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Heart failure (HF) is the terminal stage of multifarious heart diseases and is responsible for
high hospitalization rates and mortality. Pathophysiological mechanisms of HF include
cardiac hypertrophy, remodeling and fibrosis resulting from cell death, inflammation and
oxidative stress. Heat shock proteins (HSPs) can ameliorate folding of proteins, maintain
protein structure and stability upon stress, protect the heart from cardiac dysfunction and
ameliorate apoptosis. Traditional Chinese medicine (TCM) regulates expression of HSPs
and has beneficial therapeutic effect in HF. In this review, we summarized the function of
HSPs in HF and the role of TCM in regulating expression of HSPs. Studying the regulation
of HSPs by TCM will provide novel ideas for the study of the mechanism and treatment
of HF.
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INTRODUCTION

Heart failure (HF) is a clinical syndrome that is characterized by impaired myocardial structure or
ventricular contraction/diastolic function and it causes insufficient cardiac output (Yancy et al.,
20132013). HF is a critical health problem that affects 26 million people worldwide, and an estimated
17–45% of patients with HF admitted to hospital die within 1 year of admission. Most patients die
within 5 years after admission (Ambrosy et al., 2014; Ponikowski et al., 2014). The recommended
pharmacological treatments for HF include angiotensin-converting enzyme inhibitors (ACEI),
angiotensin receptor blockers (ARB), angiotensin receptor neprilysin inhibitor (ARNI), If
channel inhibitor, β-adrenergic blockers and diuretics. Recommended treatments are able to
reduce hospitalizations, morbidity and mortality, but can have severe side effects like
angioedema, electrolyte depletion and fluid depletion (Yancy et al., 20172017). Therefore,
developing new therapeutic methods and medicine will be of great significance in the treatment
of HF.

Heat shock proteins (HSPs) are a group of conserved proteins with multiple biological activities
(Stetler et al., 2010). Previous studies reveal the vital role played by HSPs in HF (Ranek et al., 2018).
Therefore, it would be imperative to focus on regulation of HSPs in the treatment of HF. Traditional
Chinese Medicine (TCM) contains numerous chemical components and active ingredients, which
can regulate expression of HSPs in various diseases (Yang et al., 2017a; Kunde et al., 2017; Zhou et al.,
2018; Zhao et al., 2020). Furthermore, TCM can improve cardiac function and ameliorate damage
caused by HF (Wang et al., 2017a). Recent studies suggest that TCM can alter expression of HSPs in
HF (Wang et al., 2014; Zhang et al., 2018a; Nie et al., 20192019). Consequently, TCM may regulate
expression of HSPs to treat HF.We therefore summarized the role of HSPs in the pathogenesis of HF,
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effects of TCM in regulating HSPs and action of TCM targeting
HSPs in treating HF to enhance our understanding of the
mechanisms in HF, and provide novel ideas for its application
as a therapeutic strategy of HF.

HSPS FAMILY

HSPs widely occur in eukaryotic cells and can respond tomultiple
stimuli, high temperature, lack of nutrients, energy depletion,
aging, oxidative stress, acute and chronic inflammatory reactions,
viral and bacterial infections, ischemia, heavy metals and
excessive exercise (Kregel, 19852002). HSPs have a variety of
biological functions. The most crucial role is they act as molecular
chaperones which ensure correct folding of newly synthesized
proteins, facilitating refolding of misfolded proteins upon stress,
and maintaining protein structure and stability (Stetler et al.,
2010). HSPs is divided into the following six families according to
their relative molecular masses; HSP110, HSP90, HSP70, HSP60,
HSP40, and small HSPs (HSPs).

HSP110 is a high molecular weight HSP belonging to HSP70
superfamily. Its expression is also induced by stress, and it
cooperates with other HSPs to facilitate refolding of proteins
and cell survival (Zuo et al., 2016).

HSP90 is a highly conserved ATP-dependent molecular
chaperone that is involved in homeostasis and folding of
proteins (Wu et al., 2017). The HSP90 family has two
isoforms which occur in the cytoplasm: 1) stress-inducible
HSP90α and 2) a constitutively expressed HSP90β.

HSP70 family is by far the most widely studied group of HSPs
which generally occur in the cytoplasm and nucleus (Shrestha
and Young, 2016). HSP70 acts in an ATP-dependent manner,
and its family includes inducible HSP70, constitutively expressed
HSP70 and glucose-regulated protein 78 (GRP78). The
chaperone protein, HSP70 is principally dedicated to the
degradation of unstable and misfolded proteins and refolding
of proteins, preventing and dissolving protein complexes, and
stabilizing cellular homeostasis (Daugaard et al., 2007). GRP78
belongs to the HSP70 family and plays an essential role in
attenuating endoplasmic reticulum (ER) stress. ER is a cellular
organelle responsible for storage of calcium, protein synthesis and
folding, and lipid metabolism (Schwarz and Blower, 2016).
Ischemia, hypoxia, disruption of calcium homeostasis, ATP
depletion, and oxidative stress result in accumulation of
unfolded proteins in the ER subsequently causing endoplasmic
reticulum (ER) stress. This initiates unfolded protein response
(UPR) to maintain homeostasis in the ER (Minamino et al.,
2010). However, sustained UPR can cause cell death.
Consequently, expression of GRP78 is increased acting as a
quality control system.

HSP60 is a chaperone protein that forms a complex with the
chaperone protein, HSP10 to promote protein folding. HSP60
mainly exists in the mitochondria, but can also be distributed
within the cytoplasm, cell membrane and extracellular matrix
(Rizzo et al., 2011).

Small HSPs are a group of proteins which are small size
(12–42 kDa) and are present in the cytoplasm and nucleus.

Small HSPs include HSP20, HSP27, heme oxygenase-1 (HO-
1), and αB-crystallin (CRYAB). HSPs are involved in the
regulation of anti-oxidants, anti-apoptosis, muscle contraction
and cell motility, which can prevent irreversible aggregation of
damaged proteins in an ATP-independent manner and protect
cells under unfavorable conditions (Mymrikov et al., 2011).

FUNCTION OF HSPS IN HF

HSPs participate in a wide range of biological activities, can
contribute to intracellular homeostasis in cells and counteract
pathological factors. Previous studies have investigated changes
in the expression of HSPs in HF and the effects of overexpressed/
deficient HSPs in HF. In this review, we have summarized recent
advances in functions of HSPs in HF (Figure 1; Table 1).

HSP110
HSPA4 is a member of the HSP110 family that acts as a
nucleotide exchange factor for HSP70 chaperones. Expression
of HSPA4 was significantly elevated in hearts of mice subjected to
TAC (Mohamed et al., 2012). HSPA4 is essential in ensuring
proper folding of proteins and maintaining homeostasis in
cardiomyocytes. Deletion of HSPA4 accelerates cardiac
hypertrophy and fibrosis (Mohamed et al., 2012).

HSP90
Expression of HSP90 was decreased in animals treated with
fluoride (Panneerselvam et al., 2017), and no significant
change was observed after CAL in comparison with control
group (Tanonaka et al., 2001a), whereas expression of HSP90
increased in patients with DCM (Kapustian et al., 2013). DCM
alters distribution of HSP90 in cells: mitochondrial HSP90
content was increased in the left ventricular myocardium of
individuals with DCM (Kapustian et al., 2013). HSP90 can
have a detrimental effect on HF and cardiac hypertrophy.
Inhibiting functional expression of HSP90 can attenuate
cardiac hypertrophy and reduce collagen deposition. HSP90
facilitates regulation of Raf/Mek/ERK, transformation of
growth factor-β (TGF-β) and NF-κB pathways in cardiac
hypertrophy which are either induced by MI or pressure
overload (Lee et al., 2010; Datta et al., 2015; Tamura et al.,
2019). Mice with cardiac-specific overexpressed HSP75 (a
member of HSP90 family located in the mitochondria) may
attenuate hypertrophy and fibrosis in response to pressure
overload. Protection depends on the inhibitory effect of HSP75
in regulating MAPK and Akt pathways by reducing
phosphorylation of p38, JNK and Akt (Zhang et al., 2011).

