation (111) and in
the sputum of cystic fibrosis patients (112). In addition, ODSH
also inhibits the accumulation of neutrophils in the airway after
Pseudomonas aeruginosa infection (113) and protects against
platelet factor 4-induced thrombocytopenia in chemotherapy
and radiotherapy-treated animals by acting on megakaryocyte
proliferation. Finally, ODSH inhibits high-mobility group box 1
(HMGB1) release from macrophages (111, 113, 114), a potent
proinflammatory cytokine, and inhibits P-selectin-mediated
macrophage adhesion (115).

More work needs to be done to define and understand the
effects of heparanase inhibitors on cells of the immune system.
Heparanase inhibitors have been used as anti-inflammatory
agents, and have been shown to impair lymphocyte trafficking
(116, 117) and leukocyte function (46, 47, 61, 118). It is
possible that in some tumor settings, heparanase inhibitors may
inhibit leukocyte function, and consequently tip the balance
away from tumor clearance and in favor of tumor progression.
Heparanase inhibitors may be effective against tumors in which
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leukocyte-heparanase aids tumor progression, such as colorectal
and pancreatic carcinoma (52), but perhaps less effective against
other solid tumors which have little heparanase expression in the
tumor microenvironment. Choosing the appropriate anti-cancer
therapy will lie in finding the balance in particular cancer settings
between inhibiting pro-tumorigenic heparanase and promoting
its anti-tumorigenic effects.

CONCLUSIONS

This review describes how leukocyte-heparanase can be a double-
edged sword in tumor progression; it can enhance tumor
immune surveillance and tumor cell clearance, but also promote
tumor survival and growth.We also discuss the potential of using
heparanase in leukocyte therapies against tumors, and the effects
of heparanase inhibitors on tumor progression and immunity.

We are just beginning to understand the influence of
heparanase on a pro/anti-tumor immune response, and there are
still many questions to answer. How do the pro/anti-tumorigenic

effects of heparanase differ across different cancer types? Does
the tumorigenic effect of heparanase change during cancer
progression? And how does the expression or role of heparanase
change during treatment regimens? Answering these questions
may help guide the appropriate use of heparanase inhibitors,
and the use of heparanase-assisted therapies for the treatment
of cancer.
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