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A B S T R A C T   

Objective: HIV-remission strategies including kick-and-kill could induce viral transcription and immune- 
activation in the central nervous system, potentially causing neuronal injury. We investigated the impact of 
kick-and-kill on plasma neurofilament light (NfL), a marker of neuro-axonal injury, in RIVER trial participants 
commencing antiretroviral treatment (ART) during primary infection and randomly allocated to ART-alone or 
kick-and-kill (ART + vaccination + vorinostat (ART + V + V)). 
Design: Sub-study measuring serial plasma NfL concentrations. 
Methods: Plasma NfL (using Simoa digital immunoassay), plasma HIV-1 RNA (using single-copy assay) and total 
HIV-1 DNA (using quantitative polymerase chain reaction in peripheral CD4+ T-cells) were measured at ran-
domisation (following ≥22 weeks ART), week 12 (on final intervention day in ART + V + V) and week 18 post- 
randomisation. HIV-specific T-cells were quantified by intracellular cytokine staining at randomisation and week 
12. Differences in plasma NfL longitudinally and by study arm were analysed using mixed models and Student’s 
t-test. Associations with plasma NfL were assessed using linear regression and rank statistics. 
Results: At randomisation, 58 male participants had median age 32 years and CD4+ count 696 cells/μL. No 
significant difference in plasma NfL was seen longitudinally and by study arm, with median plasma NfL (pg/mL) 
in ART-only vs ART + V + V: 7.4 vs 6.4, p = 0.16 (randomisation), 8.0 vs 6.9, p = 0.22 (week 12) and 7.1 vs 6.8, 
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p = 0.74 (week 18). Plasma NfL did not significantly correlate with plasma HIV-1 RNA and total HIV-1 DNA 
concentration in peripheral CD4+ T-cells at any timepoint. While higher HIV-specific T-cell responses were seen 
at week 12 in ART + V + V, there were no significant correlations with plasma NfL. In multivariate analysis, 
higher plasma NfL was associated with older age, higher CD8+ count and lower body mass index. 
Conclusions: Despite evidence of vaccine-induced HIV-specific T-cell responses, we observed no evidence of 
increased neuro-axonal injury using plasma NfL as a biomarker up to 18 weeks following kick-and-kill, compared 
with ART-only.   

1. Introduction 

While antiretroviral treatment (ART) has improved survival of peo-
ple with HIV (PWH),1,2 ART alone is not a cure.3,4 Upon stopping ART, 
plasma viral load rebounds within eight weeks.5 The source of 
rebounding virus is cells latently infected with HIV, termed the reser-
voir,3,6–8 formed when HIV genetic material integrates into the genome 
of the infected cell.7 Reservoirs are established soon after HIV acquisi-
tion,9 remain stable despite ART,7,10,11 do not express viral antigens and 
thus, evade immune system detection.12 The main HIV-1 latent reservoir 
is thought to be located in resting CD4+ T-cells in circulation and 
lymphoid tissue7,13 but additional reservoir compartments may include 
the lungs, genital tract and central nervous system (CNS).6,13–17 

Several HIV-1 remission approaches are being trialled, such as kick- 
and-kill,18,19 whereby latently infected cells are stimulated, leading to 
viral transcription and expression of viral antigens7,13 which are rec-
ognised by the immune system and eradicated, to reduce HIV reservoir 
size.20 

As ART for PWH is safe, well-tolerated and has improved life ex-
pectancy, any innovative cure strategy must be at least as safe as modern 
ART and hypothetical risks associated with HIV cure strategies need to 
be considered. While latency reversing agents (LRAs) aim to force HIV 
transcription in latently infected cells, they have broad epigenetic effects 
and can cause transcription of non-HIV genes and reactivate other in-
tegrated resting viruses.21 The LRAs and/or associated viral protein 
expression following latency reversal may induce inflammation and 
immune-activation22; this is particularly risky in the CNS as this could 
cause neuro-toxicity and injury.23–25 

To date, reported significant CNS adverse effects following kick-and- 
kill are rare,26,27 but data are limited. In a trial in simian immunodefi-
ciency virus-infected macaques that received ART and two LRAs, one 
macaque experienced significant viral rebound (higher in the cerebro-
spinal fluid (CSF) compared to plasma), increased CNS 
immune-activation and neuronal injury biomarkers as well as neuro-
logical symptoms necessitating euthanasia.28 