HSP70
Previous studies have proven the protective function of HSP70s
in HF. Expression of HSP70 in HF varies with models. Levels of
intracellular HSP70 were elevated in patients with HF of
arrhythmogenic right ventricular cardiomyopathy (ARVC),
ischemic cardiomyopathy (ICM) and DCM (Wei et al., 2009).
Nonetheless, expression of HSP70 remained unchanged at 8 w
after CAL in rats in comparison with the control group,
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TABLE 1 | The functions of heat shock proteins in heart failure.

HSP family Function Model Protective/
adverse effects

of
HSPs in HF

Ref

HSP110 HSPA4 deletion leads to cardiac hypertrophy
and fibrosis

HSPA4 knockout mice that subjected to
transverse aortic constriction and volume
overload

protective Mohamed et al. (2012)

HSP90 Inhibition of HSP90 improves cardiac
function

Rats that subjected to CAL. adverse Tamura et al. (2019)

HSP90 can regulate cardiac hypertrophy and
collagen deposition

Mice overexpression of HSP75 (a member of
HSP90 family located in the mitochondria)

adverse Lee et al. (2010); Datta et al.
(2015); Tamura et al. (2019),
Zhang et al. (2011)

HSP90 facilitates regulation of Raf/Mek/ERK,
TGF-β and NF-κB pathways in cardiac
hypertrophy

Mice overexpression of HSP75 adverse Lee et al. (2010); Datta et al.
(2015); Tamura et al. (2019),
Zhang et al. (2011)

Interacts with TGFβ receptor-II and exerts
profibrotic effect

Rats that subjected to renal artery ligation;
Cardiac fibroblasts that subjected to Ang II and
Celastrol

adverse Datta et al. (2015)

Interacts with IKK complex, leads to NF-κB
activation

Ang II-induced cardiac myocytes adverse Lee et al. (2010)

HSP75 downregulates TAK, p38, JNK, and
Akt phosphorylation levels

Cardiac-specific HSP75 transgenic mice that
subjected to aortic banding

protective Zhang et al. (2011)

HSP70 Maintains cardiac contractility and calcium
handling

HSP70-konckout mice that subjected to I/R protective Kim et al. (2006)

Inhibits p53 activation and its downstream
bax, caspase-3 and caspase-9

DOX-induced HSP70 overexpress transgenic
mice

protective Naka K et al. (2014)

Does not improve cardiac function in failing
hearts with atrial fibrillation

Cardiac-specific MURC mice and MURC-
HSP70 mice

Undetermined Bernardo et al. (2015)

Both intracellular and extracellular HSP70
regulates myocardial hypertrophy, cardiac
dysfunction and cardiac fibrosis

Mice that subjected to abdominal aortic
constriction (AAC)

adverse Cai et al. (2010)

Extracellular HSP70 promotes cardiac
hypertrophy and fibrosis

Mice that subjected to abdominal aortic
constriction (AAC)

adverse Cai et al. (2010)

Extracellular HSP70 activates TLR2 signaling TLR2/4 knockout mice that subjected to
transverse aortic constriction (TAC). Mice
treated with anti-HSP70 antibody and DOX.

adverse Higashikuni et al. (2013), Liu
et al. (2019)

GRP78 attenuates ER stress and cell death Neonatal cardiomyocytes that subjected to
MG132, epoxomicin or tunicamycin

protective Fu et al. (2008)

HSP60 Inhibits caspase-3 activation, interacts with
bax and bcl-x

HSP60 and HSP10 overexpressed myocytes
that subjected to DOX.

protective Shan et al. (2003)

Interacts with bak and bax in cytoplasm Myocytes that subjected to antisense
phosphorothioate oligonucleotide to reduce
HSP60

protective Kirchhoff et al. (2002)

Maintains mitochondrial homeostasis
function

Cardiac-specific HSP60 knockout mice protective Fan et al. (2020)

Extracellular HSP60 activates TLR4 and
triggers inflammation

Cardiomyocytes of rats that subjected to LAD. adverse Liu et al. (2015)

small
HSPs—HSP27

Enhances the SOD activity, increases cell
survival

DOX-induced cardiac H9c2 cells and mouse
embryonic fibroblasts

protective Turakhia et al. (2007)

Improves cardiac function, suppresses
oxidative stress and decreases apoptosis

DOX-induced cardiac specific-overexpressed
HSP27 mice

protective Liu et al. (2007a)

Increases phosphorylation of Akt and GSK-
3β, decreases NF-κB activation

LPS-induced cardiac-specific expression of
Hsp27 and H9c2

protective You et al. (2009)

Preserves mitochondrial function Rats that subjected to coronary artery
ligation (CAL)

protective Marunouchi et al. (2013c),
(Marunouchi et al. (2014)

Interacts with SIRT1; increases p53
acetylation and bax when be downregulated

Transfected H9c2 cells that subjected to DOX. protective Zhang et al. (2016a)

High level HSP27 causes reductive stress
and develops cardiac dysfunction

HSP27 transgenic mice adverse Yu et al. (2015), Zhang et al.
(2010)

Binds to p53 and increases bax contents DOX-induced HSF-1 knockout mice protective Vedam et al. (2010)
(Continued on following page)
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accompanied by decreased cardiac contractility and function.
HSP70 was not induced even under heat stress (Tanonaka et al.,
2001b; Tanonaka et al., 2001c). Myocardial dysfunction of CAL-
induced HF was partially due to impaired induction of HSP70
and the mechanisms can be elucidated as follows: 1) total
expression of HSF-1 is enhanced in CAL-induced HF rat
model, whereas phosphorylated HSF-1 at ser303 is
accumulated in the cytoplasm and fails to translocate to the
nucleus thereby becoming incapable of inducing HSP70
(Marunouchi et al., 2013a), 2) interaction of HSP90 and

HSF-1 is enhanced in the cytoplasm hindering nuclear
translocation of HSF-1 (Marunouchi et al., 2013b), 3)
downregulated mitochondrial aldehyde dehydrogenase2
(ALDH2) and the upregulated 4-hydroxy-2-nonenol (4-HNE)
suppress expression of HSP70 in response to hypoxia, and this
process is independent of HSF-1 (Sun et al., 2014). HSP70 can
inhibit apoptosis and enhance tolerance to harmful stimuli to
protect the heart from further damage. HSP70 knockout mice are
more susceptible to ischemia/reperfusion (I/R) injury and more
likely to develop myocardial hypertrophy resulting in decreased

TABLE 1 | (Continued) The functions of heat shock proteins in heart failure.

HSP family Function Model Protective/
adverse effects

of
HSPs in HF

Ref

small
HSPs—HSP20

HSP20 reverse cardiac remodeling, fibrosis
and hypertrophy

ISO-induced cardiac-specific overexpressed
HSP20 mice and H9c2 cells

protective Fan et al. (2006)

Ameliorates cardiac dysfunction and
suppresses ASK1 activation

ISO-induced cardiac-specific overexpressed
HSP20 mice and H9c2 cells

protective Fan et al. (2006)

Inhibits NF-κB activation and caspase-3
activity

LPS-induced Ad. HSP20-AS-infected rat
cardiomyocytes

protective Wang et al. (2009)

Preserves Akt activation, improves cardiac
function

DOX-induced cardiac-specific overexpressed
HSP20 mice

protective Fan et al. (2008)

small
HSPs—HO-1

Reduces oxidative stress and preserves
mitochondrial function

Cardiac-specific HO-1 transgenic mice that
subjected to CAL.

protective Wang et al. (2010b)

Preserves cardiac function AAV-human HO-1 treated rats that subjected
to LAD.

protective Liu et al. (2007b)

Increases Akt activation and decreases
apoptosis

Ang II-induced myocytes that transfected with
human HO-1

protective Foo et al. (2006)

Exerts either protective or detrimental effect Cardiac-specific HO-1 mice that subjected to
either TAC or ISO.

