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Simple Summary: Immune checkpoint inhibitors (ICIs) aim to re-establish cancer immune control
by modulating immune-inhibitory signaling pathways. ICIs are currently approved in breast cancer
treatment act by blocking cell anti-PD-1/PD-L1 interactions. Nonetheless, as many mechanisms of
immune escape can underlie the insurgence of cancer cells, most patients progress to ICIs, even when
combined with chemotherapy. Multiplexed single-cell spatially resolved tissue analysis, by combining
monoclonal antibodies with different reporters, can obtain precise single-cell epitope colocalization
and thus allow to infer cellular functional states, while conserving their spatial coordinates. In this
review, we highlight the potential of this technology in the context of breast cancer by selecting
relevant prognostic and predictive markers through the lens of the cancer-immunity cycle.

Abstract: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid
tumors. In breast cancer (BC), immunotherapy is currently approved in combination with chemother-
apy, albeit only in triple-negative breast cancer. Unfortunately, most patients only derive limited
benefit from ICIs, progressing either upfront or after an initial response. Therapeutics must engage
with a heterogeneous network of complex stromal–cancer interactions that can fail at imposing cancer
immune control in multiple domains, such as in the genomic, epigenomic, transcriptomic, proteomic,
and metabolomic domains. To overcome these types of heterogeneous resistance phenotypes, several
combinatorial strategies are underway. Still, they can be predicted to be effective only in the sub-
groups of patients in which those specific resistance mechanisms are effectively in place. As single
biomarker predictive performances are necessarily suboptimal at capturing the complexity of this
articulate network, precision immune-oncology calls for multi-omics tumor microenvironment profil-
ing in order to identify unique predictive patterns and to proactively tailor combinatorial treatments.
Multiplexed single-cell spatially resolved tissue analysis, through precise epitope colocalization,
allows one to infer cellular functional states in view of their spatial organization. In this review,
we discuss—through the lens of the cancer-immunity cycle—selected, established, and emerging
markers that may be evaluated in multiplexed spatial protein panels to help identify prognostic and
predictive patterns in BC.

Keywords: breast cancer; multiplex; spatial profiling; TILs; spatial biology; cancer-immunity cycle

1. Introduction

Uncontrolled cancer cell growth is fueled by genetic mutations, epigenetic modifica-
tion, and post-transcriptional alterations that govern the acquisition of some key traits,
which are named the hallmarks of cancer [1]. The detection of similar phenotypes across
different tumors can be viewed as an expression of convergent evolution, joint solutions
toward common selective pressures. The activity of the immune system, the main guardian
against this opportunistic growth, can be rationalized through the framework of the cancer-
immunity cycle [2,3]. This cycle is a continuous succession of events that starts with the
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recognition of cancer antigens by the innate immune system, a necessary step in order
to prime T cells. This encounter can then be followed by a rapid expansion of T cells,
which, looking for their cognate antigen, infiltrate the tumor microenvironment (TME) in
order to find and destroy cancer cells. Unfortunately, each cancer cell can develop multiple
strategies to circumvent their killing thanks to an extensive and plastic rewiring of their
transcriptomic, genomic, proteomic, and metabolomic phenotypes [1,4], thus molding
the TME to their needs. In addition, cancer cells can dampen the immunogenicity of T
cells by restraining their antigenicity and limiting the release of danger signals that would
otherwise alarm and activate the immune system [5]. Finally, by remodulating the TME
arrangement and composition, cancer cells can induce an immune-suppressive functional
status in stromal cells and therefore limit T cell entry and killing proficiency. This complex
and varied ecosystem [6] of multi-layered interactions between cancer and stromal cells
is the cornerstone of the profound heterogeneity of cancer and also a significant driver of
their therapy resistance [7].

Breast cancer (BC) constitutes the most frequently diagnosed cancer and, among
women, the global leading cause of cancer death [8]. Despite the numerous advances in
treatment strategies, metastatic breast cancer (mBC) remains an incurable disease, irrespec-
tive of subtype, as most patients become resistant to even the most effective treatments [9].
In BC, immune checkpoint inhibitors (ICIs) are approved for triple-negative breast cancer
(TNBC), in the advanced setting (mTNBC) for PD-L1+ patients [10,11], and in the high-risk
early stage setting (eTNBC) as part of the neoadjuvant treatment [12]. Although a subgroup
of patients can achieve long-lasting responses, there is still much room for improvement
regarding the efficacy of this strategy, as most patients with mTNBC relapse either upfront
or after an initial response, while being exposed to potentially fatal immune-related adverse
events. In eTNBC, the addition of anti-PD1/PD-L1s improves the pathological complete
response (pCR) rates [13] and event-free survival (EFS [12,14]; still, one-third of patients
treated with pembrolizumab who do not achieve a pCR, and even a few patients who do
achieve a pCR, will relapse [12].

Precision immune-oncology calls for the dynamic identification of sensitivity and
resistance biomarkers in order to tailor treatments [15,16]. In fact, to reestablish cancer
control, therapies must engage with a complex set of adaptations, either already employed
or subsequently put in place [17], which can induce a failure in the immune system at
several steps [18]. Thus, the performance of a single biomarker is largely inadequate to
portray this complex network [15]. In fact, even though PD-L1 immunohistochemical
(IHC) expression provided predictive value over the benefit of ICIs in treating mTNBC, its
evaluation has been flawed by both analytical and conceptual limitations [19–21], as most
PD-L1 positive patients will still progress, while some PD-L1 negative patients can still
benefit from anti-PD-L1/PD-1 treatment. Further, paradoxically, PD-L1 expression evalu-
ated in the neoadjuvant setting is not predictive of pembrolizumab benefit, being instead
correlated with increased pCR rates both in CT/placebo and in the CT/pembrolizumab
arms [12]. Moreover, as both epithelial and stromal cells are involved in the perturbation
induced by the blockade of the PD-1/PD-L1 axis, and as both can express PD-L1 [22,23], it
is still unclear, to date, which cells are the main target of ICIs.

Appraising the density of tumor-infiltrating lymphocytes (TILs) has an established
prognostic role in BC, particularly within TNBC [24], and some studies suggest that in-
creased TILs may be associated with sensitivity to ICIs [14,23,25,26]. Tumor mutational
burden (TMB) and microsatellite instability status (MSI), which are indirect measures of
tumor antigenicity, have provided some encouraging data in predicting the benefit of ICIs
in treating eTNBC [14], mTNBC [26,27], and HER2+ BC [28]. However, the incidence of
TMB-high and MSI-high statuses in BC is low [29,30] and their evaluation can provide some
contradictory results [31,32]; this is because many subsequent steps in cancer recognition
and killing can be subverted, despite the production of tumoral neoantigens. Composite
bidimensional scores, by combining biological information from different biomarkers—
such as TILs subpopulations [33], PD-L1, TMB, and gene-expression profiling (GEP)—have
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already provided more informative data [34,35]. Still, many of those markers correlate with
each other [33,36] and only partially recapitulate the complexity of the immune contexture.

Spatially unresolved single-cell omics have allowed oncologists to define numerous
atlases of TME-cell states and to identify conserved cellular phenotypes across histolo-
gies [37–42]. Nevertheless, more data are adding up on the determinant role of the spatial
context as a critical determinant of each cell’s functional status [37,38,43,44]. In fact, cells,
by interacting with their surroundings [45], adapt to different niches and thus acquire
unique plastic phenotypic traits [46], which can influence prognosis [47] and treatment-
resistance [48].