Careful monitoring of the CNS during kick-and-kill remains crucial 
but is challenging; routine brain biopsies are not practical, and neuro-
imaging is costly. CSF neurofilament light protein (NfL) is a validated, 
sensitive and dynamic biomarker of CNS neuro-axonal injury29–31 and is 
a sensitive neuronal biomarker across the spectrum of HIV 
infection.32–34 Neurofilaments are a heteropolymer family of neuronal 
intermediate filaments with a role in supporting the structural and 
functional integrity of axons.29,35,36 Neurofilament proteins form the 
key structural components of axons, and the expression of these proteins 
is particularly high in large myelinated axons where they influence 
conduction speed.37 Neurofilaments encompass about 85% of the 
cytoskeleton proteins and comprise four main subunits with different 
molecular weights: neurofilament light (68 kDa), neurofilament me-
dium (150 kDa), neurofilament heavy (190–210 kDa) and α-internexin 
(66 kDa), of which neurofilament light chain protein (NfL) is the most 
abundant and most soluble.29 In situations involving cortical neuronal 
injury, neurofilament proteins can be used as a biomarker of axonal 
injury. Following an insult, neurofilament proteins from the damaged 
neuro-axonal units are released proportional to the severity of damage 
into interstitial fluid and enters the cerebrospinal fluid, where they can 
then be measured.34 

However, the invasive nature of CSF collection precludes frequent 
CSF NfL measurement. A novel Simoa assay which can reliably measure 
blood NfL (usually 50–100 times lower than CSF NfL) has recently been 
developed,38 thus removing the barriers faced by CSF sampling and 
allowing more frequent measurements given that blood samples are 
easier to obtain. Preliminary data suggests that both plasma and serum 
NfL correlate moderately to strongly with CSF NfL across a variety of 
neurological disorders, including HIV disease.38–42 A recent 
meta-analysis demonstrated moderate correlations between CSF and 
blood NfL, especially when blood NfL was measured using Simoa or 
electrochemiluminescence assays.43 

RIVER44 is the first open-label, randomised kick-and-kill trial 
assessing ART-alone versus ART plus HIV-1 prime/boost T-cell vacci-
nation (ChAdV63. HIVconsv and MVA. HIVconsv) (ART + V + V) plus 
the LRA vorinostat (a histone deacetylase inhibitor) in individuals who 
initiated ART during primary HIV-1 infection.45 Whilst the RIVER trial 
found a three-fold increase in histone acetylation following vorinostat 
dosing, and induction of robust HIV-specific T-cell responses, there was 
no significant benefit of this kick-and-kill approach compared with 
ART-alone on measures of peripheral blood44 and gut46 HIV-1 reservoir 
size. In order to investigate whether this kick-and-kill strategy caused 
neuro-axonal injury, we measured serial plasma NfL in participants 
enrolled into the RIVER trial44 and assessed demographic and clinical 
factors associated with plasma NFL. 

2. Material and methods 

2.1. Participants and recruitment procedures into the RIVER trial 

Participants aged between 18 and 60 years with recent acquisition of 
HIV infection and ART initiation within one month of confirmed HIV 
diagnosis were randomly assigned 1:1 to receive either ART-alone 
(control) or ART and vaccination with ChAdV63.HIVconsv prime and 
MVA.HIVconsv boost given eight weeks apart, followed by vorinostat 
taken orally in 10 doses of 400 mg every 3 days for 28 days (ART + V +
V). Participants were enrolled between December 2015 and November 
2017 at six clinical sites in the UK. Participants with viral co-infections 
(hepatitis B, hepatitis C and human T-cell lymphotropic virus (HTLV)) 
and concurrent malignancy or opportunistic infections were excluded. 
Recent HIV infection was defined as: positive HIV-1 serology within 12 
weeks of negative HIV-1 serology or point-of-care test, positive p24 
antigen and a negative HIV-1 serology test, negative HIV-1 antibody test 
with detectable HIV RNA or proviral DNA, Public Health England 
recency HIV antibody avidity assay reported as incident (<16 weeks 
prior to enrolment), weakly reactive or equivocal fourth-generation HIV 
antibody-antigen test, or equivocal or reactive HIV antibody test with 
less than 4 bands on a Western Blot analysis.47 

2.2. Study visits 

After enrolment, all participants were recommended to initiate a 
four-drug ART regimen, including raltegravir. Randomisation to 
continue ART-alone or to receive ART plus kick-and-kill took place after 
participants had been on cART for at least 22 weeks. After random-
isation, all participants were followed up for 18 weeks. Study procedures 
included assessment of adverse events, adherence to medication and 
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anthropometric measurements. 

