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Dynamics underlying epileptic seizures span multiple scales in space and time, therefore,

understanding seizure mechanisms requires identifying the relations between seizure

components within and across these scales, together with the analysis of their dynamical

repertoire. In this view, mathematical models have been developed, ranging from single

neuron to neural population. In this study, we consider a neural mass model able to

exactly reproduce the dynamics of heterogeneous spiking neural networks. We combine

mathematical modeling with structural information from non invasive brain imaging, thus

building large-scale brain network models to explore emergent dynamics and test the

clinical hypothesis. We provide a comprehensive study on the effect of external drives on

neuronal networks exhibiting multistability, in order to investigate the role played by the

neuroanatomical connectivity matrices in shaping the emergent dynamics. In particular,

we systematically investigate the conditions under which the network displays a transition

from a low activity regime to a high activity state, which we identify with a seizure-like

event. This approach allows us to study the biophysical parameters and variables leading

to multiple recruitment events at the network level. We further exploit topological network

measures in order to explain the differences and the analogies among the subjects

and their brain regions, in showing recruitment events at different parameter values. We

demonstrate, along with the example of diffusion-weighted magnetic resonance imaging

(dMRI) connectomes of 20 healthy subjects and 15 epileptic patients, that individual

variations in structural connectivity, when linked with mathematical dynamic models,

have the capacity to explain changes in spatiotemporal organization of brain dynamics,

as observed in network-based brain disorders. In particular, for epileptic patients, by

means of the integration of the clinical hypotheses on the epileptogenic zone (EZ), i.e.,

the local network where highly synchronous seizures originate, we have identified the
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sequence of recruitment events and discussed their links with the topological properties

of the specific connectomes. The predictions made on the basis of the implemented set

of exact mean-field equations turn out to be in line with the clinical pre-surgical evaluation

on recruited secondary networks.

Keywords: neural mass model, quadratic integrate-and-fire neuron, patient-specific brain network model,

epileptic seizure-like event, topological network measure

1. INTRODUCTION

Epilepsy is a chronic neurological disorder characterized by the
occurrence and recurrence of seizures and represents the third
most common neurological disorder affecting more than 50
million people worldwide (World Health Organization, 2005).
Anti-epileptic drugs are the first line of treatment for epilepsy,
and they provide sufficient seizure control in around two-thirds
of cases (Kwan and Brodie, 2000). However, about 30–40% of
epilepsy patients do not respond to drugs, a percentage that has
remained relatively stable despite significant efforts to develop
new anti-epileptic medication over the past decades. For drug-
resistant patients, a possible treatment is the surgical resection of
the brain tissue responsible for the generation of seizures.

As a standard procedure, epilepsy surgery is preceded by a
qualitative assessment of different brain imaging modalities to
identify the brain tissue responsible for seizure generation, i.e.,
the epileptogenic zone (EZ) (Rosenow and Lüders, 2001), which
in general represents a localized region or a network where
seizures arise, before recruiting secondary networks, called the
propagation zone (PZ) (Talairach and Bancaud, 1966; Bartolomei
et al., 2001; Spencer, 2002; Richardson, 2012). Outcomes are
positive whenever the patient has become seizure-free after
surgical operation.

Intracranial electroencephalography (iEEG) is commonly
used during the presurgical assessment to find the seizure onset
zone (Rosenow and Lüders, 2001; David et al., 2011; Duncan
et al., 2016), the assumption being that the region where seizures
emerge, is at least part of the brain tissue responsible for seizure
generation. As a part of the standard presurgical evaluation
with iEEG, stereotactic EEG (SEEG) is used to help correctly
delineating the EZ (Bartolomei et al., 2002). SEEG employs
penetrating depth electrodes that are implanted through small
burr holes in the skull and are positioned using stereotactic
guidance (Talairach and Bancaud, 1966), thus allowing for
the measurement of neural activity in deeper structures of
the brain. Alternative imaging techniques such as structural
Magnetic Resonance Imaging (MRI), magneto- or electro-
encephalography (M/EEG), and positron emission tomography
(PET) help the clinician estimate the position of the EZ. Recently,
diffusion MRI (dMRI) started being evaluated as well, thus
giving the possibility to infer the connectivity between different
brain regions by computing in-vivo fiber tract trajectories in-
coherently organized brain white matter pathways (Basser et al.,
2000). dMRI has revealed a quantitative decrease of regional
connectivity around the EZ that is associated with a network
reorganization and cognitive impairment (Leyden et al., 2015). In

particular, it has revealed reduced fractional anisotropy (Ahmadi
et al., 2009; Bernhardt et al., 2013) and structural alterations in
the connectome of epileptic patients (Bonilha et al., 2012; Besson
et al., 2014; DeSalvo et al., 2014). However, epilepsy surgery is
often unsuccessful and the long-term positive outcome may be
lower than 25% in extra-temporal cases (De Tisi et al., 2011; Najm
et al., 2013), thus meaning that the EZ has not been correctly
identified or that the EZ and the seizure onset zone may not
coincide (Lopes et al., 2019).

To quantitatively examine clinical data and to determine
targets for surgery, many computational models have been
recently proposed (Freestone et al., 2013; Hutchings et al., 2015;
Goodfellow et al., 2016; Khambhati et al., 2016; Lopes et al., 2017;
Sinha et al., 2017; Karoly et al., 2018), that use MRI or iEEG
data acquired during presurgical workup to infer structural or
functional brain networks. Taking advantages of recent advances
in the understanding of epilepsy, that indicate that seizures may
arise from distributed ictogenic networks (Richardson, 2012;
Bartolomei et al., 2017; Besson et al., 2017), phenomenological
models of seizure transitions are used to compute the escape
time, i.e., the time that each network node takes to transit from
a normal state to a seizure-like state. Nodes with the lowest
escape time are then considered as representative of the seizure
onset zone and, therefore, candidates for surgical resection, by
assuming seizure onset zone as a proxy for the EZ (Hutchings
et al., 2015; Sinha et al., 2017). Alternatively, different possible
surgeries are simulated in silico to predict surgical outcomes
(Goodfellow et al., 2017; Lopes et al., 2017, 2019) by making use
of synthetic networks and phenomenological network models of
seizure generation. Further attention has been paid to studying
how network structure and tissue heterogeneities underpin the
emergence of focal and widespread seizure dynamics in synthetic
networks of phase oscillators (Lopes et al., 2019, 2020).

More in general there is a vast and valuable literature
on computational modeling in epilepsy, where two classes of
models are used: (1) mean-field (macroscopic) models and (2)
detailed (microscopic) network models. Mean-field models are
often preferred over the more detailed models since they have
fewer parameters and, thus, simplify the study of transitions
from interictal to ictal states and the subsequent EEG analysis
of data from patients with epilepsy. This is justified as the
macroelectrodes used for EEG recordings represent the average
local field potential arising from neuronal populations. Indeed,
much effort has been made so far to explain the biophysical
and dynamical nature of seizure onsets and offsets by employing
neural mass models (Da Silva et al., 1974; Wendling et al.,
2002; Kalitzin et al., 2010; Touboul et al., 2011; Baier et al.,
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2012; Goodfellow et al., 2012; Kramer et al., 2012; Jirsa et al.,
2014; Karoly et al., 2018). Mechanistic interpretability of the
mean-field parameters is lost, as many physiological details
are absorbed in few degrees of freedom. Since the mean-field
models remain relatively simple, they can also be employed to
describe epileptic processes occurring in “large-scale” systems,
e.g., the precise identification of brain structures that belong to
the seizure-triggering zone (epileptic activity often spreads over
quite extended regions and involves several cortical and sub-
cortical structures). However, only recently, the propagation of
epileptic seizures was started to be studied using brain network
models and was limited to a small number of populations (Terry
et al., 2012) or absence seizures (Taylor et al., 2013), while partial
seizures have been reported to propagate at the mesoscopic scale
through cortical columns (Kramer et al., 2007; Goodfellow et al.,
2011) and at the macroscopic scale through large-scale networks
in humans (Bartolomei et al., 2013) and animal models (Toyoda
et al., 2013). All in all, even though neural mass models are
in general easier to analyze numerically because relatively few
variables and parameters are involved, they drastically fail to
suggest molecular and cellular mechanisms of epileptogenesis.

On the other hand, detailed network models are best
suited for understanding the molecular and cellular bases of
epilepsy and, thus, they may be used to suggest therapeutics
targeting molecular pathways (Destexhe and Sejnowski, 1995;
Van Drongelen et al., 2005; Turrigiano, 2008; Cressman
et al., 2009; Ullah et al., 2009). Due to the substantial
complexity of neuronal structures, relatively few variables and
parameters can be accessed at any time experimentally. Although
biophysically explicit modeling is the primary technique to
look into the role played by experimentally inaccessible
variables in epilepsy, the usefulness of detailed biophysical
models is limited by constraints in computational power,
uncertainties in detailed knowledge of neuronal systems, and the
required simplification for the numerical analysis. Therefore, an
intermediate “across-scale” approach, establishing relationships
between sub-cellular/cellular variables of detailed models and
mean-field parameters governing macroscopic models, might
be a promising strategy to cover the gaps between these two
modeling approaches (Brocke et al., 2016; Lindroos et al., 2018;
Schirner et al., 2018).

In view of developing a cross-scale approach, it is important
to point out that a large-scale brain network models emphasize
the network character of the brain and merge structural
information of individual brains with mathematical modeling,
thus constituting in-silico approaches for the exploration of
causal mechanisms of brain function and clinical hypothesis
testing (Proix et al., 2017, 2018; Olmi et al., 2019). In particular,
in brain network models, a network region is a neural mass
model of neural activity, connected to other regions via a
connectivity matrix representing fiber tracts of the human brain.
This form of virtual brain modeling (Fuchs et al., 2000; Jirsa
et al., 2002, 2010) exploits the explanatory power of network
connectivity imposed as a constraint upon network dynamics and
has provided important insights into the mechanisms underlying
the emergence of asynchronous and synchronized dynamics
of wakefulness and slow-wave sleep (Goldman et al., 2020)

while revealing the whole-brain mutual coupling between the
neuronal and the neurotransmission systems to understand the
flexibility of human brain function despite having to rely on
fixed anatomical connectivity (Kringelbach et al., 2020). Recent
studies have pointed out the influence of individual structural
variations of the connectome upon the large-scale brain network
dynamics of the models, by systematically testing the virtual
brain approach along with the example of epilepsy (Proix et al.,
2017, 2018; Olmi et al., 2019). The employment of patient-
specific virtual brain models derived from dMRI may have
a substantial impact on personalized medicine, allowing for
an increase in predictivity concerning the pathophysiology of
brain disorders, and their associated abnormal brain imaging
patterns. More specifically a personalized brain network model
derived from non-invasive structural imaging data would allow
for testing of clinical hypotheses and exploration of novel
therapeutic approaches.

To exploit the predictive power of personalized brain
network models, we have implemented, on subject-specific
connectomes, a next-generation neural mass model that,
differently from the previous applied heuristic mean-field models
(Proix et al., 2017, 2018; Olmi et al., 2019), is exactly derived
from an infinite size network of quadratic integrate-and-fire
neurons (Montbrió et al., 2015), that represent the normal
form of Hodgkin’s class I excitable membranes (Ermentrout
and Kopell, 1986). This next generation neural mass model
can describe the variation of synchrony within a neuronal
population, which is believed to underlie the decrease or
increase of power seen in given EEG frequency bands while
allowing for a more direct comparison with the results of
electrophysiological experiments like local field potential, EEG,
and event-related potentials (ERPs), thanks to its ability to
capture the macroscopic evolution of the mean membrane
potential. Most importantly, the exact reduction dimension
techniques at the basis of the next-generation neural mass model
have been developed for coupled phase oscillators (Ott and
Antonsen, 2008) and allow for an exact (analytical) moving
upward through the scales: While keeping the influence of
smaller scales on larger ones, they level out their inherent
complexity. In this way it is, therefore, possible to develop
an intermediate “across-scale” approach exploiting the 1:1
correspondence between the microscopic and mesoscopic level
that allows for more detailed modeling parameters and for
mapping the microscopic results to the relative ones in the
regional mean-field parameters.

The next-generation neural mass model developed by
Montbrió et al. (2015), has been recently extended to take into
account time-delayed synaptic coupling (Pazó and Montbrió,
2016; Devalle et al., 2018), and when integrated with a large-
scale brain network, time delays in the interaction between the
different brain areas, due to the finite conduction speed along
fiber tracts of different lengths (Rabuffo et al., 2020). The time
delay, together with the effective stochasticity of the investigated
dynamics give rise, both on structural connectivity matrices
of mice and healthy subjects, to preferred spatiotemporal
pattern formation (Jirsa, 2008; Petkoski and Jirsa, 2020) and
short-lived neuronal cascades that form spontaneously and
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propagate through the network under conditions of near-
criticality (Rabuffo et al., 2020). The largest neuronal cascades
produce short-lived but robust co-fluctuations at pairs of regions
across the brain, thus contributing to the organization of the
slowly evolving spontaneous fluctuations in brain dynamics at
rest. The introduction of extrinsic or endogenous noise sources
in the framework of exact neural mass models is possible in terms
of (pseudo)-cumulants expansion in Tyulkina et al. (2018) and
Goldobin et al. (2021).