Multiplexed single-cell spatially resolved tissue analysis has the potential of comput-
ing different cell states, densities, positions, interactions, and aggregation in multicellular
modules [49,50], and thus infer their functional status, while preserving TME architec-
ture [51,52]. Spatial protein profiling in cancer tissues is based on the recognition and
colocalization analyses of multiple epitopes, thereby achieved by combining antibodies
(Ab) conjugated with various reporters. Among spatially resolved tissue analysis methods,
this technique is, up to date, the one with the broadest diffusion as a research platform
in BC, as recently reviewed [53]. Various workflows are in development in order to over-
come the analytical [54] and computational [55] challenges related to the interpretation of
this high-throughput data. Nevertheless, multiplexed spatial profiling, when using just
2–3 parameters (such as in T cell activation states, density, and PD-1/PD-L1 proximity) has
already been demonstrated to be superior to the combined evaluation of TMB, PD-L1, HLA,
and GEP in predicting anti-PD-1/PD-L1 benefits in other cancer types [56]. However, even
though multiplex proteomic analyses can help us to study the coexpression of multiple
biomarkers in situ, not all the TME components can be easily detected by immunohisto-
chemistry, such as intracellular cytokines, which are indicative of the functional status
of the tumor milieu. Moreover, a more comprehensive characterization of the activation
or inhibition of specific molecular pathways is particularly informative about the tumor
immune response. For these reasons, techniques have recently emerged that combine tissue
biomarker characterizations and in situ transcriptional profiling, thus achieving a more
extensive overview of TME [53].

As multiple combinatorial treatments are constantly brought to the clinic [16], TME-
spatial profiling could constitute a context-dependent platform to integrate multi-omics
cell technologies [57,58], thus enhancing the identification of potential hallmarks of therapy
resistance, tailor treatments in advance, and maximizing responses, while also de-escalating
unnecessary treatments.

In this review, we discuss selected, established, and emerging markers that characterize
the tumor–immune interplay and that may be combined in multiplexed spatial protein
profiling in order to define prognostic and predictive patterns in BC. This is not intended
as a comprehensive overview including all the markers of interest, but rather a framework
to rationalize the potential applications of this technology, through the lens of the cancer-
immunity cycle.

2. Antigenicity
2.1. Tumor-Specific Antigens

The continuous acquisition of mutations, fueled by genomic instability, drives the
collection of enabling characteristics for cancer development and progression [59]. A
byproduct of this process is the formation of neoepitopes, called tumor-specific antigens
(TSAs), which can be targeted by the immune system to establish cancer control. This
potential of recognition constitutes the rationale for the clinical activity of ICIs in TMB-high
and MSI-H cancers. Nevertheless, in BC patients with low CD8+ T cells, the evaluation
of the TMB is not only uninformative of ICI benefit, but can even be associated with ICI-
resistance [32], as the antigens produced by cancer cells must be somehow presented to
the immune system to elicit an immune response. The complex system responsible for this
task, the antigen-presenting machinery (APM), is composed of many proteins, such as the
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transporters associated with antigen processing (TAP) 1–2 and major histocompatibility
complexes (MHCs) class I-II [60]. Cancer cells may escape antigen recognition by T cells
via alterations in the APM functionality [61], which can be achieved through mutations or
loss of function in key APM [62], as well as potentially reversible transcriptional [63–65],
epigenetic [66] or post-translational modulations [67,68]. Many of these deregulations
can converge into a reduced MHC-I (HLA-I) expression on the cancer cell surface. In
this regard, any single-omic biomarker profiling would necessarily underestimate the
degree of interference in APM efficiency [62] and therefore lose the opportunity to predict
therapy resistance and implement different approaches to revert them. For example, multi-
omic characterization of the TNBC mesenchymal subtype (as defined by gene expression),
despite being characterized by high TMB and genomic instability, shows low proteomic and
transcriptional expression of antigen-presenting genes, an absent infiltration of immune
cells, and low expression of PD-L1 [66]. In this TNBC subtype, MHC-I downregulation may
be mediated by a polycomb repressor complex 2 (PRC2)-mediated epigenetic silencing,
which could be reverted by a PRC2 inhibitor [66].

Those strategies are highly effective immune escape mechanisms, as cancers that down-
regulate HLA-I tend to have a lower density of TILs [47,69–71] and are generally more
resistant to ICIs [70]. Moreover, in patients with HER2+ BC, high HLA-I expression corre-
lates with an excellent disease-free survival (DFS), irrespective of a pCR [72]; consistently,
the coexistence of high-TILs and high-HLA-I expression is associated with an excellent
prognosis when compared with patients with high-TILs, but low-HLA-I expression [73].
Nevertheless, cancers with extensive immune infiltration can still downregulate HLA-I
expression as an acquired mechanism of resistance [74], further underlining the potential
role of including HLA-I expression in biomarker panels. Intriguingly, in HR+/HER2−
BC, high HLA-I expression is associated with higher pCR rates and infiltration of TILs but
worse DFS and OS [71].

As MHC class I act as a coinhibitory receptor for natural killer (NK)-mediated killing,
its loss exposes cells to NK-mediated killing. Consistently, patients with HER2+ BC with
HLA-low/normal expression, but a high infiltration of NK cells, have an excellent DFS [72].

MHC-II are complexes of antigen-presenting proteins (HLA-DR, DQ, and DP) gener-
ally expressed on the surface of APCs and whose spatial interaction with T cells is essential
in order to mount an effective immune response [75]. MHC class II expression in cancer
cells, in many cases a byproduct of effective IFN-gamma signaling [76], correlates with
a better prognosis [77] and is a positive predictive factor of ICI response in many cancer
types [76,78–81], including BC [82,83]. Intriguingly, as ER-signaling can directly impair
MHC class II expression [84], HLA-DR expression is infrequent in HR+/HER2− BC [71],
thus possibly contributing to the reduced immunogenicity of this BC subtype [85]. Despite
this, MHC-II expression is a potent positive predictor of benefit from an anti PD1/PD-L1 ad-
dition in the neoadjuvant setting in both TNBC [82,83] and HR+/HER2− BC patients [82].
Interestingly, this positive correlation could be related to the firm reliance of MHC-II +
cancer cells on immune checkpoint expression (such as PD-L1) as protection against CD8+
T cell-mediated killing [86]. This dependency on PD-L1 expression could result from the
direct interaction between CD4+ T cells and MHC-II [87], which can either reinforce the
cell-killing activity of CD8+ T cells that are already engaged by MHC-I or directly kill cancer
cells [88,89]. In fact, in TNBC, an MHC-II positive phenotype is associated with a high
infiltration of TILs [69,90,91], CD4+ T cells [86], and a higher expression of PD-L1 [82,92].
Interestingly, this sensitivity to ICI may be matched by a unique set of immune escape
mechanisms, such as a high infiltration of TILS expressing LAG-3+ and FCRL6+ that can
interfere with MHC-II antigen presentation, thus disrupting the interaction with CD4+ T
cells. As such, this acquired escape process may limit the predictive value of MHC II as a
single biomarker in this context [86].

Combined bulk profiling of proteins that are related to MHC I and II, such as TAP1
and HLA-DQ, can identify BC patients with a higher level of TILs and intratumoral CD8+ T
cells and therefore achieve a better prognosis [77]. Intriguingly, this prognostic information
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can also be obtained by the combined IHC expression of TAP1 and HLA-DQA1, which can
help identify patients with excellent survival rates [77].

Key sensitivity and resistance phenotypes related to MHC-I and MHC-II expression
are summarized in Figure 1a.
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Figure 1. Multiplexed spatial protein profiling of breast cancer antigenicity. (a) Major histocompati-
bility complex (MHC) class I and II cancer (upper quadrants) and TME profiling (lower quadrant).
MHC class I alterations that can be accurately characterized by proteomic profiling are underlined
in green. In the blue box: Cancer cells with effective MHC-I signaling can be killed by effector cells
or survive despite MHC-I expression if, for example, T cells are present but exhausted, or the TME
lacks T cell infiltration, as is the case in an immune-excluded TME. In the green box: Cancer cells
lacking MHC class I can be killed by NK cells, but can escape immune-killing in a TME that lacks NK
cell infiltration or employs countermeasures that limit NK cell-mediated killing, such as in HLA-E
expression. In the yellow box: MHC class II cancer cells can be killed by the coordinated effort
of both CD8+ T cells and CD4+ T cells. Nonetheless, an infiltration of LAG3+ and FCRL6+ TILs
can interfere with MHC class II signaling and induce cancer cell survival. (b,c) Cancer profiling of
tumor-associated antigens’ (TAAs) quantitative expression and spatial distribution. Figure 1b shows
relevant TAAs that can be characterized through multiplexed in situ protein profiling and some
therapeutics that could benefit from TAA-profiling; Figure 1c underlines the ability of multiplexed
spatial protein profiling in evaluating the combined quantitative expression of different TAAs (e.g.,
TAA-1 and TAA-2) in the same sample and their spatial heterogeneity. Created with BioRender.com.