2.3. Participants included in this sub-analysis 

Participants enrolled into RIVER who had given written consent to 
be included in future sub-studies were included. Ethics committee 
approval was obtained from all participating sites (14/SC/1372) and the 
trial was conducted in accordance with the principles of the Declaration 
of Helsinki. Stored plasma samples taken at three timepoints were 
retrieved and analysed for NfL: at randomisation (following ≥22 weeks 
of ART), week 12 (before receiving the tenth and final vorinostat dose 
and 4 weeks after completing the vaccination course in the ART + V + V 
arm) and week 1844 (Fig. 1). 

2.4. Laboratory parameters 

We measured plasma NfL using the commercially available NF-light 
assay on a HD-X Simoa instrument (Quanterix, Billerica, MA, USA).48 

Samples were analysed in duplicate, diluted 1:4 and the lower limit of 
quantification of the assay was 0.174 pg/mL, as determined by the 
manufacturer. Analyses were performed by the same technician using a 
single batch of reagents and the intra- and inter-assay coefficients of 
variations were below 6% and 15%, respectively. 

The following parameters were measured previously in the main 
study44: total HIV-1 DNA (in CD4+ T-cells isolated from cryopreserved 
peripheral blood mononuclear cells (PBMC) according to previously 
described methods49) and plasma HIV-1 RNA (by single-copy assay) at 
randomisation, week 12 and week 18. T-cells specific to the 
HIVconsv-vaccine were quantified by intracellular cytokine staining, as 
described previously,50 at randomisation and week 12. 

2.5. Statistical analysis 

Plasma NfL was log10-transformed to reduce data skewness, where 
appropriate. Differences in plasma NfL between study arms at each 
timepoint were analysed using Student’s t-test, and longitudinal changes 
using linear mixed models. Correlations between plasma NfL and HIV-1 
RNA, total HIV-1 DNA and polyfunctional CD4+ and CD8+ T-cell re-
sponses were analysed using Spearman’s rank statistics. Using linear 
regression, we analysed the association between plasma NfL and the 
following factors at baseline: patient’s age at randomisation, ethnicity, 
body mass index, duration since primary HIV infection diagnosis, CD4+

T-cell count, CD8+ T-cell count, estimated glomerular filtration rate 

(calculated using the Chronic Kidney Disease Epidemiology Collabora-
tion (CKD-EPI) formula)51 and total HIV-1 DNA. P-values <0.05 were 
considered statistically significant throughout. Statistical analyses were 
performed using Stata 15.1 (StataCorp LLC, Texas, USA). 

3. Results 

In total, 58/60 participants enrolled into RIVER gave written consent 
to be included in future sub-studies and were included in this analysis. 

Fig. 1. RIVER trial schema. 
RIVER trial schema illustrating the 1:1 randomisation into the two study arms. The red arrows signify the time points when plasma samples were analysed for NfL, in 
both study arms. The black arrows signify the time points for the prime and boost vaccinations, respectively. The blue arrow signifies the 28 day vorinostat dosing 
period. 
Abbreviations: NfL = neurofilament light chain protein; ART = antiretroviral treatment. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 1 
Baseline characteristics of participants from RIVER trial included in this 
analysis.   