In this paper, we have built brain network models for
a cohort of 20 healthy subjects and 15 epileptic patients,
implementing for each brain region the neural mass model
developed by Montbrió et al. (2015). As paradigms for testing the
spatiotemporal organization, we have systematically simulated
the individual seizure-like propagation patterns, looking for
the role played by the individual structural topologies in
determining the recruitment mechanisms. Specific attention has
been devoted to the analogies and differences among the self-
emergent dynamics in healthy and epilepsy-affected subjects.
Furthermore, for epileptic patients, we have validated the model
against the presurgical SEEG data and the standard-of-care
clinical evaluation. More specifically the Methods section is
devoted to the description of the implemented model and the
applied methods. In section Healthy Subjects are reported the
results specific for healthy subjects, while in section Epileptic
Patients is reported a detailed analysis performed on epileptic
patients. Finally, a discussion on the presented results is reported
in section Discussion.

2. METHODS

2.1. Network Model
The membrane potential dynamics of the i-th quadratic
integrate-and-fire (QIF) neuron in a network of size N can be
written as

τmV̇i = V2
i (t)+ ηi + IB + IS(t)+ τm

1

N

N
∑

j=1

J̃ij(t)Sj(t) ,

i = 1, . . . ,N (1)

where τm = 20 ms is the membrane time constant and J̃ij(t) the
strength of the direct synapse from neuron j to i that we assume
to be constant and all identical, i.e., J̃ij(t) = J. The sign of J
determines if the neuron is excitatory (J > 0) or inhibitory (J <

0); in the following, we will consider only excitatory neurons.
Moreover, ηi represents the neuronal excitability, IB a constant
background DC current (in the following we assume IB = 0),
IS(t) an external stimulus, and the last term on the right-hand side
the synaptic current due to the recurrent connections with the
pre synaptic neurons. For instantaneous post synaptic potentials
(corresponding to δ-spikes), the neural activity Sj(t) of neuron j
reads as

Sj(t) =
∑

tj(k)<t

δ(t − tj(k)), (2)

where Sj(t) is the spike train produced by the j-th neuron and
tj(k) denotes the k-th spike time in such sequence. We have
considered a fully coupled network without autapses, therefore,
the post-synaptic current will be the same for each neuron.

In the absence of synaptic input, external stimuli, and IB = 0,
the QIF neuron exhibits two possible dynamics, depending on
the sign of ηi. For negative ηi, the neuron is excitable and for
any initial condition Vi(0) <

√−ηi, it reaches asymptotically
the resting value −√−ηi. On the other hand, for initial values
larger than the excitability threshold, Vi(0) >

√−ηi, the
membrane potential grows unbounded and a reset mechanism
has to be introduced to describe the spiking behavior of a neuron.
Whenever Vi(t) reaches a threshold value Vp, the neuron i
delivers a spike and its membrane potential is reset to Vr, for the
QIF neuronVp = −Vr = ∞. For positive ηi, the neuron is supra-
threshold and it delivers a regular train of spikes with frequency
ν0 =

√
ηi/π .

2.2. Neural Mass Model
For the heterogeneous QIF network with instantaneous synapses
(Equations 1, 2), an exact neural mass model has been derived
by Montbrió et al. (2015). The analytic derivation is possible
for QIF spiking networks using the Ott-Antonsen Ansatz (Ott
and Antonsen, 2008) applicable to phase-oscillator networks,
whenever the natural frequencies are distributed according to
a Lorentzian distribution. In the case of the QIF network, this
corresponds to a distribution of the excitabilities {ηi} given by,

g(η) =
1

π

1

(η − η̄)2 + 12
, (3)

which is centered in η̄ and has half width at half maximum
(HWHM) 1 (1 = 1 throughout this study). In particular, this
neural mass model allows for an exact macroscopic description
of the population dynamics, in the thermodynamic limit N →
∞, in terms of only two collective variables, namely the
mean membrane voltage potential v(t) and the instantaneous
population rate r(t), as follows

τmṙ(t) =
1

τmπ
+ 2r(t)v(t) (4a)

τmv̇(t) = v2(t)+ η̄ + IB + IS(t)−
[

πτmr(t)
]2 + τm J̃(t)r(t) ;

(4b)

where the synaptic strength is assumed to be identical for all
neurons and instantaneous synapses in absence of plasticity
J̃(t) = J. However, by including a dynamical evolution for
the synapses and, therefore, additional collective variables, this
neural mass model can be extended to any generic post synaptic
potential, as shown in e.g., Devalle et al. (2017) for exponential
synapses or Coombes and Byrne (2019) for conductance-based
synapses with α-function profile. In the following, we will
consider an extension of the original model (Equations 4) to
a complex topology, where multiple nodes interact with each
other. By considering instantaneous post-synaptic potentials and
neglecting synaptic features, we then focus on the role played by
the topology in enhancing the emergence of complex dynamics.
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2.3. Multipopulation Neural Mass Model
The neural mass model can be easily extended to account
for multiple interconnected neuronal populations Npop. In the
following, we consider personalized brain models derived from
structural data of Magnetic Resonance Imaging (MRI), Diffusion
Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI),
thus implementing different structural connectivity matrices for
healthy subjects and epileptic patients. For healthy subjects
cortical and volumetric parcellations were performed using the
Automatic Anatomical Atlas 1 (AAL1) (Tzourio-Mazoyer et al.,
2002) withNpop = 90 brain regions: each region will be described
in terms of the presented neural mass model. For epileptic
subjects, cortical and volumetric parcellations were performed
using the Desikan-Killiany atlas with 70 cortical regions and
17 subcortical regions (Desikan et al., 2006) (one more empty
region is added in the construction of the structural connectivity
for symmetry). In this case, the structural connectivity matrix is
composed, for each patient with epileptic, by 88 nodes equipped
with the presented region-specific neural mass model capable of
demonstrating epileptiform discharges.

The corresponding multi-population neural mass model can
be straightforwardly written as

τmṙk =
1k

τmπ
+ 2rk(t)vk(t) k = 1, 2, . . . ,Npop (5a)

τmv̇k = v2k(t)+ η̄(k) + IB + I(k)S (t)− (πτmrk(t))
2 + τm

Npop
∑

l=1

Jklrl(t),

(5b)

where {Jkl} is the connectivity matrix, representing the synaptic
weights among the populations. Diagonal entries Jkk denote
intra-population and non-diagonal entries Jkl, k 6= l inter-
population connections. In this study, we have assumed that
the neurons are globally coupled both at the intra- and inter-
population levels, hence removing the dependency on the
neuron indices.

The connectivity matrix entries Jkl are determined via a
secondmatrix {J̃kl}, which represents the topology extracted from
empirical DTI. The values of {J̃kl} are normalized in the range
[0, 1] via rescaling with themaximal entry value, and have J̃kk = 0
on the diagonal. To account for strong intra-coupling (recurrent
synapses) and intermediate inter-coupling, we choose the entries
of each structural connectivity as

Jkl = σ

{

5 J̃kl if k 6= l
20 if k = l,

(6)

where σ is a rescaling factor common to all synapses, that we
assume to be constant and equal to 1, apart from few cases where
we investigate the dependence on the synaptic weights. Hence,
the synaptic weights for k 6= l are in the range Jkl ∈ [0, 5], while
the intra coupling is set to Jkk = 20 (apart from when specified
otherwise). This choice of the rescaling factor ensures that the
single brain region finds itself in a bistable regime, thus being
able to switch from a low-activity to a high-activity regime. The

time-dependent stimulus current I(k)S (t) is population-specific,

and a single population at a time is generally stimulated during

a numerical experiment. The applied stimulus I(k)S (t) consists of a
rectangular pulse of amplitude IS and duration tI ; the dependence
on these parameters is studied in this paper to support the
generality of the results.

2.4. Topologies
As the first set of data, we have selected 20 diffusion-weighted
MRI connectomes of healthy subjects (mean age 33 years, SD
5.7 years, 10 females, 2 left-handed) that participated in a study
on schizophrenia as a control group (Melicher et al., 2015).
Throughout the study we refer to the healthy subjects as H1–
H20. All subjects were recruited via local advertisements and had
none of the following conditions: Personal lifetime history of any
psychiatric disorder or substance abuse established by the Mini-
International Neuropsychiatric Interview (MINI) (Lecrubier
et al., 1997), and any psychotic disorder in first or second-degree
relatives. Further exclusion criteria included current neurological
disorders, lifetime history of seizures or head injury with altered
consciousness, intracranial hemorrhage, neurological sequelae,
history of intellectual disability, history of substance dependence,
and any contraindication for MRI scanning.

The scans were performed on a 3T Siemens scanner in
the Institute of Clinical and Experimental Medicine in Prague,
employing a spin-echo EPI sequence with 30 diffusion gradient
directions, TR = 8, 300ms, TE = 84ms, 2×2×2mm3 voxel size,
and b-value 900 s/mm2. The diffusion-weighted images (DWI)
were analyzed using the Tract-Based Spatial Statistics (TBSS)
(Smith et al., 2006), part of FMRIB Software Library (FSL) (Smith
et al., 2004). Image conversion fromDICOM toNIfTI format was
accomplished using dcm2nii. With FMRIB’s Diffusion Toolbox
(FDT), the fractional anisotropy (FA) images were created by
fitting a tensor model to the raw diffusion data and then,
using the Brain Extraction Tool (BET) (Smith, 2002), brain-
extracted. FA identifies the degree of anisotropy of a diffusion
process, and it is a measure often used in diffusion imaging
where it is thought to reflect fiber density, axonal diameter, and
myelination in white matter. A value of zero means that diffusion
is isotropic, i.e., it is unrestricted (or equally restricted) in all
directions, while a value of one means that diffusion occurs only
along one axis and is fully restricted along all other directions.
Subsequently, the FA images were transformed into a common
space by nonlinear registration IRTK (Rueckert et al., 1999). A
mean FA skeleton, representing the centers of all tracts common
to the group, was obtained from the thinned mean FA image.
All FA data were projected onto this skeleton. The resulting
data was fed into voxel-wise cross-subject statistics. Prior to
analysis in SPM, the FA maps were converted from NIfTI format
to Analyze.

The brains were segregated into 90 brain areas according
to the AAL1 (Tzourio-Mazoyer et al., 2002). The anatomical
names of the brain areas for each index k are shown in the
Supplementary Table 1. In each brain network, one AAL brain
area corresponds to a node of the network. The weights between
the nodes were estimated through the measurement of the
preferred diffusion directions, given by a set of ns = 5, 000
streamlines for each voxel. The streamlines are hypothesized to
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correlate with the white-matter tracts. The ratio of streamlines
connecting area l and area k is given by the probability coefficient
plk. Then, the adjacency matrix Jkl is constructed from this
probability coefficient. The DTI processing pipeline has been
adopted from Cabral et al. (2013).

Besides the healthy connectomes, we selected 15 connectomes
(9 females, 6 males, mean age 33.4, range 22–56) of patients with
different types of partial epilepsy that underwent a presurgical
evaluation. The scans were performed at the Centre de Résonance
Magnétique et Biologique et Médicale (Faculté de Médecine de
la Timone) in Marseille. Throughout the study, we refer to the
epileptic patients as E1–E15. dMRI images were acquired on
a Siemens Magnetom Verio 3T MR-scanner using a DTI-MR
sequence with an angular gradient set of 64 directions, TR =
10, 700 ms, TE = 95 ms, 2 × 2 × 2 mm3 voxel size, 70 slices,
and b-value 1, 000 s/mm2.

The data processing pipeline (Schirner et al., 2015; Proix
et al., 2016) made use of various tools such as FreeSurfer
(Fischl, 2012), FSL (Jenkinson et al., 2012), MRtrix3 (Tournier,
2010), and Remesher (Fuhrmann et al., 2010), to reconstruct
the individual cortical surface and large-scale connectivity. The
surface was reconstructed using 20,000 vertices. Cortical and
volumetric parcellations were performed using the Desikan-
Killiany atlas with 70 cortical regions and 17 subcortical regions
(Desikan et al., 2006). The final atlas consists of 88 regions
since one more empty region is added in the construction of
the structural connectivity for symmetry. After correction of the
diffusion data for eddy-currents and head motions using eddy-
correct FSL functions, the fiber orientation was estimated using
constrained spherical deconvolution (Tournier et al., 2007) and
improved with anatomically constrained tractography (Smith
et al., 2012). For tractography, 2.5 × 106 fibers were used
and, for correction, spherical-deconvolution informed filtering
of tractograms (Smith et al., 2013) was applied. Summing
track counts over each region of the parcellation yielded the
adjacencymatrix. In this study, the AAL2 was employed for brain
segregation leading to 88 brain areas for each patient, as shown in
Supplementary Table 2.