2.2. Tumor-Associated Antigens

Tumor-associated antigens (TAA) are otherwise normal proteins, such as oncofetal
antigens or surface proteins (some example surface proteins are HER2, HER3, or TROP2),
which are more frequently expressed by cancer cells.

Proteomic profiling of key TAA has already proven informative, as it has formed the
basis for the development of monoclonal antibodies (mAb), which are centered around
the interference with some critical membrane oncogenic signaling, such as HER2-receptor
overexpression. Still, preclinical and clinical data on novel therapeutics, such as antibody
drug-conjugates (ADCs), bispecific antibodies, oncolytic viruses (OVs), and CAR-Ts, sug-
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gest how their efficacy can be in some cases untied from their target biological role and
instead bound just to the presence of TAA. This is particularly relevant in the context of
ADCs [93]. For example, trastuzumab deruxtecan (TDxD) has recently demonstrated a
clinically relevant benefit in BC patients with HER2-low receptor status [94], defined as
HER2 1+, 2+/ISH negative, and even as HER2-null [95]. Additionally, exploratory analysis
from pivotal trials underlines how the activity of some ADCs can be influenced not only
by the degree of TAAs expression in cancer cells [95–98], but also by their pattern of ex-
pression [95,99] and spatial distribution [95]. Regarding the latter, spatial TME profiling of
patients treated with TDxD has recently uncovered how responders were characterized by
a higher clustering of cancer cells expressing HER2 when compared to non-responders—in
which HER2-expressing cells tended to be located at a great distance from each other [95].
Therefore, multiplexed in situ spatial protein profiling, by providing a higher level of
accuracy and reproducibility in evaluating protein-expression levels [100], could be the
optimal assay to define a proper cutoff for sensibility for those drugs whose efficacy is
dependent on TAA -expression levels and spatial distribution, as depicted in Figure 1b,c.

Notably, the activity of therapeutics can be further modulated by the immune and
stromal compartment. For example, the Fc region of mAbs and ADCs constitutes an in-
terface with the immune system which can induce an antibody-dependent cell-mediated
cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-
dependent cytotoxicity (CDC), all of which can contribute to their efficacy [101,102].
Therefore, in view of the many combinatorial immune strategies currently in develop-
ment [103,104], multiplexed spatial profiling could allow studies to further evaluate the
immune–stromal contributions to drug efficacy.

3. Adjuvanticity

Immature APCs do not express the costimulatory receptors necessary to effectively
prime T cells, which is a redundancy selected in order to protect the organism from
unwanted immune activations [105]. The adjuvanticity of TME resides into the capacity to
adequately permit APCs maturation, which is a process named licensing [106].

The immune system acknowledges the presence of cancer cells thanks to the recog-
nition of warning signals associated with cell stress and death, which is more specifically
named damage-associate molecular patterns (DAMPs) [107]. As cancer treatments act as
cell stressors, their damage can converge in various forms of regulated cell death associated
with DAMPs release. This process, labeled immunogenic-cell death (ICD) [106,108], can
stimulate immune-cell recruitment and activation, and could contribute to the clinical
activity of many therapeutics [5,109,110]. DAMPs can be expressed directly on the cell
surface, such as phosphatidylserine (PS) and Calreticulin (CRT), or released inside the
cell cytoplasm, such as free DNA/RNA, or in the TME, such as ATP, ANXA1, or HMGB1.
The presence of mechanisms counterbalancing DAMPs’ immune-stimulating properties
or the alteration of DAMPs’ sensing machinery, such as a reduced expression of cytosolic
DNA-sensing stimulator of interferon genes (STING) [111], are powerful immune escape
strategies [112], some of which can be characterized by proteomic profiling, as underlined
in Figure 2.

As an example, PS-induced CDC can be limited by the expression of CD55 in cancer
cells [113]. Furthermore, in BC, CD55 expression can negatively influence the complement-
mediated expansion of ICOSL+ B cells, whose enrichment is associated with improved
prognosis and higher responses to CT [114]. DAMPs expressed on the surface of can-
cer cells are a potent stimulus for their phagocytosis via tumor-associated macrophages
(TAMs). However, TAMs’ final decision in phagocyting a cell is based on the balance
between stimulating signals and negative phagocytic checkpoints, such as in CD47 [115].
The overexpression of CD47 can limit DAMPs-induced phagocytosis and, in BC, is asso-
ciated with the development of resistance to CT [116], anti-HER2 treatments [117], and
RT [118]. Consistently, only the combined IHC evaluation of TAMs’ density, and CD47
expression and not their single-marker assessment, can provide a significant prognostic
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value in BC [119]. ATP is a powerful immune-stimulating DAMP whose concentrations are
finely regulated through the action of two ectonucleotidases, CD39, which hydrolyzes ATP
in AMP, and CD73, which then converts AMP into adenosine, which is a strong immune-
suppressive signal. Protein and mRNA expression of CD73 in BC correlates with worse
prognoses [116,120–122] and treatment-resistance [123–125]. In TNBC, high CD73 expres-
sion levels on epithelial cells, evaluated through multiplexed immunofluorescence (mIF), is
associated with reduced DFS and overall survival (OS) and lower sTILs infiltration [122];
furthermore, high CD73 expression can stratify patients with a poor prognosis despite hav-
ing high TILs [122]. Interestingly, pre-clinical data suggest that chemo-resistant TNBC cells
can acquire a highly immune-elusive CD73, CD47, and PD-L1 positive phenotype [116];
this further underlines the need for a multi-parametric biomarker assessment.
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Figure 2. Multiplexed spatial protein profiling of adjuvanticity patterns in breast cancer. On the right
side: The positive effects of regulated cell death and damage-associated molecular patterns (DAMPs)
released in recruiting and activating dendritic cells (DCs), and tumor-associated macrophages (TAMs),
in the tumor microenvironment (TME); further, phosphatidylserine (PS)-mediated activation of the
complement system can stimulate B cells expression of ICOSL. On the left side: Some of the critical
mechanisms of DAMP interference: (1) DAMPs’ downregulation: ATP concentrations can be limited
by CD39/CD73 coordinated action, which can limit both ATP-induced adjuvanticity and favor
adenosine-mediated immunosuppression; (2) indirect immune suppression: an indirect mechanism
can interact with an effective priming, such as FOXP3+ regulatory T cell (Treg) differentiation,
which can interfere with mature DC migration to tumor-draining lymph nodes (see DCs section);
(3) alteration of DAMPs sensing machinery: STING downregulation can impair the sensing of free
cytoplasmic DNA and thus STING-mediated IFN-γ signaling; (4) indirect interferences with DAMP
signaling: CD47 expression can inhibit TAMs-mediated phagocytosis and therefore indirectly limit
calreticulin and phosphatidylserine (PS) activity. CD55 can interfere with PS-induced complement-
dependent cytotoxicity (CDC) and CDC-induced B cell differentiation into ICOSL+ B cells. Created
with BioRender.com.
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4. Patterns of Resistance to Innate Immunity
4.1. Dendritic Cells

Upon antigen encounter and activation by DAMP signaling or CD40L, mature den-
dritic cells (DCs) express costimulatory molecules and migrate to tumor-draining lymph
nodes (TDLN), where they engage with T cells to amplify the immune response [126]. In
the TME, DCs, by secreting chemokines, can stimulate both the recruitment of T cells and
sustain their viability [127].