Dual Allwood et al. (2014)

FIGURE 1 | The functions of heat shock proteins in HF. Small HSPs (HSP27, HSP20, HO-1), HSP60, HSP70, HSP90, and HSP110 are the most studied HSPs in
HF. They can affect apoptosis, inflammation, oxidative stress, fibrosis, contractile function, hypertrophy, ER stress and mitochondrial function by regulating multiple
pathways like Akt, caspase-3, ERK and various cellular functions like ER and mitochondria in the progression of HF, including modulating the systolic and diastolic
function and the stiffness and enlargement of ventricle.
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Ca2+ in the sarcoplasmic reticulum, damaged myocardial
contractility, activation of JNK, p38, Raf-1 and extracellular
regulated protein kinases (ERKs) pathways (Kim et al., 2006).
Overexpressed HSP70 can protect mice from HF induced by

DOX by inactivating p53 and its downstream bax, caspase-3 and
caspase-9 (Naka K et al., 2014). However, long-term
overexpression of HSP70 does not mitigate cardiac
dysfunction and reverses remodeling in failing hearts with

FIGURE 2 | The regulation of Traditional Chinese Medicine on heat shock proteins. Traditional Chinese medicine (TCM) can exert various biological functions like
anti-apoptosis, pro-apoptosis and inhibition of cell proliferation, anti-oxidant, anti-inflammatory response, modulation of ER stress and other properties via regulating
HSPs.

FIGURE 3 | Traditional Chinese Medicine that target heat shock proteins in myocardial injuries. Components like icariin, astragaloside IV, berberine and decoctions
like Baoyuan decoction and Buying Huanwu decoction can alleviate myocardial injury via anti-apoptosis, anti-oxidation, reducing ER stress and cardiac remodeling by
regulating the expression of HSPs.
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atrial fibrillation (AF). This indicates that HSP70 can be beneficial
during acute cardiac condition but it cannot adequately inhibit
chronic stimuli (Bernardo et al., 2015; Bernardo et al., 2016).

Intracellular HSP70 and extracellular HSP70 have differential
effects on pressure overload-induced HF. Inhibition of HSP70
expression (both intracellular and extracellular) through
inactivation of HSF-1 can promote myocardial hypertrophy
and cardiac dysfunction but ameliorate cardiac fibrosis;
functional inhibition of extracellular HSP70 using anti-HSP70
attenuates cardiac hypertrophy and fibrosis (Cai et al., 2010).
Results of a study indicated the protective effect of intracellular
HSP70 in cardiac function, and that the potential mechanism of
anti-HSP70 lies in its inhibitory effect on ERK and p38 pathway
through neutralization of extracellular HSP70. Concentration of
plasma HSP70 was increased in both TAC-induced pressure
overload and DOX-induced HF mice models. Extracellular
HSP70 activates TLR2/NF-κB pathway, triggers inflammation
and causes cardiac hypertrophy and fibrosis (Higashikuni et al.,
2013; Liu et al., 2019). Furthermore, anti-HSP70 antibodies
attenuate cardiac dysfunction induced by TAC or DOX by
blocking extracellular HSP70-mediated activation of TLR2
pathway (Higashikuni et al., 2013; Liu et al., 2019). Plasma
HSP70 was significantly increased in patients with HF and
ARVC, ICM or DCM (Genth-Zotz et al., 2004; Gombos et al.,
2008; Wei et al., 2009). Plasma HSP70 can be an independent
prognostic biomarker for early diagnosis and is suitable for
predicting long-term survival of patients with HF (Li et al.,
2013a; Jenei et al., 2013).

Stress-induced UPR in the endoplasmic reticulum plays
crucial role in the development and progression of HF
(Minamino et al., 2010). Increased expression levels of GRP78,
a marker of ER stress can also be an indicator of impaired UPR
during progression of HF (Okada et al., 2004; Dally et al., 2009;
Sawada et al., 2010). However, overexpressed GRP78 has a
protective function in myocytes (Fu et al., 2008).

HSP60
Unlike other HSPs, expression of HSP60 was elevated at 8w after
CAL, and elevated HSP60 expression was driven by loss in the
transcriptional activity of NF-κB for heat shock factor-1 (HSF-1)
and failure to induce HSP72 in CAL-induced HF (Tanonaka
et al., 2001a; Toga et al., 2007;Wang et al., 2010a). In addition, HF
and DCM induced mitochondrial translocation of HSP60
(Sidorik et al., 2005; Lin et al., 2007). The potential protective
mechanisms of HSP60 in the myocardium are involvement in
anti-apoptosis and preservation of mitochondrial function.
HSP60 can increase b-cell lymphoma-2 (bcl-2)/bcl-2-associated
x (bax) ratio, inhibit caspase-3 and poly (ADP-ribose) polymerase
(PARP) (Kirchhoff et al., 2002; Shan et al., 2003). HSP60 deletion
causes HF in mice and impairs mitochondrial protein
homeostasis (Fan et al., 2020). HSP60 transfers to the plasma
and plasma membrane in HF, and its surface translocation is
highly associated with apoptosis (Lin et al., 2007). Extracellular
HSP60 can trigger toll-like receptor4 (TLR4) pathway and induce
inflammatory response (Liu et al., 2015). The plasma HSP60 is
positively correlated with occurrence of adverse cardiac events in
both acute and chronic HF, implicating its potential of being a

biomarker of HF (Niizeki et al., 2008; Zhang et al., 2008; Bonanad
et al., 2013).

Small HSPs—HSP27
HSP27 (also called HSP25 in murine) is involved in numerous
cellular functions; it can counteract apoptosis and oxidative
stress, and inhibit cardiac remodeling and dysfunction of a
failing heart (Liu et al., 2007a; Turakhia et al., 2007; You et al.,
2009; Marunouchi et al., 2013c; Marunouchi et al., 2014).
Expression levels of HSP27 are increased in failing hearts, and
this is induced by doxorubicin (DOX) and fluoride (Vedam et al.,
2010; Panneerselvam et al., 2017) as a response to harmful
stimuli. HSP27 may possibly have a dual effect on HF; it not
only acts as an antioxidant to protect the heart from damages and
improve cardiac function (Liu et al., 2007a; Turakhia et al., 2007;
You et al., 2009), but also augments injury in a failing heart
(Vedam et al., 2010; Zhang et al., 2010; Yu et al., 2015).
Overexpression and phosphorylation of HSP27 counteracts the
cardiotoxic effect of DOX, mitigates cardiac dysfunction in
dilated cardiomyopathy (DCM) and congestive HF (Liu et al.,
2007a; Turakhia et al., 2007). Cardiac-specific overexpressed
HSP27 enhances phosphorylation of serine/threonine kinase
(Akt), attenuates activation of glycogen synthase kinase-3β
(GSK-3β) and nuclear factor kappa-B (NF-κB) to ameliorate
cardiac dysfunction induced by lipopolysaccharide (LPS) (You
et al., 2009). Expression and phosphorylation of HSP27 in the
cytoplasm and mitochondria increased at 2w after coronary
artery ligation (CAL) but decreased in the mitochondria at
8 w. This indicates that mitochondrial HSP27 and
phosphorylated HSP27 significantly contribute to
mitochondrial function in HF (Marunouchi et al., 2013c;
Marunouchi et al., 2014). The co-chaperones of HSP27 alter
its function. Downregulation of HSP27 hinders interaction of
silent information regulator1 (SIRT1)-p53 and endowed p53
acetylation, augmenting apoptosis in DOX-induced H9c2 cells
(Zhang et al., 2016a). However, inducible HSP27 can be pro-
apoptotic by binding to and transactivating p53 resulting in loss
of cardiomyocytes in HF (Vedam et al., 2010). Moderate level of
HSP27 is beneficial, whereas higher levels of HSP27 can induce
reductive stress and aggravate cardiomyopathy (Zhang et al.,
2010; Yu et al., 2015). Plasma HSP27 is regarded as a novel
candidate biomarker for diagnosing chronic HF and an
independent predictor of HF- related mortality (Liu et al.,
2016a; Traxler et al., 2017).