All participants 
(n = 58) 

ART-only 
(n = 29) 

ART + V +
V (n = 29) 

Age, years 32 (28, 40) 31 (30, 38) 34 (28, 44) 
Male 58 (100%) 29 (100%) 29 (100%) 
Ethnicity    

White 40 (69%) 15 (52%) 25 (86%) 
Black African/Caribbean 4 (7%) 4 (14%) 0 
Other 14 (24%) 10 (34%) 4 (14%) 

Route of HIV acquisition    
Sex between men 53 (91%) 25 (86%) 28 (97%) 
Heterosexual intercourse 2 (3) 1 (3%) 1 (3%) 
Sex between men and IDU 2 (3) 1 (3%) 0 
Unknown 1 (2) 2 (7%) 0 

Time from primary HIV infection 
diagnosis to ART start, weeks 

2 (1, 3) 2 (0, 3) 2 (1, 3) 

Time from primary HIV infection 
diagnosis to randomisation, 
weeks 

28.1 (27.0, 
37.1) 

28.0 (26.6, 
41.0) 

28.1 (27.1, 
34.4) 

Body mass index, kg/m2 24 (22, 27) 24 (22, 26) 24 (22, 27) 
CD4+ T-cell count, cells/μL 696 (566, 785) 675 (561, 

790) 
704 (579, 
740) 

CD8+ T-cell count, cells/μL 660 (452, 828) 670 (461, 
946) 

642 (438, 
735) 

CD4/CD8 ratio 1.08 (0.86, 
1.42) 

1.09 (0.77, 
1.26) 

1.08 (0.92, 
1.46) 

Plasma HIV-1 RNA, copies/mL    
<50 57 (98%) 28 (97%) 29 (100%) 
50 to <200 1 (2%) 1 (3%) 0 

Serum creatinine 78 (71, 86) 83 (74, 89) 75 (71, 82) 
Estimated glomerular filtration 

rate, mL/min/1.73m2 
110 (99, 117) 107 (97, 

117) 
111 (104, 
117) 

Values are median (interquartile range) or total (%). Abbreviations: IDU =
injecting drug use, ART = antiretroviral treatment, ART + V + V = antiretroviral 
treatment and vaccination and vorinostat. 
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All 58 participants were male, 69% of white ethnicity and 91% acquired 
HIV via sex between men (Table 1). At randomisation, median age was 
32 years, duration since PHI diagnosis was 28 weeks, CD4+ count was 
696 cells/μL and all had plasma HIV-1 RNA <200 copies/mL (Table 1). 
Participant characteristics at randomisation were well-balanced by 
study arm. 

3.1. Plasma NfL longitudinally and by study arm 

Geometric mean plasma NfL was 6.8 pg/mL at randomisation, 7.4 
pg/mL at week 12, and 6.9 pg/mL at week 18, without significant dif-
ference between the time points (p = 0.12) (Table 2). Plasma NfL in the 
ART-only and ART + V + V arms was similar at each timepoint (Table 2 
and Fig. 2), and the two arms did not differ in change in plasma NfL from 
randomisation (p = 0.43 for interaction study arm x timepoint). 

3.2. Correlations with plasma NfL 

No significant correlations were seen between plasma NfL and HIV-1 
RNA, total HIV-1 DNA, polyfunctional CD8+ T-cell or CD4+ T-cell re-
sponses, in the overall cohort at any of the timepoints (Table 2) or in the 
separate study arms at weeks 12 and 18 (where applicable) (p > 0.05 for 

all, results not shown). 

3.3. Factors associated with plasma NfL at randomisation 

In multivariate regression analysis, higher plasma NfL at random-
isation was independently associated with older age (0.10 (95% CI 0.06, 
0.16) log10 NfL per 10 years older, p < 0.001), higher CD8+ T-cell count 
(0.02 (95% CI 0.00, 0.03) log10 NfL per 100 cells/mm3 higher, p = 0.03), 
and lower body mass index (− 0.02 (95% CI -0.03, − 0.01) log10 NfL per 
1 kg/m2 higher, p < 0.001) (Table 3). 

4. Discussion 

Despite evidence of vaccine-induced HIV-specific T-cell responses 
and histone deacetylation,44 we observed no evidence of increased 
neuro-axonal injury using plasma NfL as a surrogate biomarker, up to 18 
weeks following this kick-and-kill strategy compared with ART-only in 
participants enrolled into the RIVER trial who initiated ART during 
primary HIV-1 infection. 