2.5. EEG and SEEG Data
All 15 drug-resistant patients, mentioned in the previous section,
affected by different types of partial epilepsy accounting for
different EZ localizations, underwent a presurgical evaluation (as
shown in Supplementary Tables 3, 4). For each patient, a first
non invasive evaluation procedure is foreseen, which comprises
of the patient clinical record, neurological examinations, PET,
and EEG along with video monitoring. Following this evaluation,
potential EZs are identified by the clinicians. Further elaboration
on the EZ is done in a second, invasive phase, which consists of
positioning SEEG electrodes in or close to the suspected regions.
These electrodes are equipped with 10–15 contacts that are 1.5
mm apart. Each contact has a length of 2 mm and measures 0.8
mm in diameter. Recordings were obtained using a 128 channel
DeltamedTM system with a 256 Hz sampling rate and band-
pass filtered between 0.16 and 97 Hz by a hardware filter. Precise
electrode positioning was performed by either a computerized
tomography or MRI scan after implanting the electrodes. All

patients showed seizures in the SEEG, starting in one or several
localized areas (EZ), before recruiting distant regions, identified
as the PZ. It is worth noticing that, among the operated patients,
four of them showed a worthwhile improvement but without
resulting completely seizure-free since surgery (Engel’s score III),
while two resulted almost seizure-free, showing rare disabling
seizures since surgery (Engel’s score II), thus suggesting that the
EZ was correctly identified in a subset of patients only.

Two methods were used for the identification of the PZ (as
shown in Supplementary Table 4). First, the clinicians evaluated
the PZs subjectively based on of the EEG and SEEG recordings
gathered throughout the two-step procedure (non invasive and
invasive). Second, the PZs were identified automatically based on
the SEEG recordings: For each patient, all seizures were isolated
in the SEEG time series. The bipolar SEEG was considered
(between pairs of electrode contacts) and filtered between 1 and
50 Hz using a Butterworth band-pass filter. An area was defined
as a PZ if its electrodes detected at least 30% of the maximum
signal energy over all contacts, and if it was not in the EZ.
In the following, we call the PZs identified by the subjective
evaluation of clinicians PZClin and the PZs identified through
SEEG data PZSEEG.

2.6. Network Measures
The topological properties of a network can be examined
by using different graph measures that are provided by the
general framework of graph theory. These graph metrics can
be classified in terms of measures that cover three main
aspects of the topology: segregation, integration, and centrality.
The segregation accounts for the specialized processes that
occur inside a restricted group of brain regions, usually
densely connected, and it eventually reveals the presence of
a dense neighborhood around a node, which results to be
fundamental for the generation of clusters and cliques capable to
share specialized information. Among the possible measures of
segregation, we have considered the clustering coefficient, which
gives the fraction of triangles around a node and it is equivalent
to the fraction of neighbors of the node that are neighbors of each
other as well. In particular, the average clustering coefficient C of
a network gives the fraction of closed triplets over the number
of all open and closed triplets, where a triplet consists of three
nodes with either two edges (open triplet) or three edges (closed
triplet). The weighted clustering coefficient cwi (Barrat et al., 2004)
considers the weights of its neighbors:

cwi =
1

si(ki − 1)

∑

j,h

wij + wih

2
aijaihajh, (7)

where si is the node strength (to be defined below), ki the node
degree,wij the weight of the link, and aij is 1 if the link i → j exists
and 0 if node i and j are not connected. The average weighted
clustering coefficient CW is the mean of all weighted clustering
coefficients: CW = 1

N

∑

i ci.
The measures of integration refer to the capacity of the

network to rapidly combine specialized information from not
nearby, distributed regions. Integration measures are based on
the concept of communication paths and path lengths, which
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estimate the unique sequence of nodes and links that can carry
the transmission flow of information between pairs of brain
regions. The shortest path dij between two nodes is the path with
the least number of links. The average shortest path length of node
i of a graph G is the mean of all shortest paths from node i to
all other nodes of the network: L(G, i) = 1

N−1

∑

j∈N,j 6=i dij. The
average shortest path length of all nodes is the mean of all shortest
paths (Boccaletti et al., 2006): L(G) = 1

N−1

∑

i,j∈N,i6=j dij. In a
weighted network, distance and weight have a reciprocal relation.
If a weight between two adjacent nodes is doubled, their shortest

path is cut by half: L(G) = 1
N−1

∑

i,j∈N,i6=j
dij
wij

.

Centrality refers to the importance of network nodes and
edges for network functioning. The most intuitive index of
centrality is the node degree, which gives the number of links
connected to the node; for this measure, connection weights are
ignored in calculations. In this study, we employ the network
measure node strength si, which corresponds to the weighted
node degree of node i and equals the sum of all its weights: si =
∑

j∈N wij. Accordingly, the average node strength S corresponds

to the mean of all node strengths S = 1
N

∑

i si. All finite networks
have a finite number of shortest paths d(i, j) between any pair of
nodes i, j. The betweenness centrality cB(s) of node s is equal to all
pairs of shortest paths that pass through s divided by the number

of all shortest paths in the network: cB(s) =
∑

i,j∈N
d(i,j|s)
d(i,j) . For

the weighted betweenness centrality, the weighted shorted paths
are used.

2.7. Spectrogram Estimation
To generate the spectrograms, the signal package, part of the
SciPy library (Virtanen et al., 2020), is used. The subroutine
stft (short-time Fourier transform, STFT) generates Fourier
transforms F[s(t)](t, f ) of a signal s(t) within a running time
window of length 1Twin at time t. The STFT is performed
using overlapping windows (95% overlap) throughout this study.
The window length is set to 1Twin = 0.2 s, leading to a
sufficiently fine resolution in time and frequency. The colors in
the spectrograms code the normalized power spectral density
|F[vk(t)](t, f )|2/(max |F[vk(t)](t, f )|2) obtained from voltage
signals vk of different populations. For a better visibility, a log10
scale is used and values<10−2 are set to 10−2. Fourier transforms
of the individual voltage signals vk of different populations are
first calculated giving rise to individual power spectral densities
that are subsequently averaged over the populations to obtain
the data favg shown in Figures 2, 9. Finally, the spectrograms
are shifted to the right by 0.1 s to preserve causality in
correspondence of the stimulus onset.

3. RESULTS

The epileptic attractor is commonly described in terms of a
self-sustained limit cycle that comes from the destabilization
of the physiological activity while multiple types of transitions
allow for the accessibility of seizure activity, status epilepticus,
and depolarization block, that coexist, as verified experimentally
in El Houssaini et al. (2020). The single-population firing rate

(Equation 4) shows, in the absence of forcing, only fixed points
as attractors. As it will become clear in the following section,
a stable node and a stable focus are observable, separated by
a bistability region between a high- and a low-activity state,
whose boundaries are the locus of a saddle-node bifurcation
(for more details see Montbrió et al., 2015). In this context
are not observable self-sustained oscillations but only damped
oscillations at the macroscopic level that reflect the oscillatory
decay to the stable fixed point. This oscillatory decay will be
considered as the representative of a seizure-like event, not being
able to observe a stable limit cycle to describe the emergence of
a fully developed seizure, as shown in other phenomenological
mathematical models (Jirsa et al., 2014; Chizhov et al., 2018),
commonly used to describe a detailed taxonomy of seizures.
In particular, seizure-like events will be used as a paradigm to
investigate the propagation of seizure-like activity in the network.
A detailed comparison with the taxonomy of seizures described
by other phenomenological models (Jirsa et al., 2014; Saggio
et al., 2017; Chizhov et al., 2018) and the possible extension
of the single-population firing rate (Equation 4) to show self-
emergent periodic and bursting dynamics at the macroscopic
level is reported in section 1 in the Supplementary Material.

3.1. Healthy Subjects
3.1.1. Phase and Bifurcation Diagrams
The analysis of the single-population firing rate Equations (4),
performed in Montbrió et al. (2015), has revealed that there are
three distinct regions, when considering the phase diagram of the
system as a function of the external drive η̄ and synaptic weight
J, in absence of time-dependent forcing [I(t) = 0]: (1) a single
stable node equilibrium corresponding to a low-activity state, (2)
a single stable focus (spiral) generally corresponding to a high-
activity state, and (3) a region of bistability between low and high
firing rates. In particular, in the region where the stable focus
is observable, the system undergoes damped oscillatory motion
toward this fixed point. The presence of damped oscillations at
the macroscopic level reflects the transitory synchronous firing of
a fraction of the neurons in the ensemble. While this behavior is
common in networkmodels of spiking neurons, it is not captured
by traditional firing-rate models (Schaffer et al., 2013; Devalle
et al., 2017; Taher et al., 2020).

When considering the multipopulation neural mass model
(5) with homogeneously set η̄(k) = η̄, the corresponding phase
diagram (shown in Figures 1B,C) is qualitatively the same as the
one shown in Figure 1 in Montbrió et al. (2015), since the same
attractors are observable. In the original model, these attractors
are single-population states, while they reflect multipopulation
states in the present case. Single-population low-activity (LA)
and high-activity (HA) states translate into network LA and
HA states. In the former, all populations have low, in the
latter high firing rates. We observe that the single-population
bistability accurately reflects the hysteretic transition in the
network when changing η̄. In the following, we will address how
this relation between single-node and multipopulation phase
diagram occurs.

The network bifurcation diagrams shown in Figures 1A1–A3

for increasing σ values are obtained by performing an adiabatic
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FIGURE 1 | Phase and bifurcation diagrams for subject H1. (A1–A3) Equilibrium firing rates
〈

r*
〉

vs. η̄ for the up sweep (blue dots) and down-sweep (orange squares).

For each η̄ ∈ [−50, 10] in steps of 1η̄ = 1.5, the system is initialized using the final state of the previous run and evolves for 2 s after which the average network firing

rate in the equilibrium state is determined. Different panels correspond to different σ values: σ = 1.5 (A1), σ = 1 (A2), and σ = 0.5 (A3). The solid (dashed) black line

corresponds to the stable (unstable) equilibria in the single-node case. Maps of regimes as a function of σ and η̄ showing the network average
〈

r*
〉

color-coded for up-

(B) and down-sweep (C), obtained by following the same procedure as in (A1–A3) for σ ∈ [0, 2] in steps of 1σ = 0.05. The black line indicates the single-node map

of regimes like in Montbrió et al. (2015). In panels (B,C) the cyan square and triangle mark η̄ = −6.3,−9.54, respectively. Parameter values: Npop = 90, τm = 20 ms,

1 = 1, Jkk = 20, Jkl = 5J̃kl , ∀k 6= l.

analysis along with two different protocols such as up sweep and
down-sweep. Following the up-sweep protocol, the state variables
rk, vk of the system are initialized at η̄ = −50 with the values
rk = 0, vk = 0; then the excitability is increased in steps
1η̄ = 1.5 until the maximal value η̄ = 10 is reached. At
each step, the initial conditions for mean firing rates and mean
membrane potentials correspond to the final state obtained for
the previous η̄ value. Note, that the average firing rate increases
for increasing η̄ values, both for the single node and the network.
Once the maximum η̄ value is reached, the reverse procedure is
performed, thus following the down-sweep protocol. This time
the initial conditions correspond to the high-activity state at
η̄ = 10, while the excitability is adiabatically decreased in steps
1η̄ = 1.5 until a low-activity state at η̄ = −50 is approached. For
both protocols, the investigation of the nature of the dynamics
emerging at each η̄-step is done by using the same procedure:
the system is simulated for a transient time T = 2 s until it has
reached an equilibrium state. At this time, the firing rate averaged
over-all populations 〈r∗〉 is calculated and the next η̄ iteration is
started, using this final state as initial conditions.

The transition from LA to HA network dynamics is hysteretic:
the system does not follow the same path during the up sweep
and the down-sweep protocol. When the system is initialized
in the low activity regime, it remains there until a critical
excitability value η̄HA is reached. For further increase of the
excitability, the average firing rate exhibits a rapid jump to higher
values. However, when the system is initialized in the high-
activity regime, this regime survives for a large η̄ interval until it

collapses toward a low-activity state at η̄ < η̄LA, where η̄LA <

η̄HA. There is a considerable difference between the critical
excitability values required to lead the system to a high-activity or
a low-activity regime and the difference increases for increasing
coupling strength σ . While the up-sweep protocol (blue dots)
is well approximated by the bifurcation diagram of the single
population, represented in Figures 1A1–A3 by the black (dashed
and continuous) curve, this is no more true for the down-sweep
protocol, where the coupling plays a role in determining the
transition at the multipopulation level (orange squares). This
results in different phase diagrams for the two protocols: the
maps of regimes are dominated by the low-activity (high-activity)
state when following the up-sweep (down-sweep) protocol.
Merging these results, we observe that the region of bistability
between LA and HA network dynamics is still identifiable by the
original boundaries found for the single population in Montbrió
et al. (2015) (black curve in Figures 1B,C), even though, for the
multipopulation system, the region is wider.