Other Small HSPs
Other HSPs are also involved in the pathophysiology of HF. HSP20
has anti-apoptotic and anti-oxidative effects in cardiomyocytes
which improve cardiac function. HSP20 can reverse cardiac
remodeling, fibrosis and hypertrophy induced by isoproterenol
(ISO) by inhibiting apoptosis signal regulating kinase1 (ASK1)/
Jun N-terminal kinase (JNK)/p38 pathways (Fan et al., 2006).
HSP20 decreases activity of NF-κB to attenuate apoptosis and
myocardial dysfunction induced by LPS (Wang et al., 2009).
HSP20 maintains activity of Akt signaling pathway and
suppresses oxidative stress to alleviate damage of DOX (Fan
et al., 2008). Expression of HO-1 was elevated at both protein
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TABLE 2 | The regulation of Traditional Chinese Medicine on heat shock proteins.

Property TCM or active ingredients Targets Model Ref

Anti-apoptosis Resveratrol ↑ HSP27 Ultraviolet B-treated HaCaT cells Zhou et al.
(2018)

Hydroxysafflor yellow A, extract of
Carthamus tinctorius L

↓ phosphorylation of HSP27 at
ser 78

Heat stress-induced neural stem cells Li et al. (2019a)

Zanthoxylum bungeanum Maxim ↑ HO-1 D-Galactose-Induced Aging Mice Zhao et al.
(2020)

Icariin ↑ HSP70 Calvaria osteoblasts of rats Qian et al.
(2018)

EGb761, extract of Ginkgo biloba
leaves

↑ HSP70 and GRP78 Aβ1-42 oligomer-induced SH-SY5Y cells Liu et al.
(2016b)

Ginsenosides Rg1 and Rb1
(extracts of panax notoginseng)

↑ HSP70 MCAO mice Zeng et al.
(2014)

Tanshinone IIA ↑ HSP70 Rats that subjected to spinal I/R injury Zhang et al.
(2012)

Gualou Guizhi decoction ↑ HSP70 Rats that subjected to MCAO. Nan et al.
(2020)

Qinghuobaiduyin formula ↑ HSP70 Rats that subjected to burn injury Zhu et al.
(2013)

Xiaotan Tongfu granule ↑ HSP70 Rats that subjected to cold-restraint model Yan et al.
(2013)

Pro-apoptosis and
inhibit cells
proliferation

Barbaloin, extract of Aloe
barnadensis Miller leaves

↓ HSP27 NSCLC cell line A549 Zhang et al.
(2017)

Lariciresinol ↓ HSP27 HepG2 cells Ma et al. (2016)
Bufalin ↓ HSP27 Pancreatic cancer cells Li et al. (2014)
Tanshinone IIA, extract of Salvia
miltiorrhiza

↑ phosphorylation of HSP27 at
ser 82

Human gastric cell line AGS Yin et al. (2020)

Curcumin, extract ofCurcuma longa ↓ HSP27 Human colon cancer HCT-8 and HCT-8/5-FU (5-
FU-resistant cell line)

He et al.
(2019a)

Synergistic application of triptolide
and celastrol

↓ HSP27, HSP70 and HSP90 Human cancer cell lines and human normal
embryonic kidney cell line HEK293T

Jiang et al.
(2015)

Homogeneous Schisandra
chinensis polysaccharide-0-1

↓ HSP90 HepG2 cells Chen et al.
(2016)

Patrinia heterophylla ↓ HSP90 Leukemia K562 cells Wei et al.
(2012)

Platycodin D, extract of
Platycodonis Radix

↓ Hsp90/Cdc37 interactions Human lung cancer cells Li et al. (2017)

Anti-oxidative
property

Zanthoxylum bungeanum Maxim ↑ HO-1 D-Galactose-Induced Aging Mice Zhao et al.
(2020)

Celastrol (extract of Tripterygium
wilfordii Hook)

↑ HO-1 and HSP70 Lipopolysaccharide (LPS)-induced rats Wang et al.
(2015a)

Protopanaxtriol ↑ HO-1 and HSP70 Rats that subjected to 3-nitropropionic acid Gao et al.
(2015)

Radix Bupleuri extract ↑ HO-1, ↓ HSP70 H2O2-induced Tilapia Jia et al. (2019)
Water extract and ethanol extract of
Cordyceps cicadae

↑ HO-1 Cisplatin-induced mouse Deng et al.
(2020)

Diethyl blechnic, a compound
isolated from Danshen

↑ HO-1 LPS-induced RAW264.7 cells He et al.
(2019b)

Anti-inflammation Celastrol, extract of Tripterygium
wilfordii Hook

↑ HO-1 and HSP70 LPS-induced rats Wang et al.
(2015a)

Radix Bupleuri extract ↑ HO-1, ↓ HSP70 H2O2-induced Tilapia Jia et al. (2019)
Momordica grosvenori ↑ HO-1 LPS-induced RAW264.7 cells Li et al. (2019b)
Liquiritigenin and liquiritin ↓ extracellular release of HSP60 Monocrotaline-induced Hepatic sinusoidal

obstruction syndrome in rats
Huang et al.
(2019)

Rhodiola rosea L. root and rhizome
extract

↑ HSP70 CRH-stimulated BV2 microglial cells Borgonetti et al.
(2020)

Xiaotan Tongfu granule ↑ HSP70 Rats that subjected to cold-restraint model Yan et al.
(2013)

Emodin-8-O-glucuronic acid,
isolated from qinghuobaiduyin
decoction

↑ HSP70 LPS-stimulated raw 264.7 cells Wang et al.
(2016)

(Continued on following page)
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and mRNA levels in the right-sided HF and post-myocardial
infarction (MI) HF (Raju et al., 1999; Wang et al., 2010b). HO-1
induces anti-oxidant and anti-apoptotic effects, and enhances
tolerance to HF. HO-1 can attenuate cardiac hypertrophy,
fibrosis, oxidative stress, mitochondrial MPT pore (mPTP)
opening and promote angiogenesis to preserve left ventricular
function and attenuates remodeling of post-MI HF (Liu et al.,
2007b; Wang et al., 2010b). Overexpressed HO-1 activates Akt
pathway to reduce apoptosis in myocytes which is induced by
angiotensin II (Ang II) (Foo et al., 2006). However, the protective
role of HO-1 seems to depend on the type of stimulation. HO-1
significantly attenuated ISO-induced cardiac dysfunction, fibrosis
and hypertrophy, but was detrimental in aging and transverse aortic
constriction (TAC) models (Allwood et al., 2014).