DCs are classically divided into cDC1, which are responsible for CD8+ T cells priming,
as well as cDC2, which engage mainly with CD4+ T cells [128]. Cancer cells can interfere in
many ways with DCs’ functions as they can limit their intratumoral recruitment activation
or the expression of costimulatory receptors [129], or even induce the upregulation of
inhibitory proteins such as PD-L1 [130]. cDC1s intratumoral recruitment can be enhanced
by NK cells, which can stimulate both cDC1 ingress into the TME and then also cluster
together to foster their reciprocal functions [129,131]. BC cells can inhibit this relationship
by impairing both NK cells’ survival, activity, and downregulating cDC1 expression in
chemokine receptors [129]. Cancer cells can further alter DCs’ trafficking to TDLN by
stimulating Treg-mediated targeting of migrating CCR7+ cDC1 [132] or by inducing an
immune-suppressive local microenvironment in TDLNs [133]. This is a highly effective
immune escape mechanism, as the cDC1 continuous migration to TDLN is critical in
maintaining a pool of stable and proliferative stem-like TCF1+ CD8+ T cells [133,134]. This
pool of stem-like cells is the precursor of effector intratumoral CD8+ T cells, which can then
migrate to the tumor bed to replenish the effector T cells compartment [133]. In a preclinical
work, PD-L1 expression on DCs negatively modulated the expansion of TCF1+ stem-like
T cells, which is a process that was reverted by blocking PD-L1 on DCs with subsequent
stem-like T-cells migration inside the tumor bed [135]. DCs could bypass this blockade by
mediating a local antigen via the priming of T cells, which can be amplified in the context
of tertiary-lymphoid structures (TLS); further, DCs also contribute to the scaffold of mature
and functional TLS and can further enhance, in the form of follicular DCs (FDC), tumoral
antigen encounters in the germinal center (GC) of functional TLS [136,137]. Additionally, in
cancer nests, DCs can engage with exhausted T cells to boost their effector function when
exposed to ICIs [138].

As DCs constitute a heterogeneous population of cells involved in spatially complex
dynamics in the TME, with an emerging role in regulating ICI response [139], integrating multi-
omics profiling with critical DC physical cell–cell interactions, niches, and migratory pathways
across the TME will be essential to unveil the mechanisms that can limit DCs’ functionality.

4.2. Macrophages

Contextually, macrophages can exert both immune-suppressive and stimulating func-
tions [140]. TAMs, the most abundant immune cells in BC [22], are classically identified
by surface expression in CD68 and thus subdivided into M2-TAMs, CD163+, CD204+,
or CD206 +. TAMs are generally believed to be associated with an immune-suppressive
function [141,142], as are M1-TAMs, CD80+ or CD86+, which can also retain some anti-
tumoral and phagocytic properties. Nevertheless, although TAMs’ presence is generally
considered detrimental [143], employing this M1-M2 dichotomized view has yielded many
contradictory results. In TNBC, PD-L1 expression in TAMs is associated with a better
OS [144] and a higher pCR rate to neoadjuvant ICI [83,145]; further, in HR+/HER2− BC
patients, a higher intratumoral density of CD163+ M2-TAMs is enriched in responders
that have NACT combined with ICI and hormone therapy (HT) [23]. The tumoral beds
of patients with inflammatory BC (IBC) and achieving pCR tend to be more infiltrated
by CD163+ TAMs; however, in non-responders, TAMs can be found closer to cancer cells
and CD8+ T cells [146]. Conversely, high interactions between T cells and TAMs correlates
with a pCR to neoadjuvant talazoparib in BRCA-mutated BC [147]. At the same time,
in brain metastasis from HR+/HER2− BC and TNBC, a high density of intra-tumoral
CD163+ M2-polarized microglia/TAMs is associated with a worse prognosis [148]. These
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observations highlight how, despite this M1-M2 over-simplification, TAMs’ phenotype
represents a continuum of plastic states [39] that are characterized by a high degree of
transcriptional diversity [149,150] and context dependency [151,152]. In fact, TAMs’ spatial
and temporal adaptions vary according to tissue territories. For example, FOLR2+ TAMs,
the main macrophage population in normal breast tissue, tend to be located mainly in the
tumoral stroma, where they can colocalize with T cells [153] in perivascular niches [154].
Although they exhibit a lower phagocytic activity than other TAM subsets, their presence
in BC is associated with a more potent T cell activation [153] and better prognosis [154].
On the contrary, TREM2+ TAMs can be found near BC cells, inside tumor nests or at the
invasive margin [154], where they are associated with a dysfunctional T cell compartment
and with a worse overall prognosis [153].

Additionally, the biological significance of TAMs’ interactions can vary according
to the metastatic sites. For example, CD163+ M2-polarized microglia/macrophage inter-
action with T cells in brain metastasis is associated with a better outcome in TNBC and
HR+/HER2− BC [148]. On the contrary, in a preclinical hepatic metastasis model, TAMs
could induce a FAS-L-mediated direct killing of nearby CD8+ T cells [155], an interaction
which is associated with a significant systemic depletion of T cells that correlate with re-
duced intratumoral cancer-cell specific T cells clones and T cell diversity—as was evaluated
in a cohort that included patients with BC [155]. Remarkably, this mechanism could explain
the worse prognosis that is demonstrated by patients with liver metastasis that is treated
with ICIs [155,156].

Considering this intricate web of interactions, going beyond the M1–M2 oversimplistic
characterization and achieving an extensive, spatially resolved single-cell TAMs profiling,
coupled with cell profiling of other immune components such as CD8+ T cells, will be
needed in order to untangle TAMs’ functional status and its influence on immune responses.

4.3. NK Cells

NK cells are a heterogeneous population of innate immune cells, commonly identified
by the surface expression of CD56 and specialized in the direct killing of cells. In general,
NK cells’ infiltration is associated with a favorable clinical outcome in many cancers [157],
including TNBC-operated patients who did not receive CT [158]. In addition, NK cells’
density is associated with a higher CT sensitivity in IBC [146].

NK cells’ killing capacity is tightly regulated by the interaction with both its activating,
such as NKG2D [159], and inhibitory molecules that have costimulating receptors (such as
MHC class I chain-related polypeptide (MICA) A and B) and co-inhibitory receptors [160]
expressed on the surface of cancer cells. As MHC I is one of the main coinhibitory receptors,
cancer cells with MHC-I loss are rapidly recognized by NK cells [161] and, accordingly,
show a higher presence of NK cells coupled with low infiltration of CD8+ T cells [78].
Consequently, cancer cells must acquire specific mechanisms to counterbalance NK cells
killing, by reducing the engagement with stimulating receptors, as induced by membrane-
shedding of MICA/B [162], or by stimulating the expression of inhibitory molecules.
Regarding the latter, HLA-G expression, a nonclassical MHC-I molecule frequently ex-
pressed by BC [163], can engage the KIR2DL4 receptor expressed in NK cells; this can limit
trastuzumab-mediated killing in HER2+ BC, while also inducing the expression of PD-1 on
the NK cells’ surface, which is a resistance mechanism that could render them susceptible
to PD-L1-mediated immune suppression [149].

In addition, NK cells exert an essential role in metastasis control, which can be influ-
enced by the metastatic site [164,165]; for example, in liver metastasis, NK cells can sustain
the dormancy of BC cells through IFN signaling [166], an antitumoral mechanism that can
unfortunately be reverted by hepatic-stellate cells through the secretion of CXCL12 [166].

Cancer cells employ different mechanisms to limit CD8+ T cell-mediated killing which
can inherently contribute to ICI-resistance. As those strategies could render cancer cells
sensible to NK cells mediating killing, fostering NK cells in combinatorial treatments
could represent a promising strategy to overcome some of the resistance nodes to ICIs.
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Accordingly, this will likely require a deeper profiling of the resistance mechanisms to
NK cells mediated killing and the largely unexplored spatial determinants of their cancer-
control.

5. Homing and Migration
5.1. Endothelial Cells

Through the secretion of VEGF, cancer cells can shape the phenotype of endothelial
cells (EC) to achieve an optimal influx of oxygen and nutrients. However, this can induce
a rearrangement of the tumor vasculature, which can exert profound immune suppression,
limit the efficacy of treatments, and therefore constitutes the rationale for antiangiogenetic
therapy [167]. Furthermore, as T cells homing in tissues requires their passage through EC,
tumor-associated EC (TA-ECs) can therefore facilitate or constrain T cell entry [168]. As an
example, they can exclude CD8+ T cells by inducing the endothelial expression of endothelin
B [169] or they can directly kill them through FAS-L expression, therefore allowing, at the
same time, the passage of T regulatory cells (Treg) [170]. Indeed, TA-ECs can stimulate
immune recruitment through the expression of various adhesion molecules, the secretion of
chemokines such as CXCL10, or even act as APCs by expressing MHC II [171].