Our results are in keeping with published literature demonstrating 
no evidence of CNS adverse effects when assessed using CSF biomarkers 
following panobinostat, a histone deacetylase inhibitor.27 Our results 
also reflect the published positive association between plasma NfL and 
age.38 While age-related reference ranges for CSF NfL are defined,33 

similar reference ranges for plasma NfL are yet to be ascertained. The 
finding that higher CD8+ cell count is independently associated with 
increased plasma NfL is novel and may indicate that higher CD8+ T-cell 
counts (linked with ongoing immune activation and poorer immune 
reconstitution) may be associated with ongoing inflammation, which 
can lead to neuronal injury. The finding that lower body mass index is 
associated with higher plasma NfL has been observed previously,52 

perhaps indicative of a lower volume of distribution and hence higher 
plasma NfL concentration. 

Strengths of our study include the random allocation of participants 
in the RIVER trial to the control and kick-and-kill arms, which enables us 
to assess the impact of kick-and-kill without risk of bias through con-
founding by indication. Several explanations for the apparent lack of 
CNS signal need to be taken into account; if viral transcription leads to 
neuro-axonal injury, then the lack of plasma viral transcription 
following this kick-and-kill strategy may explain the absence of impact 
on plasma NfL. While increased peripheral histone acetylation was 
observed following vorinostat dosing,44 vorinostat concentration and 

Table 2 
Plasma NfL concentration over time, and correlation with plasma HIV RNA, total 
HIV DNA and polyfunctional CD4+ and CD8+ HIVconsv-specific T-cell 
responses.    

Randomisation 
(following ≥22 
weeks ART) 

Week 12 (on 
final day of 
intervention in 
ART + V + V) 

Week 18 

Plasma NfL, 
pg/mL 

Overalla 6.9 (6.2, 7.6) 7.4 (6.5, 8.3) 6.9 (6.3, 
7.7) 

ART- 
onlya 

7.4 (6.5–8.4) 8.0 (6.6–9.7) 7.1 
(6.2–8.0) 

ART +
V + Va 

6.4 (5.4–7.6) 6.9 (5.8–8.1) 6.8 
(5.7–8.1) 

p-valueb 0.16 0.22 0.74 
Plasma HIV-1 

RNA, copies/ 
mL 

Overallc 14 (3, 25) 5 (1, 12) 6 (1, 17) 

Correlation 
with plasma 
NfLd 

Rho 0.16 0.14 0.25 
p-value 0.35 0.34 0.07 

Total HIV-1 
DNA, copies/ 
106 

peripheral 
CD4 cells 

Overallc 1581 (569, 2939) 1177 (527, 
2399) 

1501 
(554, 
2741) 

Correlation 
with plasma 
NfLd 

Rho 0.12 0.14 0.01 
p-value 0.37 0.32 0.93 

% CD154+ IFN- 
g+ CD4+

cellsb 

Overallc 0.009 (0.000, 
0.023) 

0.031 (0.005, 
0.112) 

n/a 

Correlation 
with plasma 
NfLd 

Rho 0.01 − 0.19 
p-value 0.96 0.21 

% CD107a+

IFN-g+ CD8+

cellsb 

Overallc 0.074 (0.008, 
0.289) 

0.125 (0.033, 
0.291) 

n/a 

Correlation 
with plasma 
NfLd 

Rho 0.31 0.16 
p-value 0.03 0.26 

n/a: not assessed at this timepoint. 
Abbreviations: NfL = neurofilament light chain protein, ART = antiretroviral 
treatment, ART + V + V = antiretroviral treatment and vaccination and 
vorinostat. 

a Geometric mean (95% confidence interval). 
b p-values relate to differences between ART-only and ART + V + V arms. 
c Overall median (interquartile range) of both study arms combined. 
d Correlation with plasma NfL. 

Fig. 2. Longitudinal changes in plasma NfL by study arm. 
Line graph demonstrating longitudinal changes in plasma NfL by study arm, 
ART-only versus ART+V+V. 
Abbreviations: NfL = neurofilament light protein, ART = antiretroviral treat-
ment, V+V = vaccination and vorinostat, CI = confidence interval, Baseline =
point of randomisation. 
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histone acetylation in the brain was not measured, and we are unable to 
confirm whether vorinostat crossed the blood-brain barrier and affected 
the CNS in terms of neuronal toxicity, viral transcription and/or 
neuronal injury; preliminary studies suggest that the current form of 
vorinostat poorly crosses the blood-brain barrier. Nonetheless, the 
extent to which this finding can be translated to more potent LRAs is 
unknown. The lack of change in plasma NfL concentrations following 
the induction of potent HIV-specific CD4+ and CD8+ T-cell responses 
after vaccination suggests that this approach is safe from a neuro-axonal 
perspective. 