In conclusion, HSPs make significant contributions in HF and
most HSPs can exhibit protective effects whereas a few HSPs may
accelerate damage based on a specific condition. Functions of HSPs
seem to vary with their location: intracellular HSPs exhibit anti-
apoptotic, anti-inflammatory and anti-oxidative effects, whereas
extracellular HSPs are on the contrary. Moreover, HSPs modulate
several signaling pathways to initiate biological effects.
Consequently, regulation of the expression of HSPs is a
promising treatment for HF.

TCM REGULATES EXPRESSION OF HSPS

TCM can regulate expression of HSPs to initiate anti-apoptotic,
pro-apoptotic and anti-inflammatory responses. TCM can be
used as anti-oxidants and for modulating ER stress in cancer,
diseases of the nervous system, ischemic diseases, hepatopathy,
gastroenteropathy and uterine diseases. Regulatory effects of

TCM on HSPs are summarized and listed in Figure 2 and
Table 2.

Anti-Apoptosis
Resveratrol inhibits apoptosis in ultraviolet B-treated HaCaT cells,
and can upregulate HSP27 expression, increase bcl-2/bax ratio,
and inhibit caspase-3 activity and p65 expression (Zhou et al.,
2018). Hydroxysafflor yellow A is extracted from the flowers of
Carthamus tinctorius L.; it can inhibit phosphorylation of p38 and
HSP27 Ser78, and prevent apoptosis in heat stress-induced neural
stem cells (NSCs) (Li et al., 2019a). Icariin upregulates HSP70 and
serpin family F-1 (PEDF-1) to promote proliferation, calcium
deposition and inhibits osteoblast apoptosis (Qian et al., 2018).
Pretreatment with EGb761, an extract of Ginkgo biloba leaves can
increase levels of HSP70 and GRP78 to reduce apoptosis and
neurotoxicity in Aβ1-42 oligomer-induced SH-SY5Y cells (Liu
et al., 2016b). Ginsenosides Rg1 and Rb1, extracts of Panax
notoginseng increased HSP70 levels and restored the Akt/NF-
κB signaling pathway in the hippocampus, causing
neuroprotective effects against cerebral I/R (Zeng et al., 2014).
Tanshinone IIA can attenuate spinal I/R injury and promote
expression of HSP70 and bcl-2 (Zhang et al., 2012). Some
formula can also be anti-apoptotic. Gualou Guizhi decoction
increases expression of HSP70 in middle cerebral artery
occlusion (MCAO) rat model and alleviates neuronal apoptosis
by inhibiting PARP-1/apoptosis inducing factor (AIF) signaling
pathway (Nan et al., 2020). Qinghuobaiduyin formula (contains
extracts of Astragalus membranaceus, Lonicera japonica,
Scutellaria baicalenis Georgi, Ophiopogon japonicus and Rheum
rhabarbarum) increases HSP70 levels and induces anti-apoptotic
effects on the intestinal mucosa following burn injury (Zhu et al.,
2013). Granules of Xiaotan Tongfu promote cell proliferation,

TABLE 2 | (Continued) The regulation of Traditional Chinese Medicine on heat shock proteins.

Property TCM or active ingredients Targets Model Ref

Modulate ER stress Bitter melon ↓ GRP78 Human colonic adenocarcinoma LS174T cells Kunde et al.
(2017)

Gambogenic acid, a compound of
Garcinia hanburyi HOOK

↓ GRP78 Human nasopharyngeal carcinoma cells Su et al. (2019)

Glycyrrhetinic acid, a component of
glycyrrhiza

↑ GRP78 Human NSCLC cells Zhu et al.
(2015)

Rhein, a compound of rhubarb ↓ GRP78 MCF-7 and HepG2 cells Wang et al.
(2015b)

Xuefuzhuyu capsules ↓ GRP78 Rats subjected to hindlimb unload Zhang et al.
(2018b)

Bushen Zhuangjin decoction ↓ GRP78 Tunicamycin induced-articular chondrocytes Lin et al. (2015)

Others Licorice, extract of Glycyrrhiza
uralensis Fisch

↓ phosphorylation of HSP27,
alters the interaction of HSP27
and actin

Oxytocin-induced uterine contraction Yang et al.
(2017a)

Schisandrin B, isolated from a
Schisandra chinensis

↑ HSP27 and HSP70 D-galactosamine-induced liver injury in mice Gao et al.
(2016)

Combination use of ferulic acid,
ligustrazine and tetrahydropalmatine

↓ HSP90 Endometriosis rats Tang et al.
(2014)

Uncaria rhynchophylla ↓ HSP90 MPP+ -induced SHSY5Y cells and MPTP-induced
mice

Lan et al. (2018)

Zhenbao Pill ↑ HSP27 Rats that subjected to acute spinal cord injury He et al. (2018)
YangZheng XiaoJi formula ↓ phosphorylation of HSP27 Human gastric cancer, pancreatic cancer, ovarian

cancer), lung cancer, breast cancer, prostate
cancer, ovarian cancer cells

Owen et al.
(2016)
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inhibit gastric mucosal cell apoptosis and local inflammation, and
increase expression of HSP70 in rats with stress ulceration (Yan
et al., 2013).

Pro-Apoptosis and Inhibition of Cell
Proliferation
Induction of apoptosis in cancer cells is vital and certain types of
TCM can inactivate HSPs resulting in increased cell death.
Barbaloin which is extracted from leaves of Aloe barbadensis
Miller, inactivates p38 mitogen-activated protein kinase
(MAPK)/HSP27 pathway, induces apoptosis and inhibits
growth of human non-small cell lung cancer (NSCLC) cell
line, A549 (Zhang et al., 2017). Lariciresinol downregulates
HSP27 and initiates apoptosis in HepG2 cells (Ma et al.,
2016). Bufalin induces apoptosis by partially targeting HSP27,
eliminates anti-apoptotic effect of HSP27 in pancreatic cancer
cells, and induces caspase-3 and caspase-9 (Li et al., 2014).
Temporal treatment with tanshinone IIA (a diterpene quinone
extract from Salvia miltiorrhiza) increases phosphorylation of
HSP27 at Ser 82, and subsequent overexpression of HSP27 limits
tanshinone IIA-induced cell death in gastric cells (Yin et al.,
2020). Curcumin is a hydrophobic polyphenol derived from the
rhizomes of Curcuma longa, which can inhibit cell proliferation
and decrease expression of HSP27 at mRNA levels in human
colon cancer (HCT)-8 and HCT-8/5-FU (5-FU-resistant cell line)
(He et al., 2019a). Triptolide reduces protein levels of HSP27,
HSP70 and HSP90 whereas celastrol increases protein levels of
HSP27 and HSP70. Synergistic application of triptolide and
celastrol can mitigate effect of increased HSP27 and HSP70,
inhibit growth of cancer cells, and induce apoptosis in cancer
cells (Jiang et al., 2015). Homogeneous polysaccharide-0-1 (SCP-
0-1) from Schisandra chinensis induces mitochondrial apoptosis
in human hepatocellular liver carcinoma, a mechanism involved
in the downregulation of HSP90 and inhibition of Akt pathway
(Chen et al., 2016). Patrinia heterophylla, a member of
Valerianaceae family, inhibits expression of HSP90α to induce
apoptosis in leukemia K562 cells (Wei et al., 2012). Platycodin D
is a saponin isolated from Platycodonis radix, which can disrupt
Hsp90/Cdc37 co-chaperone interactions without affecting
ATPase activity of HSP90 and reduces Akt phosphorylation in
human lung cancer cells (Li et al., 2017).