We can make further use of the single-population bifurcation
diagram to understand the hysteretic transition of the
multipopulation model in more detail. First of all, the weight
matrix {Jkl} has its largest components on the diagonal (Jkk = 20),
reflecting recurrent synapses. This means that synaptic inter
coupling plays a minor role, as long as the firing rates of the
adjacent populations are small. During the up-sweep protocol,
this condition is fulfilled, as all populations are initialized in a
low activity regime. Under these conditions, the dynamics of all
nodes are rendered identical and equal, approximately, to the
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single population dynamics. Consequently, the single-population
LA branch describes the multipopulation LA behavior (in terms
of 〈r∗〉) accurately as a function of η̄. Second, as soon as the
single-population LA state vanishes for large enough η̄ > η̄HA,
the individual nodes of the multipopulation system all transit to
the HA state.

In this HA regime, deviations of the network bifurcation
diagramwith respect to the single-population curve are observed.
The populations in the system have large firing rates, such that
the inter-coupling becomes a relevant contribution to the total
current on each node. This explains why the LA branch of the
network is located at higher firing rates with respect to the black
single-population curve: The populations in the network behave,
approximately, as decoupled, irrespectively of being subject, in
the HA regime, to an additional current due to the inter-coupling.
This effectively shifts the single-population bifurcation diagram
toward smaller η̄. Moreover, this shift occurs for each population
individually, depending on the matrix {Jkl}. During the down-
sweep protocol, due to the population-dependent shift, the HA
population states vanish at different values of η̄. Accordingly,
whenever this occurs, the network average 〈r∗〉 decreases by
a small amount, such that the network LA state is reached
via various intermediate states. We can infer, using the same
type of argument, that single-population LA states disappear for
increasing η̄ in a region around η̄HA. They are not observed in
this study, due to the nature of the up-sweep protocol and the
initialization procedure of rk, vk.

From the reversed viewpoint, we can hypothesize, that
stable single-population HA states may take form near η̄LA for
increasing η̄ and stable LA states for decreasing η̄ near η̄HA.
This implies that the network possesses complex multistability
between many network states in the region η̄LA < η̄ <

η̄HA. For these states, the existence of LA and HA states of
individual populations are interdependent: Whether or not any
given population can be in the LA or HA state is conditioned by
the LA-HA configuration of all other populations. This not only
demonstrates how multistability emerges in the multipopulation
system but also influences the response of the network towards
transient input in such a setting. Most importantly, if such
an input recruits one population into high activity, other
populations might follow, leading to a cascade of recruitments.

3.1.2. Seizure-Like Recruitment in Dependence of

Perturbation Site and η̄

To analyze the response of the multipopulation system to
transient current, we stimulate one population with a step
function IS(t) of amplitude IS = 10 and duration tI = 0.4 s.
By setting η̄ = −9.54, the system is placed in the multistable
regime (cyan triangle in Figure 1C), but, due to the low η̄

value, it only allows for LA-HA configurations with most of the
populations in LA. The stimulation with an external current IS(t)
allows the system to reach a configuration with more populations
in the HA. This corresponds to choosing equivalently, in the
model, a higher excitability value for the single node such that
it crosses the bistability region, thus reaching the HA regime.
We start by initializing all nodes in the low-activity state and
stimulating a single node (Figure 2A). During the stimulation

(Figure 2A1), the stable states of the network change, due to
the strong additional current (Figure 2A2). More specifically,
the initial equilibrium vanishes and a new focus equilibrium of
the system appears as the only stable network state. This focus
is characterized by an LA-HA configuration for which only the
stimulated node finds itself in HA while the rest remains in
the LA regime; the focus is approached via damped oscillations
in the time interval 0 < t < 0.4 s (Figures 2A3,A4). Due
to the multistability in absence of stimulation, an identical LA-
HA configuration exists. Thus, when the current is removed, the
system is able to maintain the LA-HA configuration. However,
the position of the focus equilibrium is shifted in absence of the
transient input and is reached again, via damped oscillations for
t > 0.4 s.

When the perturbation of a single node has no consequences
on the dynamics of the other populations, as shown in
Figures 2A2–A4, we are in the presence of an asymptomatic
seizure-like event, where the activity is limited to the EZ
represented by the stimulated node and no propagation takes
place. For higher excitability values (η̄ = −6.3, marked by a
cyan rectangle in Figure 1B), the perturbation of a single node
gives rise to different response dynamics. In this case, other
brain areas are “recruited” and not only the perturbed node
but also other populations reach the high-activity regime by
showing damped oscillations (see Figures 2B2–B4). In terms
of pathological activity, the seizure-like event originates in the
EZ (as a result of the stimulation) and propagates to the PZ,
identified by the other regions which rapidly propagate the
oscillatory activity. The recruitment of the regions in the PZ can
happen either by independent activation of the single areas or by
activating multiple areas at the same time, in a domino-like effect
(Creaser et al., 2020), until the propagation involves almost all
populations (generalized seizure-like event).

The transition of a single population to the HA regime,
upon stimulus onset, is characterized by a transient activity
in the α − β band (10–14 Hz) and a sustained activity in
the γ band (40–80 Hz), present throughout the stimulation,
as shown in Figures 2A5,A6. In this study, the spectrograms
show time-varying power spectral densities (PSD) of the mean
membrane potentials averaged over the network (Figure 2A5)
and for the single stimulated population (Figure 2A6). When
more populations are recruited at higher excitability values,
in addition to the former activity, it is possible to observe γ

activity at higher frequencies (as shown in Figures 2B5,B6).
High-frequency oscillations, between 80 and 500 Hz, can be
recorded with EEG and reflect the seizure-generating capability
of the underlying tissue, thus being used as markers of the EZ
(Jacobs et al., 2012). Moreover, even for the generalized seizure-
like case, the low-frequency band activity is evoked whenever
a brain area gets recruited, leading to a sustained signal in
the time interval 1.1 s < t < 1.8 s, where a majority of
the populations approaches the HA state. Similar results have
been obtained for all the other investigated subjects (results
not shown).

In the following, we report a wide analysis of the impact
of the perturbation site on the recruitment effect, for different
excitability values. As before, we use a step current IS(t), with
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FIGURE 2 | Spectrograms of mean membrane potentials for healthy subject H1. (A1, B1) Stimulation current I(k)S , (A3, B3) population firing rates rk , and (A4, B4)

mean membrane potentials vk for the EZ (orange) and other populations (black). The blue curves show the network average firing rate and membrane potential.

Non-stimulated node dynamics are plotted as transparent gray curves: some of the nodes adapt their voltage to the stimulation of the EZ and change during

stimulation. (A2, B2) Space-time plots of the population firing rates rk , color-coding the value of the firing rate of each node, as a function of time. (A5, B5)

Spectrogram of the network average membrane potential and (A6, B6) of the vk of the EZ. Column A shows an asymptomatic seizure-like event for η̄(k) = η̄ = −9.54,

column B shows a generalized seizure-like event for η̄(k) = η̄ = −6.3. In both cases, the EZ node 46 is stimulated. Parameter values: Npop = 90, τm = 20 ms, 1 = 1,

Jkk = 20, σ = 1, Jkl = 5J̃kl , ∀k 6= l.

fixed amplitude IS = 10 and duration tI = 0.4 s, to excite a
single population. In each run, the stimulating current targets
a different brain area and the number of recruitments, i.e., the
number of populations that pass from the LA state to the HA state

is counted. The Npop = 90 brain areas are targeted, one at a time,
in 90 individual simulations. We repeat the procedure varying η̄

in a range [−15,−4], with steps of 1η̄ = 0.1. The results for five
exemplary subjects are shown in Figures 3A1–E1).
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FIGURE 3 | Number of recruited brain areas as a function of the excitability parameter η̄ for five exemplary healthy subject connectomes (A–E). Color coding is the

following: blue corresponds to the asymptomatic threshold (one area in HA regime); red represents 90 areas in HA regime (generalized threshold); cyan to purple

indicate intermediate recruitment values, white marks no recruitment. When performing a vertical cut, all nodes are characterized by the same η̄ for panels (A1–E1).

On the contrary, in panels (A2–E2), η̄G represents the mean value of a Gaussian distribution with standard deviation 0.1. Therefore, when perturbing one brain area at

a time, excitabilities are distributed and not uniform in the latter case; the results are averaged over 10 repetitions with different Gaussian excitability distributions.

(A–E) correspond to subjects H1, H5, H12, H16, and H19. Parameters: Npop = 90, 1 = 1, σ = 1, IS = 10, tI = 0.4 s.

FIGURE 4 | (A) Number of recruited brain areas as a function of the excitability parameter η̄, as shown in Figures 3A1–E1, averaged across all subjects. (B) η̄

threshold values for asymptomatic and generalized seizure-like events. Gray dots show the thresholds for each brain area and each subject. Blue and red dots show

the average over η̄
(k)
asy and η̄

(k)
gen across all subjects. The blue and red cross at the bottom shows the average value and its standard deviation for both thresholds

across all subjects and all areas. Parameters as in Figure 3.

If the perturbed area jumps back to the LA state when the
stimulation is removed and no further recruitment takes place,
then the total number of recruited areas is zero, the color is coded

in white. If the perturbed area remains in the HA state without
recruiting other areas, we are in presence of an asymptomatic
seizure-like event (blue regions). For every further recruited
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brain area, the color code changes from cyan to purple. If all brain
areas are recruited, we observe a generalized seizure-like event
(coded as red). For η̄ < −9, most of the targeted brain areas goes
back to the LA state, when the perturbation ends, while for η̄ ≈
−9, we generally observe asymptomatic seizure-like events for all
the subjects and most of the perturbation sites. For increasing η̄

values, the probability for larger recruitment cascades increases,
until the system exhibits generalized seizure-like events for η̄ >

−6. However, some notable differences between brain areas and
among the different subjects are observable. Brain area 72, for
example, corresponding to the rh-CAU, exhibits asymptomatic
seizure-like events at η̄ > −11 for most of the subjects, thus
suggesting that the rh-CAU favors pathological behavior with
respect to other brain areas. On the other hand, some brain
areas are less likely to cause generalized seizure-like events, when
stimulated, than others: brain area 40, for example, the rh-PHIP1,
causes no generalized seizure-like events for any η̄ > −5.
Note that, for very large η̄ values, the system does not exhibit
multistability anymore, but instead has only one stable state,
namely the network HA state, corresponding to the high firing
rate of all populations. Approximately, this happens for η̄ ∈
[−5.7,−4.9], with small variations among the subjects.

The scenario remains unchanged when we take into account
heterogeneous excitabilities η̄(k), as shown in Figures 3A2–E2.
In this case, η̄(k) is drawn from a Gaussian distribution with
mean η̄G, thus mimicking the variability among different
brain areas present in a real brain. The populations are
stimulated, as before, one at a time in individual simulation
runs. However, this time the procedure is repeated for varying
η̄G ∈ [−15,−4], while keeping the standard deviation of the
Gaussian distribution fixed at 0.1. Larger standard deviation
(≥ 1) hinder the rich multistability of the network, by
eliminating the bistability between LA and HA for individual
populations, due to excessively small or large η̄(k), thus impeding
the analysis of the impact of the stimulation, as shown in
the Supplementary Figure 1. In particular, for larger standard
deviation, an increasing amount of nodes reaches the stable
focus regime, thus being able to recruit other brain areas
before the stimulation is applied, while nodes whose effective
excitability turns out to be very small, are too far from the
bistability region to be able to reach the HA regime. The
results shown in Figure 3 are obtained averaging over 10
Gaussian distribution realizations of the η̄ parameter; slightly
more variability becomes apparent especially when considering
the threshold in η̄ to observe generalized seizures. Indeed, the
excitability threshold to observe generalized seizures is the most
drastically affected as the standard deviation increases, as shown
in Supplementary Figure 1.