Clinical parameters, such as patient-reported outcome measures of 
CNS function, cognitive function or cerebral imaging were not per-
formed and may have provided further clinical insights. Published 
studies report various degrees of correlation between CSF and blood NfL, 
with stronger correlations seen in conditions with higher CSF and blood 
NfL concentrations. Throughout the study in both study arms, plasma 
NfL concentrations were generally low and similar in range to that seen 
in HIV-negative individuals (median (IQR) 9.3 (5.9–13.1) pg/mL and 
neuroasymptomatic individuals living with untreated HIV and with 
CD4+ T-cell counts >350 cells/μL (median (IQR) 9.0 (6.5–14.3) pg/ 
mL).38 This may reflect the protective effect of early ART initiation 
during primary HIV infection and the potential lack of neuronal injury 
following this particular HIV remission strategy in this cohort of in-
dividuals. The lack of concurrent CSF NfL in this study restricts our 
knowledge about the corresponding CNS NfL trends. Whilst the RIVER 
study was powered for its primary endpoint, our sub-study may have 
been underpowered to detect changes in plasma NfL in this setting. 

All participants enrolled into the RIVER trial initiated ART during 
primary HIV infection, when HIV reservoir size is presumed to be 
lowest53; furthermore there are data suggesting a relative delay in the 

establishment of the CNS reservoir, compared with the systemic reser-
voir.54,55 Thus, the impact of kick-and-kill on markers of neuronal injury 
in participants who initiated ART during chronic HIV infection when 
HIV CNS reservoir size is larger, remains unknown. Whilst our results 
are reassuring, the majority of participants enrolled into the RIVER trial 
were young, white men who have sex with men, and it is unclear 
whether we can extrapolate our findings to other populations, such as 
women and those of non-white ethnicity. 

In summary, significant neuronal injury was unlikely following the 
kick-and-kill strategy employed in the RIVER trial, supporting the CNS 
safety of this strategy. Continued monitoring for CNS adverse events 
remains an important aspect of HIV-remission research, especially when 
investigating other potentially more potent kick-and-kill strategies.  
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Data statement 

Data from this analysis can be made available upon reasonable 
request to the corresponding author. 

Table 3 
Multivariable linear regression model to identify factors associated with baseline 
plasma NfL (log10).   

Univariable analysis Multivariable analysis 

Variable Parameter 
estimatea(95% 
confidence 
interval) 

p-value Parameter 
estimatea(95% 
confidence 
interval) 

p-value 

Age (per 10 
years older) 

0.11 (0.06, 0.15) <0.001 0.11 (0.06, 0.16) <0.001 

Body mass index 
(per kg/m2) 

− 0.02 (− 0.03, 
− 0.01) 

0.002 − 0.02 (− 0.03, 
− 0.01) 

<0.001 

White ethnicity − 0.02 (− 0.12, 
0.08) 

0.68 0.00 (− 0.08, 0.09) 0.96 

Duration since 
PHI diagnosis 
(per 5 weeks 
increase) 

0.01 (− 0.01, 0.03) 0.19 0.00 (− 0.01, 0.02) 0.62 

eGFR (per 10 
μmol/L/min 
increase) 

− 0.05 (− 0.08, 
− 0.02) 

0.001 − 0.01 (− 0.04, 
0.02) 

0.52 

CD4+ T-cell 
count (per 
100 cells/μL 
increase) 

− 0.01 (− 0.04, 
0.01) 

0.31 − 0.00 (− 0.03, 
0.02) 

0.75 

CD8+ T-cell 
count (per 
100 cells/μL 
increase) 

0.01 (− 0.01, 0.02) 0.58 0.02 (0.00, 0.03) 0.03 

Total HIV DNA 
(per 1 log10 

copy/106 

peripheral 
CD4+ T-cells 
increase) 

0.05 (− 0.05, 0.14) 0.31 − 0.02 (− 0.10, 
0.06) 

0.62 

Abbreviations: PHI = primary HIV diagnosis; eGFR = estimated glomerular 
filtration rate. 

a Parameter estimates reflect the associated impact of each independent var-
iable in the model on baseline plasma NfL. 
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