Anti-Oxidant
Zanthoxylum bungeanumMaxim is a plant that can be used both
as a condiment and as medicine. Its extracts in water and volatile
oil can activate Akt/nuclear factor E2-related factor 2 (Nrf2)/HO-
1 pathway to prevent cognitive dysfunction and hippocampal
neuronal cell damage which are induced by D-galactose (Zhao
et al., 2020). Celastrol is extracted from the root of Tripterygium
wilfordii Hook, and it possesses anti-oxidant and anti-
inflammatory effects which can attenuate cardiac iNOS, tumor
necrosis factor-α (TNF-α), NF-κB and activity of caspase-3.
Celastrol can also increase contents of HO-1 and HSP70 in
the heart and aorta to prevent circulatory failure in sepsis
(Wang et al., 2015a). Protopanaxtriol increases expression of
HO-1 to induce anti-oxidative effect, relatively increases reactive

oxygen species (ROS) and HSP70, and alleviates behavior
disorders in 3-nitropropionic acid-induced rat model of
Huntington’s disease (Gao et al., 2015). Pretreatment with
extracts from Radix bupleuri can reverse increased HSP70 at
mRNA levels in liver injury induced by H2O2. The primary
beneficial effects of Radix bupleuri extracts of inhibiting
oxidative stress is due to its role in enhancing Nrf2/HO-1
signaling pathway and inhibiting TLRs/MyD88/NF-κB
signaling pathway (Jia et al., 2019). Water and t and ethanol
extracts of Cordyceps cicadae increase production of Nrf2, HO-1
and other antioxidants, inhibit activation of NF-κB, attenuates
oxidative stress and inflammation to prevent cisplatin-induced
kidney injury (Deng et al., 2020). Diethyl blechnic, a compound
isolated from Salvia miltiorrhiza, increases expression of Nrf2/
HO-1 and inhibits TLR4/MyD88 signaling pathway to ameliorate
oxidative stress in LPS-induced RAW264.7 cells (He et al.,
2019b).

Anti-Inflammatory Response
Momordica grosvenori attenuates phosphorylation of Akt1
pathway, increases expression of HO-1 to initiate anti-
inflammatory effect on LPS-induced RAW264.7 cells (Li et al.,
2019b). Liquiritigenin and liquiritin are two key compounds in
Glycyrrhizae radix et Rhizoma, which have the ability to alleviate
liver inflammatory injury. These compounds can prevent release
of HSP60 to the extracellular matrix in monocrotaline-induced
rat models and block exogenous HSP60-activated NF-κB in
RAW264.7 cells (Huang et al., 2019). Root and rhizome
extracts of Rhodiola rosea L. increase expression of HSP70 in
corticotropin releasing hormone (CRH)-stimulated BV2
microglial cells, counteract neuroinflammatory effect and
enhance cell survival (Borgonetti et al., 2020). Emodin-8-O-
glucuronic acid, a compound isolated from qinghuobaiduyin
decoction (TCM), increases expression of HSP70 to inhibit
inflammatory cytokines in the LPS-stimulated Raw 264.7 cells
(Wang et al., 2016).

Modulation of Endoplasmic Reticulum
Stress
The chaperone heat shock protein GRP78, together with C/-EBP
homologous protein (CHOP) are commonly used as markers of
endoplasmic reticulum (ER) stress. As an ER chaperone, GRP78
functions as a potent anti-apoptotic factor and confers drug
resistance, whereas CHOP is a key initiating factor of ER
stress-related cell death. Moreover, as a master of UPR in ER
of normal cells, GRP78 force the unfolded proteins to refold or
degrade by cellular degradation mechanisms. While under stress,
the overexpression of GRP78 on the cell membrane mediates the
vast amount of disordered proteins (Ibrahim et al., 2019).

Gambogenic acid is a component of Gamboge, a dry resin
obtained from Garcinia hanburyi HOOK. f. (Guttiferae), which
downregulates GRP78 and upregulates CHOP to induce
apoptosis in poorly differentiated human nasopharyngeal
carcinoma cells (Su et al., 2019). Glycyrrhetinic acid, a
bioactive component of glycyrrhiza, upregulates GRP78 and
CHOP to modulate ER stress and suppresses proliferation of
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human NSCLC cells (Zhu et al., 2015). Rhein, a compound of
rhubarb can adequately induce GRP78 and inhibit expression of
GRP78 induced by ER stress, disrupting the anti-apoptotic
pathway in cancer cells (Wang et al., 2015b). Bitter melon
ameliorates ER stress in epithelial cells of the colon thus
decreasing expression of GRP78 and CHOP (Kunde et al.,
2017). Capsules of Xuefu Zhuyu decrease expression of GRP78
and CHOP to alleviate ER stress. Capsules also attenuate loss of
muscle mass and cross-sectional areas induced by hindlimb
unloading (Zhang et al., 2018b). A decoction of Bushen
Zhuangjin downregulates expression of GRP78 and inhibits
ER stress to suppress tunicamycin induced-chondrocyte
apoptosis (Lin et al., 2015).

Other Properties
Licorice is derived from the roots and rhizomes of Glycyrrhiza
uralensis Fisch, and it reduces levels of phosphorylated HSP27 at
Ser15, altering interaction of HSP27 and actin, and it decreases
actin polymerization to enhance spasmolytic effects in oxytocin-
stimulated uterus (Yang et al., 2017a). Schisandrin B is isolated
from Schisandra chinensis and it attenuates D-galactosamine-
induced liver injury in mice. Hepatoprotective effect of
schisandrin B is partially attributed to increased levels of
HSP27 and HSP70 (Gao et al., 2016). Combined use of ferulic
acid, ligustrazine and tetrahydropalmatine enhance
downregulation of hypothalamus–pituitary–ovarian axis
(HPOA), estrogen response element (ERE) pathway and
expression of HSP90 in rat model of endometriosis (Tang
et al., 2014). Uncaria rhynchophylla inhibits expression of
HSP90 and activates Akt pathway to induce neuroprotective
effect in mouse model of Parkinson’s disease (Lan et al.,
2018). Zhenbao pills promote expression of HSP27, affect Treg
cell differentiation and ameliorate acute spinal cord injury in rats
(He et al., 2018). YangZheng XiaoJi formula is able to inhibit
phosphorylation of HSP27 and reduce migration of cancer cells
(Owen et al., 2016).

THERAPEUTIC FUNCTIONS OF TCM IN HF

TCM is widely distributed in nature and the various forms of
TCM include signal herbs, formula, decoctions, capsules and
others. Discovery and application of TCM is based on TCM
theories. TCM with particular therapeutic effects have been
applied in the treatment of HF in China for thousands of
years. A systematic review has revealed that Shengmai
(comprising herbs from Panax ginseng, Ophiopogon japonicus
and Schisandra chinensis) improves ejection fraction, cardiac
output, cardiac index, left ventricular end-systolic volume and
myocardial contractility (Zhou et al., 2014). Clinical studies have
mostly been conducted by the Chinese and recent studies come to
emphasize a uniform standard.