An overview over all the investigated subjects is possible when
looking at Figure 4A, where is reported the average, over-all
subjects, of the data shown in Figures 3A1–E1 for five exemplary

1While the actual role of the specific regions might in reality be affected by other
factors, not captured by the used structural connectivity estimate and the details
of the current model, this highlights the effect of network structure on propensity
to seizure-like events. The (para)hippocampal region is, in fact, one of the most
commonly affected by epilepsy.

subjects only. The averaging operation smears out the transition
contours, and while the region of generalized seizure-like events
shrinks, it becomes wider in the region of accessibility of partial
seizure-like events, where a small percentage of nodes (∼ 20%)

are recruited. In Figure 4B we report η̄(k)asy (η̄
(k)
gen), i.e., the smallest

η̄ value for which an asymptomatic (generalized) seizure-like
event occurs when stimulating population k. Gray dots indicate

the individual thresholds η̄
(k)
asy and η̄

(k)
gen for each of the 20 subjects

and 90 brain areas; the averages over all subjects are denoted
by blue and red circles, respectively, for each k ∈ [1, 90].
Averaging these thresholds over all subjects and brain areas yields
an asymptotic threshold of η̄asy = −9.36±0.43 and a generalized
threshold of η̄gen = −6.04 ± 0.38. Brain areas 72, 73, 67, and 3
have lower thresholds for asymptomatic seizure-like events, areas
40, 86, and 82 have larger thresholds for generalized seizure-like
events and do not fall within a standard deviation. The variability

in the response among the different areas is more evident for η̄
(k)
gen

values compared to the η̄
(k)
asy ones: the threshold values to obtain

an asymptomatic seizure-like events are very similar among the
areas and among the subjects, while the threshold values to
obtain a generalized seizure-like event strongly depend on the
stimulated area and on the subject.

3.1.3. The Role Played by Brain Area Network

Measures on Enhancing Recruitment

As shown in Figure 4B, η̄
(k)
asy does not vary significantly among

the subjects and among the brain areas; it mainly occurs in

the range η̄
(k)
asy ∈ [−10,−9], with just few nodes (k ∈

[72, 73, 67, 3]) showing smaller values. Since each brain area
is characterized by its network measure, the first hypothesis
that we aim to test, is the role played in the identification
of the threshold, by the different network measures. We will
verify in the following that connection strength and shortest

path length are determinants to identify the threshold η̄
(k)
gen:

Generalized seizure-like events are enhanced by nodes forming
a clique that rapidly communicate through a dense subgraph.

In particular, we investigate the dependency of η̄
(k)
asy on the

node strength, clustering coefficient, shortest path length, and
betweenness centrality of the corresponding brain area, as shown
in Figure 5. A very strong correlation between asymptomatic
threshold and node strength becomes apparent: Brain areas
that are strongly connected, need smaller excitability to pass
from the LA to the HA regime (Figure 5A1). The same holds
for the clustering coefficient, even though the relationship is
less sharp (Figure 5B1). Moreover, it is possible to observe

a direct correlation between η̄
(k)
asy and shortest path length

(i.e., shortest is the path and smallest is the threshold value),
while betweenness is smaller for higher threshold values
(Figures 5C1,D1, respectively).

When considering the threshold for generalized seizure-like
events, we face a higher variability among different nodes (as

shown in Figure 4B, η̄
(k)
gen varies mainly between −6.5 and

−5.5). The dependency of η̄
(k)
gen on the node strength reveals

a strong correlation: Areas with very small node strengths
are characterized by large thresholds and are less likely to
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FIGURE 5 | Thresholds η̄
(k)
asy for asymptomatic seizure-like events (A1–D1) and η̄

(k)
gen for generalized seizure-like events (A2–D2) as a function of node measures: (A)

Node strength, (B) clustering coefficient, (C) average shortest path length, and (D) betweenness centrality. For each panel, the thresholds η̄
(k)
asy, η̄

(k)
gen are calculated for

all k ∈ [1, 90] brain areas and averaged over all 20 subjects. Parameters as in Figure 3.

cause generalized seizure-like events. On the other hand, for

large node strengths, η̄
(k)
gen saturates at a value ≈ −6.5 (as

shown in Figure 5A2). The clustering coefficient, shown in
Figure 5B2), shows a similar relationship as the node strength,
even though more scattered. This is not surprising since node
strength and clustering coefficient are strongly correlated with
each other (the Pearson correlation coefficient, in this case, is
r = 0.75, as shown in Supplementary Figure 2), thus explaining
the similarity between the analyses reported in Figures 5A,B.
Moreover, regarding the integration measure, it turns out that

the average shortest path length correlates positively with η̄
(k)
gen

(as shown in Figure 5C2). Brain areas that are characterized, on
average, by a short path to all the other areas are more likely
to cause generalized seizure-like events. Finally, the betweenness

centrality correlates negatively with η̄
(k)
gen (Figure 5D2). This

means that brain areas that are crossed by many shortest path
lengths (large betweenness centrality) are more likely to cause
generalized seizure-like events. For increasing node strength,
clustering coefficient, and betweenness centrality, we observe a

saturation toward η̄
(k)
gen ≈ −6.5, that corresponds to the critical

excitability value, during the up-sweep simulation, at which the
system jumps to the HA network state (Figure 1A2).

To explore the causal mechanisms of brain dynamics and
understand the sequential mechanism of node recruitment
in more detail, we investigate the timing at which different
brain areas are recruited. For this, the excitability parameter η̄,

common to all populations, is set to the threshold value η̄
(k)
gen

of the perturbed brain area k, ensuring complete recruitment

of all populations, when perturbing populations k ∈ [1, 90].
The results shown in Figure 6 are obtained by averaging over k
and the different subjects: in 90 individual simulations for each
subject, a single brain area k = 1, . . . , 90 is stimulated with an
external step current IS(t), characterized by an amplitude IS = 10
and a duration tI = 0.4 s. For each k, the recruitment time of
all the other areas is registered. The stimulated brain area stands
in for the EZ. The brain areas and corresponding node measures
are sorted by the recruitment time in ascending order. The values
for recruitment time (Figure 6A), the weight of a connection
between a single area and the EZ (Figure 6B) and shortest path
(Figure 6C) is finally obtained averaging over all the stimulated
nodes and all the subjects (i.e., the average is performed over
1, 800 simulations across all 90 brain area perturbations times
for all 20 subjects). The same averaging procedure has been
employed to obtain the data shown in Figures 6D–G. However,
in this case, the node measures are evaluated over all the
connections of the recruited node minus the connection to
the EZ. While ignoring the link to the exciting area (EZ), the
overall network measure for connection weights (Figure 6D),
clustering coefficient (Figure 6E), shortest path (Figure 6F), and
betweenness centrality (Figure 6G) are reported.

On average, the first recruited brain area (labeled as 1) is
connected to the EZ with a weight equal to 0.25 (1/4 of the
maximum possible weight), and it is characterized by an average
shortest path length to the EZ of <4.7. Moreover, the area is
recruited within an average time of <156 ms (calculated after
the onset of the external perturbation current). However, the
first recruited area has, not only the strongest weight and the
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FIGURE 6 | (A) Recruitment times reported in descending order: Brain area 1 is the brain area that is recruited first and brain area 90 is the last recruited brain area.

(B) Connection weights between the recruited brain area and the EZ, ordered according to their recruitment time, thus following the indexing of (A). (C) Shortest path

between the recruited area and the EZ, ordered according to their recruitment time. (D) Connection weights between the recruited brain area and all the nodes except

EZ, ordered according to their recruitment time. (E) Clustering coefficient between the recruited brain area and all the nodes except EZ, ordered according to their

recruitment time. (F) Shortest path between the recruited area and all the other nodes except EZ, ordered according to their recruitment time. (G) Betweenness

centrality between the recruited brain area and all the nodes except EZ, ordered according to their recruitment time. The excitability η̄(k) is set to the subject-specific

threshold η̄
(k)
gen, according to Figure 3B for each subject separately. Data are averaged over all subjects and all the stimulated areas. Parameters: Npop = 90, 1 = 1,

σ = 1, IS = 10, tI = 0.4 s as in Figure 3.

shortest path to the EZ but also has, in general, the largest
node strength, largest clustering coefficient, shortest average
path length, and largest betweenness centrality. The seizure-like
event spreads rapidly along with the brain areas with strongest
connection weights outgoing from the EZ; the stronger weights
are associated with the shortest paths from the EZ. Overall, a
region well connected is a region well recruited; this is related
to the log-normal distribution of the weights (as shown in
Supplementary Figure 3): few connections per node have a
strong weight, thus allowing for fast recruitment. Note that the
results for one exemplary subject and just one perturbed brain
area per time (i.e., not averaged over all the brain areas and
over all subjects) are comparable, even though the corresponding
relationships are characterized by more variability (data not
shown).

If we vary the amplitude IS of the perturbation current, the
recruitment time will vary accordingly, decreasing for increasing
IS. In particular, in Figure 7we show an exemplary case, obtained
from the stimulation of one brain area (45), for a specific
subject (results are similar for other trials). Irrespectively of the
recruitment order, the time needed by the first 10 recruited brain
areas to pass from the LA to the HA state decreases slightly for
increasing amplitude. However, this decrease reaches saturation
at a current value IS ≈ 40 already. The order of recruitment varies
little: we observe some exchanges between the 4-th and 5-th and
between the 9-th and 10-th recruited areas. For example, for an
amplitude IS = 15, the 9th recruited area (dark blue circles) gets
recruited earlier than the 10th area (pink dots), while, for very
strong currents (IS = 100), the 9th area gets recruited latest. On
the other hand, we do not observe a significant change in the
recruitment time and order if we increase the duration tI of the
stimulation (as shown in Supplementary Figure 4).

FIGURE 7 | Recruitment times of the first 10 recruited areas as a function of

the input current IS. The strength of the input current is varied between 0 and

100 on the x-axis. The order of the recruitment is color-coded for each current

strength, and it changes slightly with different current strengths. Parameters:

Npop = 90, 1 = 1, σ = 1, tI = 0.4 s, η̄(k) = η̄ = −6, stimulation site: brain area

k = 45 of subject H1.

3.2. Epileptic Patients
3.2.1. Phase and Bifurcation Diagrams
In this section, the structural connectivity matrices of epileptic
patients are employed and an analysis, analogous to the one
in section 3.1.1, is provided. We present the phase and
bifurcation diagrams for the multipopulation neural mass model,
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employing the structural connectivity matrices of epileptic
patients. As detailed before, the bifurcation diagrams shown
in Figures 8A1–A3, for different σ values, are obtained by
performing an adiabatic scan along η̄(k) = η̄, following the up-
and down-sweep protocols.

As for the healthy subjects, the transition is hysteretic with
η̄LA < η̄HA. However, in this case, the width of the hysteretic
transition is bigger, especially for larger σ values, as testified
by the comparison with the dotted red curve, reported in
Figures 8A1–A3, that represents the results shown in Figure 1.
This increased width can be translated in terms of the extension
of the multistability region in the phase diagram (as shown in
Figures 8B,C), which turns out to be slightly larger than before.
Also in this case, the results for a healthy subject are reported
for a better comparison (continuous red curve in Figures 8B,C).
The increase in size mainly occurs due to a shift of η̄LA, i.e., of
the left boundary of the multistability regime. In this region, the
transition from HA to LA, following the down-sweep, is more
smooth and elongates toward smaller η̄ values. This implies that,
in this transition region, more single population HA states exist
for epileptic patients than for healthy subjects. In other words,
brain areas of epileptic subjects are more prone to recruitment2.

While the phase diagram is obtained in the absence of time-
varying input, we investigate the response of the multipopulation
system to transient stimulation in the following. As for the
healthy subjects, a single population is excited by injecting a step
current IS(t) of amplitude IS = 10 and duration tI = 0.4 s.
Initially (t < 0), the system is in a multistable regime, starting
in the low-activity network state. For small η̄ values (η̄ = −14,
identified by the triangle in Figure 8C), when a single node is
stimulated, the system reacts analogously to the healthy subject
case: during the stimulation, only one stable network state exists,
i.e., a focus equilibrium with an LA-HA configuration for which
only the stimulated node is in HA (Figure 9A2). This focus is
approached via damped oscillations (0 s < t < 0.4 s). When
the stimulation is removed, the network maintains the LA-HA
configuration, but approaches the new location of the focus
again via damped oscillations (Figures 9A3,A4). As a result, the
stimulated node has large firing activity, while the remaining
network is in a LA regime. For higher excitability values (η̄ =
−7.5, identified by the square in Figure 8B), the perturbation
of a single node gives rise to a cascade of recruitments, where
other brain areas, initially not perturbed, reach the HA regime by
showing damped oscillations (Figures 9B2–B4). With respect to
the recruitment features shown in Figure 2, we observe in this
study a faster emergence of the generalized seizure-like event:
once a brain area is stimulated, the others react, in-substantial
number, quite immediately.

Looking at the spectrograms, the transition of the stimulated
population to the HA regime is characterized by a transient
activity at low frequency (< 20 Hz) and a sustained activity in

2Please note that, irrespectively of the numerical results, any difference observed
between the structural connectivity matrices obtained from the cohort of healthy
subjects and epileptic patients may be (at least partially) ascribed to the different
acquisition and processing procedures in the two research centers rather than due
to disease-related causes.

the γ band (50–180 Hz), observable throughout of the stimulus,
as shown in Figure 9A6, where the spectrogram for the single
stimulated population is reported. Regarding the spectrogram
of the mean membrane potentials averaged over the network
populations (Figure 9A5), it turns out that the low-frequency
activity in the δ, θ bands is present, while the activity at high
frequency simply reflects the activity of the stimulated area.
Activity in the δ band, together with multiple types of α-like
rhythms have been recently found in a network of two Jansen-
Rit neural mass models, representing two cortical regions, as a
result of input changes in the other region (Ahmadizadeh et al.,
2018), thus confirming that the range of possible activity varies
with changes in the external inputs and interconnectivity gains.