Furthermore, TA-ECs can form highly specialized structures for the facilitating of T cell
entry. These structures are more specifically named high endothelial venules (HEVs) [172]
and are commonly found inside lymph nodes [173] and TLS [136]. HEVs’ density is a
favorable prognostic factor and is predictive of a pCR in eTNBC [174]. Recently, Asrir et al.
combined mIF, transcriptomic analysis, flow cytometry, and in vivo microscopy in order
to identify a subset of TA-HEVs as the privileged portal for TCF1+ stem-like T cells [175].
They also showed that the maturation of these structures is positively regulated by ICI and
is associated with ICIs’ benefit in melanoma patients [175].

5.2. Cancer-Associated Fibroblasts

Cancer-associated fibroblasts (CAF) constitute a highly heterogeneous population of
cells that are characterized by complex transcriptional and proteomic phenotypes; they
also possess many context-dependent functional states [40,176]. In fact, through single-cell
profiling, four subtypes of CAFs were isolated in BC (S1 to S4), which can be defined by
combining six markers (i.e., FAP, CD29, αSMA, FSP1, PDGFRβ, and CAV1) [177]. In BC,
CAF-S4 presence correlates with worse OS and the development of liver metastasis [178];
further, CAF-S1 is associated with reduced infiltration of CD8+ cells, a significant attraction
of FOXP3+ CD4+ regulatory T cells [177,179], and the expression of CD73, which could
mediate its immunosuppressive activity [179]. Interestingly, metastatic lymph nodes are
enriched with CAF-S1 and S4, where they can promote the onset of distant metastasis
through CXCL12-mediated chemo-attraction and EMT-induction of CXCR4-expressing
cancer cells [178].

As T cells can move around the TME just by slipping through the matrix interfib-
rillar spaces [180], via modulating ECM stiffness and composition, CAFs can limit TILs
ingress [180], activity [181], and spatial distribution [22,47,48,182]. In patients with BC,
aSMA+ CAFs can promote, through CXCR4 signaling, a fibrotic and desmoplastic TME
that is characterized by a reduced T cell infiltration. Additionally, it is a phenotype that
can be both reverted with CXCR4-inhibitors and can synergize with ICIs in BC mouse
models [183]. Cancer cells can further support this ECM-mediated exclusion by expressing
discoidin domain receptor 1 (DDR1), a collagen receptor that can promote fiber alignment
and reinforce the ECM barrier [184]. In a mouse model of TNBC, high expression of DDR1
at the tumor border correlated with low intratumoral T cells, while an anti-DDR1 mAb
could intensify the immune infiltration [184]. Even when T cells are allowed to reach the
tumor bed, CAF can still limit, in many ways, their effector function [182]. This is because
they can physically shield cancer cells [185] and form niches with quiescent cancer cells
(QCCs) and dysfunctional dendritic cells, which are reservoirs that can limit T cell-mediated
killing and undermine immunotherapy efficacy [186]. Furthermore, they can act as a decoy
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through the expression of MHC class I, engage with CD8 T cells, and then induce their
killing through FAS-L mediated signaling [187].

Notably, CAFs’ biological function seems to be influenced by the BC subtype. For
example, in ER+ BC, a high number of fibroblasts are only associated with a worse prognosis
when not accompanied by high TILs, whereas patients with high TILs, and high spatial
interactions, with fibroblasts have an excellent prognosis [188].

Coupling multiplexed CAFs’ phenotype characterization—through surface biomarkers,
spatial distribution, and their contribution to ECM modulation with techniques capable of cap-
turing TME’s stiffness, solid stress, and fluid pressures—will be instrumental in understanding
the physical traits of cancer [189] and their influence on immune resistance mechanisms.

5.3. Chemokines

The regulation of cell behavior, spatial localization, and different interactions that
are mediated by chemokine and cytokine signaling [190] can be explored by the use
of spatially resolved transcriptomic profiling of selected chemokines, coupled with a
proteomic characterization of their specific receptors or key cell target. For example,
in melanoma, by combining spatial proteomics and transcriptomics, authors identified
tumor patches that are characterized by a high transcriptomic expression of CXCL9 and
CXCL10 (which are key chemokines for T cell recruiting) coupled with dysfunctional T cells
expressing CXCL13 [191], a chemokine which can regulate B and T cell interactions in their
assembly into TLS. Similar patches were identified in BC, where stem-like TCF1+ T cells
were in close contact with CXCL10-producing cells [192]. Interestingly, by employing three-
dimensional spatial imaging of TDLN, Duckworth et al. recently evaluated the importance
of chemokine-induced positioning of a T cell as a determinant of their interaction with
cDC1 and their differentiation in stem-like TCF1+ T cells [193].

6. Recognition and Killing
6.1. TILs Density

TILs include CD8+ T cells, CD4+ T cells, and B cells infiltrating the tumoral stroma
and bed. A more comprehensive overview of the prognostic and predictive significance
of TILs’ bulk density evaluation in BC goes beyond the scope of this review, for which we
direct the reader to [24].

Briefly, the evaluation of TILs’ stromal density (sTILs) on hematoxylin and eosin (H&E)
has demonstrated both prognostic and predictive potential in BC [24,194]. In addition, it
has also achieved level 1b evidence for clinical validity in eTNBC [24,195,196] where sTILs
density can identify subgroups of patients with an excellent outcome [195,197–201]. In
residual diseases, both the presence of high sTILs [33,202] and an increase from baseline
values are associated with improved DFS [202]. Strikingly, sTILs’ density is associated with
improved pCR rates in relation to CT-ICI, but not to the ICI-specific response rate [203–207].
Nevertheless, in the GeparNuevo trial, an increase in intratumoral TILs’ density after a
window-of-opportunity phase—where durvalumab was administered two weeks before
nab-Paclitaxel—was predictive of a pCR exclusively in the ICI-arm [203]. In mTNBC,
although sTILs’ overall density tends to be generally lower [208], it is still associated with
an improved survival [206] and response to ICIs [109,209–212].

In HER2+ eBC, sTILs are predictive of trastuzumab [198,213] and pertuzumab [214]
adjuvant benefits and are enriched in patients achieving a pCR [215–217]; counterintuitively,
high sTILs in residual-disease post-NACT have been associated with lower DFS [218]. In the
advanced setting, sTILs are predictive of OS from first-line therapy with the administration
of pertuzumab, trastuzumab, and docetaxel [219] and from exploratory analysis from trials
that combine anti-HER2 treatments with ICIs [220].

In HR+/HER2−BC, the significance of TILs’ presence still needs to be untangled [85].
In the neoadjuvant setting, greater TILs are associated with a higher rate of pCR, but a
shorter OS and DFS, particularly in patients with suboptimal responses to CT [195]. In the
adjuvant setting, on the other hand, patients with higher TILs have a worse prognosis when
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receiving hormone therapy alone, but better DFS when receiving CT [188,221]. Nonetheless,
patients with a high infiltration of sTILs show higher rates of the pCR when treated with a
combination of hormone therapy and ICIs after an induction phase with CT [23].

Notably, TILs’ measurement on H&E does not take into account the different type of
lymphocytes that constitute the immune infiltrate, their phenotype, functional status, and
spatial distribution. Moreover, the killing performance of TILs can be limited by many
mechanisms besides a tout court limitation of their overall infiltration of the tumor bed.
This highly relevant data, which could explain some of the contradictory results obtained
by TILs’ bulk density evaluation, could be instead provided by multiplexed TME profiling
of TILs’ subpopulations and their spatial organization.

6.2. Spatial Organization

The distribution of TILs within the TME show some recurrent patterns that are con-
served across histologies. Tumor infiltration can be classified as hot or immune-inflamed
(IN). That is, hot when the tumoral bed is highly infiltrated by immune cells; immune
suppressed (IS) if the immune infiltration is present but limited by an immunosuppressive
TME; immune-excluded (IE) when TILs are present at the tumor border, but are somehow
not allowed to step into the tumor bed; and cold or immune-desert (ID) when there is an
absent immune infiltration [222]. Multiplex spatial profiling has allowed to extensively
explore those arrangements in the context of BC [22,37,43,47,48], and has been recently
reviewed in [223]. Intriguingly, TILs’ density and spatial organization can also be evaluated
by employing deep-learning techniques from H&E-stained tissues [224,225], thus limiting
some of the analytical challenges related to TILs’ IHC evaluation [226].