Studies have summarized the commonly prescribed herbs for
treating different HF syndromes are as follows: Radix aconiti
carmichaeli (Fuzi), Atractylodes (Baizhu), Cassia twig (Guizhi),
Dried ginger (Ganjiang), Radix pseudostellariae (Taizishen),
Radix astragali (Huangqi), Codonopsis pilosula (Dangshen),

Ginseng (Renshen), Panax notoginseng (Sanqi), Chinese
angelica (Danggui), Safflower (Honghua), Ligusticum wallichii
(Chuanxiong), Salvia miltiorrhiza (Danshen), Red paeony root
(Chishao), Peach kernel (Taoren), Hawthorn (Shanzha), Semen
lepidii (Tinglizi), Alisma (Xieze), Poria cocos (Fuling); Radix
Ophiopogonis (Maidong), Fructus schisandrae (Wuweizi), Radix
rehmanniae (Shengdi), Pinellia (Banxia), Trichosanthes Kirilowii
(Gualou), Dried tangerine or orange peel (Chenpi), and Scallions
white (Xiebai), etc (Wang et al., 2017a). Moreover, there are
several most commonly prescribed formulae that have been
proven effective clinically for the treatment of HF. These
decoctions prescribed by physicians include: Zhenwu tang,
Shengmai san, Baoyuan tang, Xuefuzhuyu tang,
Tinglidazaoxiefei tang, Danshen yin, and Taohongsiwu tang
etc. Meanwhile, several Chinese patent drugs have been
successfully produced by standardized procedures and are
widely used in health care industry. Drugs in the form of
capsules or pills include: Qishenyiqi dripping pill (QSYQ),
Fufang danshen dripping pill, Danqi pill (DQP), Qili qiangxin
capsule, and Shengmai capsule, etc. The produced injections
include: Shenmai injection, Shengmai injection, Huangqi
injection, Shenfu injection, and Danhong injection, etc (Jian,
2002). Among these patent medicine above, a randomized clinical
trial indicates QSYQ could promote left ventricular function,
increase exercise capacity and reduce re-admission rate (Hou
et al., 2013; Shang et al., 2013). A clinical trial of Qili qiangxin
capsule demonstrated superior performance in comparison to the
placebo in terms of NYHA functional classification, 6-min
walking distance, LVEF and quality of life (Li et al., 2013b).
The underlying mechanisms includes regulating TGF-β1 in the
progression of fibrosis (Zhang et al., 2016b), or modulates the
expressions of collagen I (Col I), collagen III (Col III), matrix
metalloproteinase-2 (MMP-2), and MMP-9, which are the main
contributors to extracellular matrix remodeling (Zhang et al.,
2015).

I/R injury inmyocardial infarction is an important inducing or
exacerbating factor for acute HF. The underlying mechanisms of
TCM in the treatment of HF include anti-fibrosis, anti-
inflammation, anti-oxidant, anti-apoptosis, pro-angiogenesis
effects and regulation of metabolism, thus directly mitigate the
I/R injury or indirectly reducing the adverse cardiac remodeling
which could induce or exacerbate HF. For example, dioscin
attenuates apoptosis and oxidative stress by regulating bcl-2/
bax ratio and SOD (). Shensong Yangxin and Sini Tang
(comprising Aconitum carmichaelii Debeaux, Cinnamomum
cassia (L.) J. Presl, Zingiber officinale Roscoe and Glycyrrhiza
uralensis Fisch. ex DC.) can enhance cardiac function by
suppressing cardiac collagen hyperplasia in rabbits and TGF-
β1 expression in MI-induced rat models (Liu et al., 2014; Dang
et al., 2016).

TCM is usually used together with western medicine to treat
HF. The multiple effects of TCM can counteract adverse effects of
pharmacological treatment, making it a potential therapeutic
option. However, application of TCM is limited because of
lack of large-scale multi-center clinical trials and experiments.
Therefore, further research on the mechanism of TCM in treating
HF is necessary to enhance its applicability worldwide.
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TCM Regulates Expression of HSPs in HF
Based on the functions of HSPs in HF, regulation of HSPs and the
protective effects of TCM in treating HF, it can be hypothesized
that TCM regulate HSPs to enhance therapeutic effects on HF. A
fraction of TCM has been proven to regulate HSPs in the
myocardium and protect the heart from fibrosis, remodeling
and hypertrophy. Functions of TCM which target HSPs in
myocardial injuries are summarized in Figure 3 and Table 3.

On the one side, TCM could directly relieve HF by regulating
HSPs and HSPs-mediated ER stress. Astragaloside IV is an active
component ofAstragalus membranaceus, can activate Nrf2/HO-1
pathway to protect the heart from hypertrophy and fibrosis (Nie
et al., 20192019). Shikonin is extracted from the red-root
gromwell, and it ameliorates ISO-induced myocardial damage,
and cardiac hypertrophy by inhibiting α-smooth muscle actin (α-
SMA)/collagen, TLR4/NF-κB signaling and ER stress pathways.
Suppression of ER stress is reflected as decreased expression of
GRP78 (Yang et al., 2017b). Tongxinluo is a TCM compound,
which can increase cardiac expression of HO-1 and activate
vascular endothelial growth factor (VEGF)/Akt/eNOS pathway
to prevent TAC-induced HF in mice (Wang et al., 2014).

On the other side, as I/R injury in myocardial infarction is an
important inducing or exacerbating factor for acute HF, TCM
could also indirectly prevent HF pathogenesis by decreasing I/R
injury and impeding fibrosis and cardiac remodeling inmyocardial
infarction. Berberine, a key active ingredient ofCoptis chinensis can
improve cardiac function and remodeling, reduce apoptosis and
ER stress (marked as decreased GRP78 and CHOP) in post-MI HF
(Liao et al., 2018). Icariin suppresses apoptosis by reversing
downregulation of HSP20 in H9c2 cells induced by hypoxia/
reoxygenation (H/R) injury (Ren et al., 2018). Araloside C, a
compound isolated from Aralia elata (Miq) Seem, icariin and

Panax quinquefolius L. can ameliorate apoptosis and ER stress,
reduce expression of GRP78 in myocytes induced by either I/R or
tunicamycin (Wang et al., 2012; Zhang et al., 2013; Wang et al.,
2017b; Du et al., 2018; Wang et al., 2018). In addition, Araloside C
can increase expression of HSP90 and alleviate apoptosis in either
H9c2withH/R injury or rat with I/R injury (Wang et al., 2017b; Du
et al., 2018). Myricitrin can also alleviate apoptosis and oxidative
stress induced by H/R injury by increasing expression of HSP90,
and the protective function of myricitrin partially depends on
phosphatidylinositol 3-kinase (PI3K)/Akt pathway (Wang et al.,
2017c). Buyang Huanwu decoction ameliorates I/R-induced
ventricular remodeling by upregulating expression of HSPB6
and peroxiredoxin-6 (PRDX6), and downregulating atrial
natriuretic factor (ANF) thereby decreasing activities of bax and
caspase-3 (Zhou et al., 2012). Baoyuan decoction is a TCM formula
composed of astragalus, ginseng, liquorice and cinnamon. It can
activate CRYAB to inhibit apoptosis and enhance cardiac function
in post-MI-induced HF (Zhang et al., 2018a). Scutellarin can
alleviate apoptosis in H/R induced human cardiac microvascular
endothelial cells (HCMECs) and increased expression of HSP60
might be a crucial factor for its protective effect (Shi et al.,
20152015). Emodin restores activity of peroxisome proliferators-
activated receptor-γ (PPAR-γ), eNOS phosphorylation, and
interaction of HSP90/eNOS to alleviate H/R-induced injury in
HAECs (Shou et al., 2018).

Other Cardio-Protective Effects of TCM by
Regulating HSPs
Besides HF and myocardial infarction, studies indicates TCM
could also prohibit pathological process of atherosclerosis by
regulating HSPs. Decoctions like Xiaoyaosan can inhibit

TABLE 3 | Traditional Chinese Medicine that target heat shock proteins in myocardial injuries.