In the case of large recruitment events, at larger excitability
values, it is possible to observe γ activity at higher frequencies
(as shown in Figures 9B5,B6), which is enhanced with respect
to the situation where an asymptomatic seizure-like event is
present. Moreover, comparing the spectrograms in Figure 9

and those reported in Figure 2, we see that the activity takes
place at higher frequency ranges when considering structural
connectivity matrices of epileptic patients and the activity is
mainly concentrated in the EZ. A further comparison is possible,
looking at Figures 9A8–B8, where the spectrograms for the
healthy subject H2 are reported.With respect to the case shown in
Figure 2, the excitability parameter has been increased to observe
a faster domino-like effect, on the same temporal scale as for
the epileptic patients. While high-frequency oscillations (>200
Hz) are observable for the epileptic patient case, they are not
detectable in Figure 9B8 for the healthy subject case. The last
statement may be qualified, however, by recent studies proposing
high-frequency oscillations (80–500 Hz) recorded not only at
seizure onset but also between seizures (the interictal period),
as a putative new marker of the epileptogenic focus (Jacobs
et al., 2012). More specifically fast cortical ripples superimposed
to interictal epileptiform discharges were correlated with the
seizure onset zone and primary propagation area in neocortical
epilepsy (Khadjevand et al., 2017). Neocortical ripples were also
found to be more specifically confined to the seizure onset and
propagation regions, and thus a better marker compared to
interictal epileptiform discharges alone (Wang et al., 2013). High-
frequency oscillations, as obtained via numerical experiments
and shown in Figures 9B5,B6, are much more frequent in the
seizure-like onset zone than outside, where they are often totally
absent. The rather empty spectrograms of mean membrane
potentials for patient E6 are a result of rather rapid recruitment
of a majority of nodes, thus giving rise to a strong signal
change, immediately upon recruitment, which suppresses the
rest of the signal in the spectrogram. At the same time, the
damped oscillations are all compressed within a narrow time
window, and not very elongated in time, as it happens for
healthy subjects (as shown in Figure 2). In other words, if the
generalized seizure-like event is rapid, all the signals overlap,
and this is especially clear looking at the strong low-frequency
bands. A fast generalized seizure-like event, in absence of high-
frequency oscillations outside the EZ, can be obtained for
healthy subjects only increasing the excitability parameter: for
higher η̄ values, the recruitment is more sudden, as shown
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FIGURE 8 | Phase and bifurcation diagrams for patient E6. (A1–A3) Equilibrium firing rates
〈

r*
〉

vs. η̄ for the up sweep (blue dots) and down-sweep (orange squares).

For each η̄ ∈ [−50, 10] in steps of 1η̄ = 1.5, the system is initialized using the final state of the previous run and evolves for 2 s after which the average network firing

rate in the equilibrium state is determined. Different panels correspond to different σ values: σ = 1.5 (A1), σ = 1 (A2), and σ = 0.5 (A3). The solid (dashed) black line

corresponds to the stable (unstable) equilibria in the single-node case. The dotted red line depicts the results for the healthy subject H1 reported in Figure 1. Maps of

regimes as a function of σ and η̄ showing the network average
〈

r*
〉

color-coded for up- (B) and down-sweep (C), obtained by following the same procedure as in

(A1–A3) for σ ∈ [0, 2] in steps of 1σ = 0.05. The black line indicates the single-node map of regimes like in Montbrió et al. (2015). The red solid line indicates the

boundaries of the map of regimes previously as shown in Figure 1 for the healthy subject H1. In (B,C) the cyan square and triangle mark η̄ = −7.5,−14, respectively.

Parameter values: Npop = 88, τm = 20 ms, 1 = 1, Jkk = 20, Jkl = 5J̃kl , ∀k 6= l.

in Figure 9B8). A difference between the signals obtained by
numerically simulating the multipopulation exact neural mass
model and the high-frequency oscillations observed in human
intracranial EEG studies can be found in the different oscillation
amplitudes: high-frequency oscillations recorded during pre-
surgical evaluation in patients, both at the seizure onset and
during the interictal period, are characterized by a low amplitude
(Allen et al., 1992; Traub et al., 2001; Worrell et al., 2004;
Zijlmans et al., 2012), while this is not the case in this study. We
can conjecture that higher amplitudes are related to the nature
of the coupling, which we have chosen globally coupled and
fully excitatory.

3.2.2. Temporal Recruitment of Clinically and SEEG

Predicted PZs
In the following, we test the clinical predictions for epileptic
patients, by choosing the EZs, identified by clinical doctors
via presurgical invasive evaluation, as perturbation sites. We
investigate the recruitment times of different brain areas
following such a perturbation and compare the order of
recruitment with the experimental data given for each subject. A
general overview of the recruitment times of all brain areas, for all
patients, is shown in Figure 10. As perturbation sites, the clinical
EZs are used for all patients. For patients with several nodes
detected in the EZ, all areas were stimulated simultaneously. The
perturbation step current (IS = 10, tI = 0.4 s) is applied,
to each perturbation site, in correspondence with the dashed

vertical black line. The parameters are identical for almost all
patients and are chosen such that at least 90% of the brain areas
are recruited while still allowing multistability among various
LA-HA configurations, including the network LA state. For
each patient (identified via his/her number on the y-axis), the
recruitment time of each brain area is reported: the gray dots
represent the time values for each brain area. Superimposed
on the gray dots are orange and blue dots that identify the
brain areas belonging to the PZ, according to the non-invasive
(PZClin) or invasive (PZSEEG) presurgical evaluation, respectively.
The recruitment time-averaged over all brain areas is identified,
for each patient, by a green vertical line, while the boxes
contain the second and third quartile of the distribution, and
the whiskers have 1.5 the length of the interquartile range
(IQR) from the upper or lower quartiles. A one-sided Mann
Whitney U-test has been performed to estimate the statistical
significance of PZSEEG and PZclin recruitment times, as shown
in Supplementary Figure 5. Remarkably, the propagation zones
PZClin and PZSEEG turn out to be among the first recruited brain
areas for all patients in the numerical experiments. However,
the temporal dynamics vary for all patients, with E8 and E1
having late recruitments. Looking at the set of the first 10
recruited brain areas for each patient (reported in detail in
Supplementary Tables 5–7), we notice that most of the areas,
identified by clinicians as belonging to the PZ, are actually within
this set: for patients E4, E5, E6, E9, and E15, all the areas
belonging to PZClin are among the first 10 recruited areas, while
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FIGURE 9 | Spectrograms of mean membrane potentials for patient E6. (A1, B1) Stimulation current I(k)S , (A3, B3) population firing rates rk , and (A4, B4) mean

membrane potentials vk for the EZ (orange) and other populations (black). The blue curves show the network average firing rate and membrane potential. (A2, B2)

Space-time plots of the population firing rates rk , color-coding the value of the firing rate of each node, as a function of time. (A5, B5) Spectrogram of the network

average membrane potential and (A6, B6) of the vk of the EZ. Column A shows an asymptomatic seizure-like event for η̄ = −14, column B shows a generalized

seizure-like event for η̄ = −7.5. The EZ node 77 (rh-PrG) is stimulated. Parameter values: Npop = 88, τm = 20 ms, 1 = 1, σ = 1.25, Jkk = 20, Jkl = 5J̃kl , ∀k 6= l. For
comparison are shown the space-time plots of the population firing rates rk (A7, B7) and the spectrogram of the network average membrane potential (A8, B8) for

healthy subject H2. In accordance with the above panels, column A shows an asymptomatic seizure-like event (for η̄ = −9.20), column B shows a generalized

seizure-like event (for η̄ = −5.3). The EZ node 46 is stimulated. Parameter values: Npop = 90, τm = 20 ms, 1 = 1, Jkk = 20, σ = 1, Jkl = 5J̃kl , ∀k 6= l.
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FIGURE 10 | Recruitment times of all brain areas for the cohort of epileptic

patients: The recruitment time, reported on the x-axis, identifies the time

needed by a brain area to jump to the HA regime after the application of the

perturbation current. The boxplots consist of the recruitment times of all brain

areas for each patient. Patients are identified according to their numbers on

the y-axis. The median is represented as a green vertical line while the boxes

contain the second and third quartile of the distribution. The whiskers are

chosen with a maximum length of 1.5 × IQR (interquantile range) and show

the most extreme observed values that are within 1.5 × IQR from the upper or

lower quartiles. The gray dots represent the recruitment times for each brain

area. The orange dots show the recruitment of a brain area clinically predicted

to be part of the PZClin. The blue dots represent the recruitment of a brain area

that is part of the PZ according to the SEEG measurements PZSEEG.

Parameters: Npop = 88, 1 = 1, σ = 1.25, IS = 10, tI = 0.4 s, η̄(k) = η̄ = −7.5

[except for patients E1 (η̄ = −6) and E11 (η̄ = −6.5)].

the same holds for patients E2, E3, and E6 if we consider the
areas identified by the SEEG analysis as belonging to the PZSEEG.
In general, a large number of the first 10 recruited areas, as
revealed by the simulations, coincides with the areas that are
supposed to be crucial in the seizure spreading according to the
medical doctors (e.g., for patients E2, E3, E10, E12, E13, and
E14). Moreover, the predictability of the model is higher if we
compare the results with the predictions PZClin, while brain areas
belonging to the PZs, are in general recruited before the median
recruitment time. However, the model predictions are not good
for the following cases: for patients E1, E8, E11, and E14, the
areas belonging to the PZSEEG are only occasionally identified
(half or less than half of the times), while for patients E1, E8, and
E11, other nodes are generally recruited before those belonging
to the PZClin, that are identified with a percentage <50%. In all
the former bad cases, the EZ has not been correctly identified,
as results from the relative surgical outcomes (as shown in
Supplementary Table 3). Therefore, the incorrect identification
of the origin of seizure-like events may lead to a misleading
identification of the PZ: in other words, a different potential EZ

will lead to a different recruitment order, possibly closer to the
experimental data.

To evaluate the dependence of the shown results on the
chosen parameters, with the idea in mind of going toward
a more biologically realistic framework, we have repeated the
previous numerical experiment by employing a randomGaussian
distribution of the excitability parameter η̄(k) (as shown in
Figure 11). The distribution is centered at η̄G = −7.5 with
standard deviation 0.1 for all patients except E1 and E11. For the
latter patients, we shifted the center toward larger values, to get
a sufficient number of recruitments when the EZ is stimulated.
In all cases, the results are averaged over 10 different random
realizations of the distribution. More details on the impact of
different realizations of η̄(k) are given, for one exemplary patient,
in Supplementary Figure 6. For sufficiently larger standard
deviation than the one employed (≥ 1), a too large fraction of the
populations would not be able to exhibit bistability between LA
and HA, highlighting the system sensitivity to finite parameter
changes. However, for the chosen distribution, the results are
comparable with the ones obtained with identical η̄(k) = η̄,
shown in Figure 10. For patients E2, E3, E4, E5, E6, and E9 the
predicted PZ are always the first ones to be recruited. Moreover,
most of the areas are usually recruited in the first half of the
recruitment process, rapidly increasing in number, once the areas
in the PZ have been recruited (thus giving rise to a peak in the
histogram). As a general remark, in view of the distributed nature
of the excitabilities, recruitments at later times, with respect to the
former case with homogeneous η̄(k) = η̄, may now take place.

For patients with many nodes in the EZ, the recruitment
process may result to be more complex, as it happens for
patients E14 and E10, for which the histograms are less narrow,
but instead widely distributed. However, this cannot be taken
as a general rule, since comparable histograms are obtained
for patients E13 (one node in the EZ) and E8 (two nodes in
the EZ), while for E15 and E12 (with both four nodes in the
EZ) the histograms result to be very narrow, thus implying
a fast recruitment process of most of the brain areas. The
differences among the histograms can be partially justified by
the fact that patients have specific connectomes with individual
characteristics and by the analysis that we have proposed by
choosing similar η̄ values for all the patients. In this way, we
have preferred to have a general look at the multiple self-
emergent dynamics in a group of patients, instead of fine-tuning
the excitability parameter to obtain similar collective behaviors.
What we observe in this study is strongly related to what we
have presented in Figure 9: The recruitment speed depends on
the excitability parameter and the individual network structure.
Faster recruitment events may be obtained for different subjects
by increasing the excitability value. In the following section, we
try to understand, based on network topological measures, the
origin of the discrepancies among the clinical prediction of PZs
and the first recruited areas predicted by the presented model.