The IN phenotype is typically associated with a better prognosis, a better response to
CT and ICI [47,48] and it is characterized by MHC I expression, as well as high infiltration
of CD8+ T cells with high TCR clonality and immune-effector properties [47], coupled with
high infiltration of DCs in close contact with CD8 cells [48]. On the other hand, CD8+ T
cells’ presence tends to be counterbalanced by higher FOXP3+ CD4+ T cells (Treg) and
a higher expression of suppressive immune checkpoints such as LAG3, TIM-3, TIGIT,
PD-L1, and CTLA-4 [47], which are potentially actionable with ICIs. The IE and ID patterns
are generally associated with a worse prognosis [47,48] and ICI resistance [48]. The IE
phenotype tends to be associated with ECM remodeling, fibrotic signaling, and collagen
10 deposition [48], which can all physically limit T cells. Further, this is coupled with
TGFb-mediated suppression of T cell migration [227] and metabolic competition for critical
resources [47,48]. ID cancers are frequently characterized by lower MHC I expression
and high levels of B7-H4 [47] as well as an immunosuppressive protein that is mutually
exclusive with PD-L1 [47,228].

Another example of the importance of assessing the spatial organization in the BC
TME, is provided by the pattern evaluation of the expression of immune-regulatory pro-
teins. Indeed, inflamed TME phenotypes tend to be associated with PD-L1 expression in
tumor cells and PD-1 expression in CD8+ T cells [22,47]. Contrastingly, compartmentalized
or excluded TMEs that are present with PD-1 positivity on CD4+ T cells and higher stromal
expression of PD-L1 and IDO1 [22,47]—a phenotype which, when co-expressed on APCs,
is associated with an enhanced sensibility to atezolizumab in eTNBC [83]. In this regard,
spatial imaging—by providing spatially resolved, quantitative, and operator-independent
high-throughput data [75,229,230]—could overcome some limitations related to the ana-
lytical challenges as well as the temporal and spatial heterogeneity dynamics of immune
regulator assessment [21,31]. Indeed, multiplexed spatial imaging of immune-regulatory
expression and interactions has already provided insightful prognostic information in
BC [75,92,148].

Table 1 reestablishes key immune biomarker data from clinical trials that explored
ICIs’ role in BC.
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Table 1. Main clinical trials exploring ICIs’ role in BC.

BC Subtype Trial Phase Treatment Arms
Primary
Efficacy

Endpoints
Biomarker Analysis N. Patients

(Trial Status) References

TNBC

Early
TNBC

Keynote-
173 I/II

Pembro + T +/− Cb >
AC− > S− > pembro adj

x 1yr
pCR

PT: sTILs and PD-L1
associated with pCR and

ORR; and
OT: sTILs associated with

pCR and ORR

60 (completed) [205]

I-SPY 2 II Pembro/placebo + T > AC pCR
MHC II expression

predictive of response
to ICI

64 (completed) [82]

NeoPACT II Pembro + CbD pCR High sTILs are associated
with higher pCR

117 (active,
not recruiting) [204]

Keynote-
522 III

Pembro/Placebo + CbT >
AC > CH > pembro adj

x 1yr
pCR + EFS PD-L1 CPS not predictive

of response to ICI
602

(completed [12]

NeoTRIPaPDL1III
Atezo/placebo + NabP +

Cb > S >
anthracycline-based CT

EFS

pCR rate + 10% to atezo in
immune-rich TME (PDL1
IC+, high/intermediate

sTILs/iTILs)
High expression of GATA3

and CD20, epithelial of
HLA-DR and Ki67 in both
epithelial and TME favors

atezo arm;
and PD-L1 + IDO+ APC
and CD56 NE cells were
associated with a higher
response rate to atezo.

278 (active,
not recruiting) [83,206]

Impassion031 III Atezo/placebo +
NabT > AC pCR

PT: PD-L1 IC+ and TC+,
sTILs, iTILs, and TLS

linked to improved pCR in
placebo arm; and

OT: numerical increase in
iTILs and PD-L1 in immune
cells in patients with pCR

in ICI arm; further,
ICI can promote close

contact of TILs to
tumor nests

455 (active,
not recruiting) [207]

NCT02489448 I/II Durva + nab-
paclitaxel > AC pCR

IHC: sTILs associated with
higher pCR, sTILs, and
PD-L1 do not predict

benefit in multivariate
analysis; MHC II

expression predicts
response to ICI; and

mIF: PD-L1 TC+, IC+ in the
stroma and PD-L1+ CD68+

TAM compartment each
associated with higher

rates of pCR

69 (completed) [82,231]

GeparNuevo II Durva/placebo +
nab-paclitaxel pCR

PT: High sTILs associated
with higher pCR in

both arms;
OT: iTILs increase = higher

pCR in ICI arm; and
RD: high TILs associated

low rates of relapse in
both arms

174
(completed) [203,232–234]

Metastatic
TNBC

Keynote-
119 III Pembro/CT OS

sTILs associated with ICI
benefit, in particular in
previously untreated

mTNBC; and
PD-L1 TC+ adds predictive

power to pembro arm

622
(completed) [26,209,210]

Keynote-
086 II Pembro DCR, ORR,

DoR, PFS, OS

sTILs, PD-L1 CPS+, and
CD8 IHC evaluation

correlate with the response
rate to pembro

254
(completed) [211]

Keynote-
355 III Pembro/placebo +

NabP/T/Gem + Cb PFS, OS PD-L1 CPS ≥ 10 correlates
with improved PFS and OS

847 (active,
not recruiting) [11]
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Table 1. Cont.

BC Subtype Trial Phase Treatment Arms
Primary
Efficacy

Endpoints
Biomarker Analysis N. Patients

(Trial Status) References

ENHANCE-
I Ib/II Pembro + eribulin ORR PD-L1 numerically

higher ORR
167

(completed) [235]

Impassion130 III Atezo/placebo + NabT PFS, OS

PD-L1 IC+ predictive of ICI
benefit; and

PD-L1 IC+ and either
PD-L1 TC+ or 10% or more

sTILs had the highest
clinical activity with A + nP

902
(completed) [10,212]

Impassion131 III Atezo/placebo + T PFS PD-L1 IC+ does not
predict benefit

651 (active,
not recruiting) [28,236]

TONIC II Nivo/nivo after induction
with CT or RT PFS PD-L1 IC+, sTILs, and

CD8+ higher in responders
67 (active, not

recruiting) [109]

HER2

Early HER2+
BC

Impassion-
050 III

Atezo/placebo + THP +
AC > S > atezo/placebo

+ HP
pCR PD-L1 IC+ does not

predict pCR
454 (active,

not recruiting) [237]

LABC/Metastatic
HER2+ BC NCT02605915 Ib

In LABC: Atezo + HP or
atezo/T-DM1 > THP + Cb

In mBC: Atezo with
trastuzumab/pertuzumab,

atezo with T-DM1, or
atezo with THP

ORR + DoR

PT: No correlation between
response and PD-L1 IC+,

TC+, sTILs, and CD8+
T-cell density in central
tumor area and immune

phenotypes (ID, IE, or IN);
OT: increase in PD-L1 IC+

in both cohorts, no
association with response;

and LABC: significant
increase in CD8+ T cells

density in the central
tumoral area, but not

correlated with pCR, no
increase in mBC

76 (completed) [238]

Metastatic
HER2+ BC

PANACEA I/II Pembro + trastuzumab ORR

sTILs correlate with ORR
and disease control, as well
as higher clinical benefit in

PD-L1 + CPS

58 (completed) [239]

KATE-2 II Atezo/placebo + T-DM1 PFS

High CD8 T cells at
invasive margins favor
atezo arm in subgroup

analysis

1486
(completed) [220]

HR+

Early
HR+ BC

GIADA II Nivo + exemestane +
triptorelin + EC pCR

PT: in pCR patients higher
in sTILs, iTILs (iCD4, I

CD8, and iCD4+ FOXP3+),
and TAMs (intratumoral);

TAMs: stromal CD68+
CD163+ TAMs)

immune-checkpoints
co-expression: PD-1+ on T
cells, and PD-L1 on TAMs

(CD68+ PD-L1+ and CD68+
CD163+ PD-L1) higher in

pCR;
OT after CT: sTILs increase,

increase in CD8+ T cells,
decrease in FOXP3+ CD4+
T cells, and CD68+ CD163+

TAMs; and
OT after Nivo: increase in
intratumoral and stromal

CD8+, CD8+ Granzyme+ T
cells and stromal CD4+
Granzyme B+ T cells.