Target TCM Function Model Ref

HSP20 Icariin Upregulates HSP20 and suppresses apoptosis H9C2 with H/R Ren et al. (2018)
HO-1 Astragaloside IV, a component

of Astragalus membranaceus
Activates Nrf2/HO-1 pathway, attenuates cardiac
hypertrophy, improves left ventricular function and
structure

Abdominal aortic constriction (AAC)-induced rats;
Ang II-induced cardiomyocyte

Nie et al. (20192019)

Tongxinluo Upregulates cardiac expression of HO-1 and
activates VEGF/Akt/eNOS pathway

TAC-induced HF in mice Wang et al. (2014)

CRYAB Baoyuan decoction Activates CRYAB to inhibit apoptosis, rescues
cardiac function

Rats that subjected to LAD; LPS-induced RAW
264.7 Cell; macrophage-conditioned media-
stimulated H9C2 cells

Zhang et al. (2018a)

GRP78 Berberine, Coptis chinensis Reduce apoptosis and ER stress, improve
cardiac function and remodeling

Rats that subjected to LAD. Liao et al. (2018)

Shikonin Inhibits α-SMA/collagen, TLR4/NF-κB signaling
and ER stress pathway, decreases GRP78

ISO-induced mice and H9C2 cells Yang et al. (2017b)

Aralia elata (Miq) Seem Alleviates ER stress-induced apoptosis, reduces
GRP78

Rats that subjected to LAD. Wang et al. (2018)

Panax quinquefolium Inhibits excessive ER stress and reduces GRP78 H/R-induced Ventricular cardiomyocytes Wang et al. (2012)
Araloside C Attenuates ER stress-dependent apoptotic

pathways
H/R-induced H9C2 cells. I/R-induced rat hearts Du et al. (2018),

Wang et al. (2017b)
HSP90 Araloside C Reduces apoptosis by increasing HSP90

expression
H/R-induced H9C2 cells. I/R-induced rat hearts Du et al. (2018),

Wang et al. (2017b)
Myricitrin Increases expression of HSP90 to alleviate

apoptosis and oxidative stress
H/R-induced H9C2 cells Wang et al. (2017c)

HSPB6 Buyang Huanwu decoction Increases the expression and phosphorylation of
HSPB6, ameliorates ventricular remodeling

Rats with left anterior descending (LAD) artery
ligation

Zhou et al. (2012)
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expression of HSP27, HSP60 and HSP90, and promote interaction
of HSP90 with glucocorticoid receptor (GR) and CD36 to prevent
development of atherosclerotic vulnerable plaque in mouse model of
atherosclerosis induced by high-fat food coupled with chronic stress
(Fu et al., 2019). Ligustrazine increases NO production in human
umbilical vein endothelial cells (HUVECs), downregulates
intercellular cell adhesion molecule-1 (ICAM-1) and HSP60
expression levels to induce immunomodulatory effect on TNF-α-
stimulated HUVECs (Wu et al., 2012). Baicalin increases HSP72
expression at both mRNA and protein levels in a cow’s mammary
epithelial cells (CMECs) and inactivates NF-κB pathway to alleviate
LPS-induced apoptosis (Yang et al., 2016). Catalpol, an extract of
Radix rehmannia, inhibits homocysteine-induced apoptosis in the
human aorta endothelial cells (HAECs) by suppressing Nox4/ROS/
NF-κB pathway and GRP78/dsRNA-activated protein kinase–like
endoplasmic reticulum kinase (PERK) pathway to alleviate ER stress
(Hu et al., 2019).

CONCLUSION AND PERSPECTIVES

HF describes the terminal stage of multifarious heart diseases
such as dilated cardiomyopathy, myocardial infarction and
myocarditis. Pathogenesis of HF is characterized by
cardiomyocyte apoptosis, oxidative stress, inflammation
and mitochondrial dysfunction, all of which cause
myocardial fibrosis and remodeling. HSPs have various
functions, including regulation of apoptosis, anti-oxidant
and anti-inflammation effects, and are capable of
ameliorating cardiac dysfunction in HF. However, not all
the HSPs are protective in HF, some HSPs exerts
detrimental effects in HF progressive. Even some HSPs can
modulate HF pathogenesis with dual effects. Thus, further
studies are still required to explore accurate functions of HSPs
in HF with different cell and molecular microenvironment.
New treatment methods that focuses on the regulation of

HSPs would have a promising application prospect in the
prevention and treatment of HF.

TCM has been applied in the treatment of HF in China for
thousands of years. Small sample clinical trials indicate the single
compounds extracted from herbal medicine and formula, as well
as patent medicine, are able to regulate HSPs in HF.
Consequently, TCM is a potential therapeutic medium for
modulating HSPs in HF and improving cardiac function.
Studies on effects of various forms of TCM have confirmed
the hypothesis that TCM alters expression of HSPs in HF but
such studies are few. Thus, the application of TCM is limited in
clinic because of lack of large-scale multi-center and randomized
clinical trials. Therefore, further investigations on the effects of
TCM in reliving HF by targeting HSPs are needed, and the
underlying mechanisms involved in TCM regulating HSPs are
also encouraged to be explored in future.
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GLOSSARY

4-HNE 4-hydroxy-2-nonenol

AAC Abdominal aortic constriction;

ACEI Angiotensin-converting enzyme inhibitors

AF Atrial fibrillation

AIF Apoptosis inducing factor

Akt Serine/threonine kinase

ALDH2 Aldehyde dehydrogenase 2

ANF Atrial natriuretic factor

Ang II Angiotensin II

ARB Angiotensin receptor blockers

ARNI Angiotensin receptor neprilysin inhibitor

ARVC Arrhythmogenic right ventricular cardiomyopathy

ASK1 Apoptosis signal regulating kinase1

bax Bcl-2-associated x

bcl-2 B-cell lymphoma-2

CAL Coronary artery ligation

CHOP C/EBP-homologous protein

CMECs Cow mammary epithelial cells

CRH Corticotropin releasing hormone

CRYAB αB-crystallin

DCM dilated cardiomyopathy

DOX Doxorubicin

ER Endoplasmic reticulum

ERE Estrogen response element

ERKs Extracellular regulated protein kinases

GR Glucocorticoid receptor

GRP78 Glucose regulated protein 78

GSK-3β Glycogen synthase kinase-3β

H/R Hypoxia/reoxygenation

HAECs Human aorta endothelial cells

HCMECs Human cardiac microvascular endothelial cells

HF Heart failure

HO-1 Heme oxygenase-1

HPOA Hypothalamus-pituitary–ovarian axis

HSF-1 Heat shock factor-1

HSPs Heat shock proteinsSmall heat shock proteins

HUVECs Human umbilical vein endothelial cells

I/R Ischemia/reperfusion

ICAM-1 Intercellular cell adhesion molecule-1

ICM Ischemic cardiomyopathy

ISO Isoproterenol

JNK Jun N-terminal kinase

LAD Left anterior descending

LPS Lipopolysaccharide

MAPK Mitogen-activated protein kinase

MCAO Middle cerebral artery occlusion

MI Myocardial infarction

mPTP Mitochondrial MPT pore

NF-κB Nuclear factor kappa-B

Nrf2 Nuclear factor E2-related factor2

NSCLC Non-small cell lung carcinoma

NSCs Neural stem cells

PARP Poly (ADP-ribose) polymerase

PEDF-1 Serpin family F-1

PERK dsRNA-activated protein kinase–like endoplasmic reticulum kinase

PI3K Phosphatidylinositol 3-kinase

PPAR-γ Peroxisome proliferators-activated receptor-γ

PRDX6 Peroxiredoxin 6

ROS Reactive oxygen species

SCP-0-1 Homogeneous Schisandra chinensis polysaccharide-0-1

HSPs Heat shock proteinsSmall heat shock proteins

SIRT1 Silent information regulator1

TAC Transverse aortic constriction

TCM Traditional Chinese Medicine

TGF-β Transforming growth factor-β

TLR4 Toll-like receptor 4

TNF-α Tumor necrosis factor-α

UPR Unfolded protein response

VEGF Vascular endothelial growth factor

α-SMA α-smooth muscle actin.
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