3.2.3. Relationship Between DTI Network Structure

and Temporal Seizure Recruitment
To understand the mechanism underlying the recruitment
events, we evaluate the relationship between the network
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FIGURE 11 | Histograms of recruitment times for all patients with epileptic. For each patient (identified by his/her number), the recruitment times of all the brain areas

are collected, once the EZ is stimulated. If several areas were identified in the EZ, they are all stimulated simultaneously. The EZ is chosen according to the presurgical

evaluation (as shown in Supplementary Table 4) and vary from one patient to the other. Parameters as in Figure 10 except for η̄(k) = −7.5± 0.1 (for E1

η̄(k) = −6± 0.1, for E11 η̄(k) = −6.5± 0.1). Results are averaged over 10 repetitions of different random Gaussian distributions.

structure, in terms of topological measures, and the recruitment
times of the first 10 recruited brain areas, as obtained
through numerical experiments. For simplicity, we consider
in this study patients with only one brain area in the EZ
and we report, in Figure 12, the potential EZ (yellow circle)
and the first 10 recruited areas in a graph representation.
The results relative to all the other patients are reported in
the Supplementary Figures 7–9. The first recruited areas are
ordered according to their recruitment times in clockwise order.
Moreover, we indicate in blue the areas belonging to the PZ,
as identified according to the presurgical invasive evaluation
(PZSEEG). Black lines identify the weighted connections between

all areas and their thickness is proportional to their weight. The
sizes of the circles representing each brain area are proportional
to their inverse recruitment time (Figures 12A1–D1), to their
weight connecting each area to the EZ (Figures 12A2–D2), and
to their inverse shortest path length between each node and the
EZ (Figures 12A3–D3), while the size of the yellow EZ circle
remains fixed.

Since in (Figures 12A1–D1) the node size is proportional
to the inverse recruitment time, large circles indicate early
recruitment while small circles indicate late recruitments;
hence, the circles become smaller clockwise. In panels
(Figures 12A2–D2) the node size is proportional to the
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FIGURE 12 | Graph plot of the first 10 recruited areas, ordered clockwise according to their recruitment times, as found via numerical experiments. Node circle size

corresponds to the inverse recruitment time (A1–D1), to the connection strength to the EZ (A2–D2), and the inverse shortest path length to the EZ (A3–D3). The size

of the yellow EZ remains fixed. Blue dots distinguish a recruited area to belong to the PZSEEG, i.e., the PZ identified according to the presurgical invasive evaluation.

Results are obtained for patients E2 (A1–A3), E3 (B1–B3), E6 (C1–C3), and E13 (D1–D3). Parameters as in Figure 10.

weight connecting each area to the EZ and it turns out that, for
all patients, the first recruited area has the strongest connecting
weight. However, after a few recruitments, this does not hold
anymore. There are many examples in which areas with a strong
weight to the EZ (as shown in e.g., area 46 or 48 for patient E6)
are recruited much later than areas with very small weights (e.g.,
area 83 for FB). The seizure-like event propagates as a chain
reaction and, therefore, the strongest connecting weight to the
EZ is only decisive for the very first recruited area. Later, strong
connections to other early recruited areas play a decisive role,
as it is the case for area 83 in E6 which has a weak connection
weight to the EZ. However, through its strong connection to
area 74, its weighted shortest path length to the EZ is quite short,
thus meaning that the weighted shortest path length to the EZ
cannot be underestimated to find the recruitment order. Indeed,
in (Figures 12A3–D3) one can see the good predictability of the
shortest path: the node size, proportional to the inverse shortest
path length to EZ, decreases in general with later recruitment.
This is expected, given the fact that the average shortest path
to the EZ considers all connections in the network, not just
the connections subgraph outgoing the EZ. An example of the
high predictability of the shortest path is given by node 38 in
patient E2, which has a shorter path length to the EZ than node

18. Node 38 is recruited before node 18 irrespectively of its
strong connection to node 16 and a connection strength to the
EZ comparable with the one of node 38. However, it is worth
noticing that, in general, the nodes that are recruited before
the areas belonging to the PZ, show either stronger connecting
weights, or shortest path length to EZ.

For later recruitments, the prediction becomes even more
difficult because one needs to account for the temporal order
of the seizing brain areas. As shown before, the area which is
first recruited is the one with the strongest connection to the
EZ. However, depending on the strength of the connection,
the recruitment time changes and it increases for decreasing
strength. In the case of patient E2, the recruitment of the second
area is determined, more by the strength of the connections to
the EZ (i.e., area 20) than by the connection to area 16, while
for the recruitments of the third and fourth areas, the strong
connections of node 18 to 16 and of node 17–38, i.e., the first
and second recruited nodes, are fundamental. On the other
hand, when the first recruited areas have strong connections
to the EZ, for example area 74 in patient E6, the successive
recruitments are strongly influenced by the first recruited area,
whose outgoing graph reveals areas that are recruited with high
probability. Thus, the connection to area 74 turns out to be, for
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FIGURE 13 | Relationship between network measure and recruitment time, as found via numerical experiments. (A) Shortest path to EZ; (B) Logarithmic value of the

weight to the EZ for the four patients with a single-node EZ. In (A) all four EZs are shown at (0, 0), while in (B) the EZs are omitted. The recruitment time is calculated in

seconds after the perturbation current has started. In (C,D) the recruitment time values are plotted according to their order, as a function of the shortest path to EZ (C)

and weight to EZ (D) for all 15 patients. In (D) the x-axis was inverted for better comparison. (E) Recruitment times trec of the areas belonging to PZSEEG and (F) PZClin

as a function of the shortest path length to EZ, for all 15 patients. For patients with several nodes detected in the EZ, all areas were stimulated simultaneously.

Parameters as in Figure 10.

the second, third, and fourth recruitment almost as important as
the connection to the EZ (i.e., area 76). Finally, if we compare two
late recruited areas that are characterized by the same shortest
path length to the EZ but with a path to the EZ that crosses very
different nodes, we observe that the area with the path going
through earlier recruited nodes is recruited earlier. The longer
the seizure-like event propagates, the less important the shortest
path length to the EZ becomes and the more important the
path lengths to other recruited nodes become. This underlines
the difficulty of predicting the seizure propagation in complex
networks, however, it is possible to summarize some findings
that hold for almost all patients (including those shown in
the Supplementary Figures 7–9): The first recruited node is,
in general, the one with the strongest connection to the EZ
and the shortest path; strong connections to early recruited
areas are fundamental to determine the recruitment order;

nodes belonging to the PZSEEG, that are not identified by the
simulations as first recruited nodes, show intermediate values of
connection strength and shortest path, while the nodes that are
recruited before are either more strongly connected the EZ or to
the previously recruited nodes.

To confirm the importance of the shortest path length
and the strength of the connections outgoing the EZ in
determining recruitment events, we report in Figure 13 the
recruitment time values as a function of the shortest path and
the connection weights for the patients with a single node as
potential EZ (Figures 13A,B) and for all 15 epileptic patients
(Figures 13C,D). While in Figure 13B, the recruitment time
is plotted over the logarithm of the weight, in Figures 13C,D

the values of the recruitment time, plotted as a function of
the shortest path (connection weight), are ordered according to
their recruitment order. In particular, the order for recruitment,

Frontiers in Systems Neuroscience | www.frontiersin.org 21 September 2021 | Volume 15 | Article 675272

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Gerster et al. Patient-Specific Network Connectivity

shortest path, and weight to EZ is ascending from small values
to large values. This means that, in Figure 13D, the areas with
the strongest weights (87th, 86th, etc.) correspond to the areas
that are recruited earliest (1st, 2nd, etc.). The ordering has
been preferred to the specific values of the shortest path and
connection weight when reporting data for all 15 patients, to
obtain a better visualization. For patients E2, E3, E13, and E6,
the recruitment time grows almost linearly with the shortest
path, while it decreases for increasing weights. This analysis is
confirmed in Supplementary Figure 10, where a regression fit is
performed over the data shown in Figure 13A, thus underlying
the approximately linear relationship between the shortest path
length and the recruitment time for larger trec. The relationship
is not anymore so evident when we consider different cases
of potential EZs, that is composed of more that one area.
However, in this case, it is still possible to affirm than the earliest
recruitments are associated with the shortest path lengths and the
strongest weights, while the nodes corresponding to PZSEEG or
PZClin that, according to the simulations, were recruited late, have
very long shortest path lengths to the EZs or very small weights.

In general, the recruitment mechanism is not completely
defined by the shortest path length and the connection weight,
therefore, it is not possible to match the pre-surgical predictions
in terms of PZSEEG and PZClin if we try to identify the nodes
belonging to the PZ by calculating the first recruited nodes
according to their shortest paths length or their connection
weights. In particular, it turns out that the PZSEEG areas are well
predicted by the investigated model if the shortest path length
between the predicted PZ and the EZ is short, as shown in
Figure 13E. However, for patients E8 and E10, the recruitments
of the nodes belonging to PZSEEG happen much later when
compared to brain areas of other patients with a similar shortest
path length. Equivalently in Figure 13F it is possible to observe
that, for short values of the shortest path length (<5), there
is a linear correspondence between short recruitment times
and PZClin areas that are characterized by small values of the
shortest path. However, the areas belonging to PZClin are still not
identifiable, in terms of topological measures, for patient E8.

To conclude this section on the influence of single
connectome topology in determining activity spreading and area
recruitment, we elaborate the data reported in Figure 10 by
sorting, from top to bottom, the patients according to their
median shortest path length, calculated on all areas with respect
to the EZ. In Figure 14 are shown the recruitment times of all
brain areas for all patients. Since patients are ordered according
to their median shortest path length, the brain areas of E4 have,
on average, the shortest paths to the EZ and the areas of E1 the
longest. In general, it is possible to detect a slight trend, for the
overall recruitment events, to delay with longer average shortest
path lengths. More in detail, E10 and E8 show both very long
and very short recruitment times, thus confirming the results
obtained in Figure 11 for Gaussian-distributed excitabilities. The
scattering of the recruitment times for these patients reflects that,
on average, their recruitment times are longer with respect to
the other patients. However, the mean recruitment times are
comparable with those of E11, E1, which show comparatively
late recruitments irrespectively of the fact that are characterized

FIGURE 14 | Recruitment times of all brain areas and all patients. The patients

are sorted from top to bottom according to their median shortest path length,

calculated by listing all the shortest path lengths of all areas to the EZ and then

locating the number in the center of that distribution. Gray dots and diamonds

show individual recruitments (we use two different symbols to highlight those

values that are beyond the boxplot whiskers); boxes cover the 2nd and 3rd

quartile and whiskers extend 1.5 times the IQR (whiskers are asymmetric,

comprising the most extreme observed values that are within 1.5×IQR from

the upper or lower quartiles). Parameters as in Figure 10.

by a longer median shortest path. A common characteristic
that brings together patients E10, E8, E11, and E1 is the
weak connection among the EZ and the first recruited area,
that slows down the recruitment time (as already mentioned
when discussing Figure 12), thus suggesting that is the interplay
between connection strength and shortest path to determine
the efficacy of seizure spreading and not the single topology
measure alone.

3.2.4. The Impact of the Input Current Strength on the

Recruitment Time
Following the same approach used to obtain the results shown
in Figure 7 for a healthy subject, we present here an analysis
on the impact of the stimulation strength on the recruitment
mechanism. Figure 15 displays the recruitment times of the
first 10 recruited areas using different amplitudes IS of the
step current IS(t), while fixing the duration tI = 0.4 s. The
analysis has been performed for patients E2 (Figure 15A), E3
(Figure 15B), E6 (Figure 15C), and E13 (Figure 15D), thus
integrating the information on the dependency on topological
measures presented in the previous section. As expected, the
recruitment times decrease for larger amplitudes. However, the
order of recruitment does not substantially change. This implies
that, whenever we increase the amplitude, the recruitment
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FIGURE 15 | Recruitment times of the first 10 recruited areas as a function of the input current IS for the epileptic patients (A) E2, (B) E3, (C) E6, and (D) E13. The

strength of the input current is varied between 0 and 100 on the x-axis, while its duration is kept unchanged at tI = 0.4 s with respect to the previous numerical

experiments. The order of the recruitment is color-coded for each current strength (i.e., blue dots indicate the recruitment of the EZ, green dots indicate the first

recruited area, red the second, etc.), and it holds the same for all investigated patients. Parameters as in Figure 10.

mechanism remains unaffected: the same populations are
involved in the seizure spreading and in the same order. What
changes is the speed of the spreading and the time necessary
to observe a generalized seizure-like event, which is smaller for
stronger currents. As a general remark, the brain areas that are
recruited after the first ones (i.e., the 5th, 6th,...,10th recruited
areas), tend to be recruited more simultaneously for increasing
IS, thus leading to possible changes in the recruitment order. This
can be appreciated especially for patient E2: for an amplitude
IS = 10, for example, the 10th brain area (pink) gets recruited
later than the 9th area (dark blue), while for very strong currents
(IS = 100), the dark blue area gets recruited latest whereas the
pink area gets recruited earlier.