43 (completed) [23]

ISPY-2 II Pembro/placebo + T > AC pCR MHC II expression predicts
response to ICI 89 (completed) [82]

Metastatic
HR+ BC

Keynote-
028 Ib Pembro ORR sTILs do not predict PFS 83 (completed) [240]

KELLY II Pembro + eribulin CBR PD-L1 does not predict
benefit 44 (completed) [241]

NCT03051659 II Pembro + eribulin PFS sTILs and PD-L1 do not
predict benefit

88 (active, not
recruiting) [242]

NCT03044730 II Pembro + capecitabine PFS sTILs and PD-L1 do not
predict benefit 14 (completed) [243]
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Table 1. Cont.

labeltabref:cancers-1937919-t001

BC Subtype Trial Phase Treatment Arms
Primary
Efficacy

Endpoints
Biomarker Analysis N. Patients

(Trial Status) References

NIMBUS II Pembro + nivo in TMB-H ORR sTILs and PD-L1 do not
predict benefit

20 (active, not
recruiting) [28]

PT = pre-treatment; OT = on-treatment; mBC: metastatic BC; LABC: locally advanced BC; S = surgery,
CT = chemotherapy; ICI = immune checkpoint inhibitors; Atezo = atezolizumab; Durva = durva;
Pembro = pembrolizumab; D = docetaxel; E = epirubicin; C = cyclophosphamide; T = taxane; Gem = gemcitabine;
H = trastuzumab; P = pertuzumab; Cb = carboplatin; ORR = objective response rate; PFS = progression-free
survival; OS = overall survival; pCR = pathological complete response; EFS = event-free survival; DoR = duration
of response; DCR = disease control rate; CBR = clinical benefit rate; IC = immune cells; TC = tumoral cells;
CPS = combined positive score; ID = immune desert; IE = immune excluded; and IN = immune inflamed.

6.3. T Cell States and Trajectories
6.3.1. CD8+ T Cells

CD8+ T cells are the main effectors of immune-mediated tumor killing. Consistently,
their density is a favorable prognostic factor in patients with TNBC [33,244]; further, HER2+
BC is associated with higher response rates to both NACT and, in the metastatic setting, to
ICIs [208]. Contrarily, in HR+/HER2− BC, high intratumoral CD8+ T cells are associated
with a resistance to tamoxifen in the adjuvant setting [245], but with higher response rates
in patients treated with ICI-CT when combined with hormone therapy [23], which results
in better OS in regard to brain lesions [148].

The interpretation of this data will require a more comprehensive approach [85] as
CD8+ T cell density does not account for their complex functional status. In fact, CD8+
T cells constitute a continuum of phenotypes, commonly crystallized in some critical cell
states across a trajectory of cell dysfunction [246,247]. CD8+ TFC1+ stem-like T cells are T
cell precursors with a conserved effector function and proliferative capacity. Chronic anti-
gen exposure turns these cells into a state of exhaustion [248]. In addition, these exhausted
T cells (Tex) are in fact characterized by reduced proliferative and effector capacities, and
by the expression of many immune suppressive checkpoints on their membrane, such as in
PD-1, CD39, TIGIT, TIM-3, and LAG-3 [246,247].

Stem-like T cells’ plasticity [249], proliferation ability [250], and correlation with ICI-
response [251,252] make them the ideal target of ICIs. Spatial profiling has shed light
on the importance of their spatial positioning as a key determinant in their predictive
role [253]. Stem-like T cells can, in fact, colocalize with MHC-II+ APCs in perivascular
immune niches when located in the tumoral stroma [252] and with the appearance of
secondary lymphatic tissue [138,253–255]. In kidney cancer patients, a lower number of
those niches was associated with resistance to ICI [255]. Moreover, patients who relapsed
showed a reduction from the baseline in the quantity of these aggregates [255]. Meanwhile,
ICI exposure can increase the abundance of these T cells; further, APC aggregates and their
relative richness correlate with ICI response [254].

Tissue resident-memory T cells (Trm) are a population of T cells that express a tissue-
residency transcriptional program [256,257], as well as surface receptors CD39 [258,259]
and CD103 [260] with cytotoxic and effector functions and the expression of inhibitory
receptors, including PD-1 [261]. Their density correlates with the response to ICI in multiple
cancer types [262], regardless of the number of TILs and total CD8s [263,264]. In addition,
Trm population expands in responders to ICIs [265]. In HER2−/HR− BC, intratumoral
Trm are associated with a better OS and DFS [41,266–268], even more than the total CD8+ T
cell count [41,268], particularly when in close contact with cancer islands [266].

Notably, a large subset of lymphocytes infiltrating the TME are not cancer-specific [259]
and are therefore labeled bystanders. As they are not antigen experienced, they do not
express exhaustion markers, such as CD39 [259]. Indeed, their biological role is still not
completely understood, as they constitute a heterogenous population that can express some
state of activation and therefore could take part in the immune response [269]. In fact, a
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bulk evaluation of the biological role of CD8+ T cells could be undermined by including
those potentially inactive T cells, as mIF quantification of CD8+ CD39+ subpopulations
over total CD8+ cells in NSCLC can stratify responders over non-responders, regardless of
total CD8+ value [270].

6.3.2. CD4+ T Cells

CD4+ T cells are a plastic population of cells generally divided into two groups,
non-Treg CD4+ T cells and Tregs.

Non-Treg CD4+ T cells constitute a heterogeneous population of cells [271], which can
have an indirect role in cancer control by collaborating with CD8 T cells in order to enhance
their killing proficiency [272]. They can also directly recognize cancer cells expressing
MHC II [87] or even kill cancer cells [89], as in HR+/HER2− BC patients treated with an
induction phase of CT followed by nivolumab + HT, stromal Granzyme+ CD4+ T cells were
enriched, as a result, after exposure to ICI [23]. Interestingly, as for CD8+ T cells, antigen
exposure can induce a state of exhaustion in CD4+ T cells, which is characterized by the
expression of PD-1, CTLA-4, and CD39 [272]. The latter could be employed to isolate the
subgroup of bystander CD39- CD4+ T cells, which are non-specific for cancer antigens and
whose biological role is still unexplored [272].

Tregs, identified by the expression of their master transcriptional regulator FOPX3+ [273],
are cells that are specialized in limiting immune damage across all tissues. Tregs can exert
this function by secreting immunosuppressive cytokines, such as IL-10 and TGF-b, by stim-
ulating the production of adenosine with CD39 [274], and expressing suppressive immune
checkpoints, such as CTLA-4 and PD-1 [275,276]. Despite this outstanding immunosup-
pressive arsenal, the evaluation of Treg has provided some conflicting results, particularly
in BC [194,277]. In HR+ BC, FOXP3+ CD4+ TILs were associated with higher grade can-
cers, lymph nodes involvement, and worse prognoses; however, it must be noted that this
prognostic significance was lost in multivariate analysis [278]. In TNBC, higher numbers of
FOXP3+ T cells correlate with better survival [279], but this was irrelevant in patients with
low CD8+ TILs [280], as CD8+ T cell presence is generally counterbalanced by a high Treg
infiltrate [47]. Nonetheless, in patients with eTNBC, the addition of FOXP3+ Tregs evaluation
to a multiparameter model provided relevant prognostic information, beyond classical clinical–
pathological factors and TILs [33]. Tregs finely tune their population through sophisticated
sensing strategies and highly specialized multi-cellular modules [281–283], which further
underline the spatial determinants of Tregs’ function. In fact, in lymph nodes, Tregs can
recognize activated CD4+ T cells, form tightly packed aggregates, and, by surrounding
them, compete with survival signaling and physically constrain their expansion [283].
Alternatively, Tregs’ expression of CTLA-4 can interact with CD80/86, which is expressed
on activated migrating DCs. Further, this can both stimulate Treg expansion and induce
a transendocytosis of CD80/CD86 from the DC membrane [132], therefore limiting any
further T cell priming [282]. Significantly, as CD4+ T cells can express PD-1 [22], particularly
in compartmentalized TME phenotypes, the anti-PD-1/PD-L1s targeting of Tregs could
enhance their expansion and therefore be responsible for anti-PD1 resistance [284]. This is
underlined in gastric cancer patients treated with anti-PD1 ICI and who are experiencing
progressive diseases [285]. Furthermore, the expression of PD-1 is particularly relevant in
regulating the activation status of TLS via the balancing of the interaction between PD-1+
CXCR5+ CD25+ FOXP3+ follicular regulatory T (Tfr) cells and follicular helper T (Tfh)
cells [136,286].

6.3.3. TIL-B and TLS

B cells are plastic cells with multiple phenotypes [287] that can help coordinate the
anti-tumor immune response through the production of cytokines, the presentation of
antigens to T cells, and the production of antibodies against tumor antigens [288], whose
humoral action can help mediate ADCC, ADCP, and CDC by cooperating with many
stromal cells [287].
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In BC, an enrichment in TIL-B is a favorable prognostic factor [146,174,289–293],
particularly when located inside cancer islands [294], and is associated with higher response
rates to CT [295–297], anti-HER2 agents [298] in HER2+ BC, and ICIs in eTNBC [83,207].
Nonetheless, B cells’ biological role seems to be highly dependent on their interaction
with other cellular components of TME [287]. In fact, the formation of intratumoral B-T
cell clusters undergoing cell receptor-driven activation, proliferation, and IgG-isotype
switching, is associated with better outcomes in patients with TNBC [290]. However,
cell phenotyping is critical, as some B cells can express a regulatory phenotype (Breg)
associated with IL-10 expression and immunosuppressive properties. Accordingly, Tfr and
Breg interaction can generate a highly immunosuppressive phenotype that correlates with
short metastases-free survival (MFS) in BC [299].

The highest degree of B-T cell associations is the formation of TLS, which are organized
lymphoid structures that resemble secondary lymphoid tissues, whose density correlates
with ICIs benefit in numerous tumor types [300–303] and are associated with favorable
prognostic [304] and predictive value for CT responses in BC [291]. TLS possess various
degree of maturation, as immature TLS are composed of a T cell zone and a B cell zone
without a germinal center (GC) [136]; meanwhile, mature and active TLS are characterized
by a GC coupled with Tfh cells in the T cell zone and mature DC [136]. Defining these TLS
states, which can be achieved with multiplex profiling, is relevant, as patients with more
than two active TLS experience a better DFS in BC [136]. Importantly, TLS functional status
seems to be influenced by the interaction between PD-1+ Tfh cells and Tfr cells [136,286,305],
a balance of which ICIs could tip in favor of Tfh and thus help generate a more effective
immune response. Interestingly, natural antibodies could be one of the main outputs of
those active TLS. Through combined spatial proteomic and transcriptomic profiling of renal
cancer, B cells were seen to mature into plasma cells when inside TLS and, in turn, migrate
inside tumor beds along CAF tracks [306]; furthermore, the authors detected macrophages
in close proximity to apoptotic IgG-stained tumor cells and found a correlation between
the percentage of IgG-coated tumor cells and, therefore, a higher response to ICIs.

Figure 3 recapitulates multiplexed in situ spatial protein profiling of some relevant
cellular interactions and niches from the perspective of the cancer immunity-cycle.
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tumor-associated antigens (TAAs) are captured by innate immunity, whose activation is enhanced
by damage-associated molecular patterns (DAMPs) and limited by mechanisms altering TME’s
adjuvanticity, as depicted in Figure 2. Activated dendritic cells (DCs) can therefore migrate to
tumor-draining lymph nodes (TDLN), where they can prime naïve T cells. Regulatory FOXP3+
T cells (Treg) can target migrating DCs and thus limit T cell priming. NK cells can favor DCs’
recruitment and physically interact with DCs and, in TDLN, DCs’ interaction with T cells can foster a
transiently activated T cell phenotype or stimulate a stem-like T cell phenotype. Different subtypes of
cancer-associated fibroblasts (CAFs) can populate TDLN and influence the incidence and pattern
of metastasis, as CAF-S1 and S4. DCs can prime T cells in tertiary lymphoid structures (TLS), thus
bypassing TDLN. Blue—trafficking and infiltration: cellular components of the immune system must
access and repopulate the TME to exert cancer-immune control. On the far right: cancer cells can limit
CD8+ T cells’ endothelial access by inducing the expression of FASL on tumor-associated endothelial
cells (TA-EC), meanwhile positively regulating regulatory FOXP3+ T cell (Treg) passage. Cancer
cells can alter T cells intrastromal motility by directly altering the extracellular matrix (ECM)—such
as with DDR1 expression—or indirectly modulate ECM-structure by subjugating different CAFs
subpopulations. On the right: CD8+ T cells engage in peri-vascular niches with FOLR2+ tumor-
associated macrophages (TAMs); TCF+ stem-cell like T cells can access the TME through specialized
high endothelial venules (HEVs). Further, in grey, the bystander T cells, whose role in BC is still
unclear. In the middle—human figure: TME profiling of metastatic sites. > On the upper portion:
Cells can indirectly limit T cell infiltration by systemically depleting T cells through TAMs-mediated
siphoning of tumor-specific CD8+ T cells in hepatic metastasis. > On the lower portion: hepatic
stellate cells’ interaction with NK cells can limit their cancer control ability. TLS present the unique
potential of locally stimulating both T cell priming and activation, B cell maturation, and natural
antibody production. CXCL13+ follicular T cell helpers (TfhX13) can coordinate CXCR5 positive
immune cells into aggregating in multi-cellular structures, which could be the precursors of TLS.
Red—recognition and killing: innate and acquired immune cells can find and destroy cancer cells
by leveraging their antigenicity (MHC class I/II expression), which is counterbalanced by many
immune-evasive mechanisms described in the antigenicity section in Figure 1. Even when T cells are
allowed to reach the tumoral bed, cancer cells can express PD-L1 and directly limit the activity of T
cells expressing PD-1 or hide from them in niches constructed by CAFs; furthermore, T cells can be
physically surrounded by TREM2+ TAMs and other APCs, which can alter their killing endeavor.
Created with BioRender.com.

7. Conclusions

Spatial biology has just begun to unveil the concealed sets of rules that regulate cell
dynamic interactions and multicellular organization in BC. Although single-cell technolo-
gies have identified the letters of this language, ultimately, heterogenic cells and plastic
phenotypes seem to be strictly dependent on their relationship with their surroundings. In
this review, we underlined the outstanding potential of multiplexed single-cell spatially re-
solved epitope colocalization in defining cellular phenotypes and functional status, which
can be achieved by computing their reciprocal spatial coordinates into a precise tissue
cartography. Although more sophisticated, yet time-consuming and resource-demanding,
technologies are being developed to achieve an extensive TME profiling, multiplexed
spatial protein profiling could help translate into clinical practice some of the biological
information that is inferred from those more complex analyses through a rationally selected
panel of biomarkers. Still, the clinical application of this approach will require to overcome
many analytical challenges related to the pathological workflow. These challenges entail
panel assembly and standardization, as well as the computational-intensive workload
required to analyze the massive datasets generated by this high-throughput image analysis.
Furthermore, as many means of communication, other than the proteomic, contribute to
modulating the response to therapeutics, deep multi-omic TME profiling will be crucial
to identify the strategies that cancer cells have put in place to escape immune control at
the patient level, therefore guiding combinatorial strategies while reducing the burden of
ineffective treatment.
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