On the other hand, if we vary the step current duration
tI keeping the amplitude IS = 15 fixed, we do not
observe any change in the recruitment times of the first
10 recruited areas, analogously to the healthy subject case
presented in Supplementary Figure 4. Results are shown in the
Supplementary Figure 11.

4. DISCUSSION

Neural mass models have been actively used since the 1970s
to model the coarse-grained activity of large populations of

neurons and synapses (Wilson and Cowan, 1972; Zetterberg
et al., 1978). They have proven especially useful in understanding
brain rhythms (Da Silva et al., 1974, 1976; Sotero et al., 2007),
epileptic dynamics (Jirsa et al., 2014; Wendling et al., 2016), brain
resonance phenomena (Spiegler et al., 2011), resting state (Ghosh
et al., 2008; Deco et al., 2011), task activity (Huys et al., 2014;
Kunze et al., 2016), and neurological and psychiatric disorders
(Bhattacharya and Chowdhury, 2015) and are very popular in
the neuroimaging community (Valdes-Sosa et al., 2009; Moran
et al., 2013). Moreover, the desire to understand large scale
brain dynamics as observed using EEG, MEG, and fMRI has
prompted the increasing use of computational models (Bojak
and Breakspear, 2014). Large-scale simulators such as The Virtual
Brain (Sanz-Leon et al., 2015) and research infrastructures such
as EBRAINS (http://ebrains.eu) make heavy use of networks
of interconnected neural mass models and enable non-expert
users to gain access to expert state-of-the-art brain network
simulation tools.

Althoughmotivated by neurobiological considerations, neural
mass models are phenomenological in nature, and cannot hope
to recreate some of the rich repertoires of responses seen in
real neuronal tissue. In particular, their state variables track
coarse-grained measures of the population firing rate or synaptic
activity. At best they are expected to provide appropriate levels of
description for many thousands of near, identical interconnected
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neurons with a preference to operate in synchrony, but they
cannot reproduce the variation of synchrony within a neuronal
population which is believed to underlie the decrease or increase
of power seen in given EEG frequency bands. Importantly, unlike
its phenomenological counterpart, the next-generation neural
mass model we have implemented in this study, is an exact
macroscopic description of an underlying microscopic spiking
neurodynamics, and is a natural candidate for use in future
large scale human brain simulations. In addition to this, the
inability of a single neural mass model to support event-related
desynchronization/synchronization (Pfurtscheller and Da Silva,
1999) or to capture the onset of synchronous oscillations in
networks of inhibitory neurons (Devalle et al., 2017), reminds us
that these phenomenological models could be improved upon.
While building more detailed biophysically realistic models of
neurons would increase the computational complexity and the
difficulties to interpret the behavior of very high dimensional
models in a meaningful way, the next-generation neural mass
models applied in this study, are very much in the original
spirit of neural mass modeling, yet importantly they can be
interpreted directly in terms of an underlying spikingmodel. This
exact derivation is possible for networks of quadratic integrate-
and-fire neurons, representing the normal form of Hodgkin’s
class I excitable membranes (Ermentrout and Kopell, 1986),
thanks to the analytic techniques developed for coupled phase
oscillators (Ott and Antonsen, 2008). This new generation of
neural mass models has been recently used to describe the
emergence of collective oscillations in fully coupled networks
(Devalle et al., 2017; Laing, 2017; Coombes and Byrne, 2019;
Dumont and Gutkin, 2019) and in balanced sparse networks
(di Volo and Torcini, 2018). Furthermore, it has been successfully
employed to reveal the mechanisms at the basis of theta-nested
gamma oscillations (Ceni et al., 2020; Segneri et al., 2020) and
the coexistence of slow and fast gamma oscillations (Bi et al.,
2020). Finally, it has been recently applied to modeling electrical
synapses (Montbrió and Pazó, 2020), working memory (Taher
et al., 2020), the influence of transcranial magnetic stimulation
on brain dynamics (Byrne et al., 2020), and brain resting state
activity (Rabuffo et al., 2020).

In this, we have extended the single next-generation neural
mass model derived in Montbrió et al. (2015) to a network
of interacting neural mass models, where the topology is
determined by structural connectivity matrices of healthy and
epilepsy-affected subjects. In this way, we can take into account
both the macroscopic dynamics, self-emergent in the system due
to the interactions among nodes, and the differences related to the
patient-specific analyses. However, the single population neural
mass model does not take into account neither the synaptic
kinetics nor the dynamics of the synaptic field characterizing
the considered synapses, which is simply modeled as the linear
superposition of δ-shaped post-synaptic potentials. Moreover,
when extending the (excitatory) neural mass model derived
in Montbrió et al. (2015) to a multipopulation network, we
have considered only excitatory coupling to build a minimal
model for the investigation of topologically-induced dynamical
features. Therefore, the presented neural mass model is not able
to reproduce depth-EEG epileptic signals, which represents one

of the best successes of heuristic neural mass models (Wendling
et al., 2002).

In absence of external forcing, the phase diagram of the system
as a function of the mean external drive η̄ and synaptic strength
σ resembles that of the single neural mass model, since the
same distinct regions can be observed: (1) a single stable node
corresponding to a low-activity state, (2) a single stable focus
(spiral) generally corresponding to a high-activity state, and (3) a
region of bistability between low and high firing rates. However,
when the system is subject to a transient external current, the
scenario changes and is ruled by the interactions among different
nodes. In this case, for low excitability values, a single stimulated
node abandons the bistable region due to the applied current and
it approaches, with damped oscillations, the high-activity state,
which is a stable focus. On the other hand, for sufficiently high
excitabilities, the single node stimulation leads to the recruitment
of other brain areas that reach, as the perturbed node, the high-
activity regime by showing damped oscillations. This activity
mimicks a seizure-like event and enables the modeling of
propagation and recruitment: the seizure-like event originates in
the EZ (as a results of the stimulation) and propagates to the
PZ, identified by the other regions where fast propagates the
oscillatory activity. It is distinct from an actual seizure, which
would require the emergence of self-sustained activity in the
high-activity state (Jirsa et al., 2014; Saggio et al., 2017, 2020).

However, transient activity, like the proposed seizure-like
events, can play a potentially important role in localizing
tissue involved in the generation of seizure activity, if read in
the framework of stimulation of human epileptic tissue with
consequent induction of rhythmic, self-terminating responses
on the EEG or electrocorticogram (ECoG) (Valentin et al.,
2002; Flanagan et al., 2009; Jacobs et al., 2010). From the
dynamical systems perspective, one can hypothesize that complex
stimulus responses are due to a space-dependent induction of
self-terminating, spatio temporal transients that are caused by
brief perturbations in an excitable medium (Goodfellow et al.,
2012). Accordingly, considering epileptic seizure dynamics as
spatio-temporal patterns (Goodfellow et al., 2011; Baier et al.,
2012) shifts attention on the self-organizing capabilities of
spatio temporal brain networks, thus proposing an alternative
explanatory framework for epileptiform EEG to the time-
dependentmodulation in system parameters (Kramer et al., 2005;
Breakspear and Jirsa, 2007; Kim et al., 2009; Marten et al., 2009;
Lopour and Szeri, 2010).

Moreover, perturbation experiments, like the stimulation of
human tissue, turns out to be fundamental in the context of
functional brain mapping, as an integral part of contemporary
neurosurgery (Sagar et al., 2019). Surgical planning of the
resection procedure depends substantially on the delineation of
abnormal tissue, e.g., epileptic foci or tumor tissue, and on the
creation of a functional map of eloquent cortex in the area close
to the abnormal tissue. Traditionally, different methodologies
have been used to produce this functional map: electrical cortical
stimulation (Hara et al., 1991; Ojemann, 1991; Uematsu et al.,
1992), functional MRI (Chakraborty and McEvoy, 2008), PET
(Bittar et al., 1999; Meyer et al., 2003), magnetoencephalography
(Ganslandt et al., 1999), evoked potentials (Dinner et al.,
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1986), or passive recordings of electrocorticographic signals
(Brunner et al., 2009). In particular, ECoG activity recorded
from subdural electrodes, placed during surgical protocols, reflect
task-related changes (Crone et al., 1998a,b, 2001; Aoki et al.,
1999, 2001; Sinai et al., 2005; Leuthardt et al., 2007; Miller
et al., 2007): ECoG amplitudes in specific frequency bands carry
substantial information about movement or language tasks and
they usually increase with the task in the gamma (>40 Hz) band.
Extending the presented multipopulation model, via the addition
of synaptic dynamics and an inhibitory pool, to reproduce task-
related change in ECoG activity, would be essential to extend its
predictive power.

The spectrogram analysis has revealed that the recruitment
process is characterized by high frequency γ oscillations, thus
reproducing the high-frequency (γ -band) EEG activity typical
of electrophysiological patterns in focal seizures of human
epilepsy. Many hypotheses have been formulated on the origin
of this fast activity: (i) the behavior of inhibitory interneurons
in hippocampal or neocortical networks in the generation of
gamma frequency oscillations (Jefferys et al., 1996; Whittington
et al., 2000); (ii) the nonuniform alteration of GABAergic
inhibition in experimental epilepsy (reduced dendritic inhibition
and increased somatic inhibition) (Cossart et al., 2001; Wendling
et al., 2002); (iii) the possible depression of GABAA,fast circuit
activity by GABAA,slow inhibitory postsynaptic currents (Banks
et al., 2000; White et al., 2000); (iv) the out of phase
patterns of depolarizing GABAergic post-synaptic potentials
onto pyramidal cells, generated by feed-forward activation of
cortical interneurons (Shamas et al., 2018). In any case, high-
frequency EEG waves originating from one or several brain
regions are the most characteristic electrophysiological pattern
in focal seizures of human epilepsy and can be observed, in the
numerical experiments, both for healthy subjects and epileptic
patients, though with a distinction: for the same excitability value,
the activity takes place at higher frequency ranges in epileptic
patients and it is mainly concentrated in the EZ. Moreover,
high-frequency γ oscillations (>200 Hz) are observable in the
spectrogram of epileptic patients only. Even though it is not
possible to exclude discrepancies partially imputable to the
different scanning and preparation procedure of the structural
connectivity matrices for the cohort of healthy and epilepsy-
affected subjects, it turns out that the recruitment process is faster
in epileptic patients, for which it is possible to observe generalized
seizure-like events for smaller values of the excitability parameter
η̄. In particular, when comparing the results obtained for healthy
subjects and epileptic patients, it turns out that the time necessary
to recruit areas in the PZ is usually smaller for epileptic patients.
However, the first recruited area is, in general, the area with the
stronger connection to the EZ, independently of the considered
structural connectivity matrix. The recruitment time in both
cases is influenced by the strength of the external perturbation
IS, and decreases for increasing strength, while no dependence is
shown on the duration of the external perturbation.

More specifically for healthy subjects, we have investigated the
dependence of the recruitment mechanism on the single subject,
in terms of the position of the eventual EZ and the topological
measures of the single connectome. Brain network models

of healthy subjects comprise 90 nodes equipped with region-
specific next-generation neural mass models and each subject
is characterized by a specific structural large-scale connectivity
amongst brain areas. The smallest excitability values for which

an asymptomatic seizure-like event occurs (η̄(k)asy) do not vary
significantly from one subject to the other and do not show a
relevant dependence on the stimulated area, while the smallest
excitability values for which a generalized seizure-like event

occurs, (η̄(k)gen), show fluctuations in the interval (−7,−5) for all
stimulated nodes and for all the subjects. Nonetheless, we have
foundmany similarities at the level of topological measures, since

there is always a strong correlation between η̄
(k)
asy (η̄

(k)
gen) and node

strength, clustering coefficient and shortest path, thus meaning
that a region well connected is a region well recruited.

For epileptic patients, we have systematically simulated the
individual seizure-like propagation patterns and validated the
numerical predictions of the PZ against clinical diagnosis and
SEEG signals. Patient-specific brain network models of epileptic
patients comprise 88 nodes equipped with region-specific next-
generation neural mass models, and for this set up, we have
studied the role of the large-scale connectome based on dMRI,
in predicting the recruitment of distant areas through seizure-
like events originating from a focal epileptogenic network. We
have demonstrated that simulations and analytical solutions
approximating the large-scale brain network model behavior
significantly predict the PZ as determined by SEEG recordings
and clinical expertise, with performances comparable to previous
analyses on this set of data (Proix et al., 2017; Olmi et al., 2019),
thus confirming the relevance of using a large-scale network
modeling to predict seizure recruitment networks. However,
some false positives are still observable, where populations not
belonging to PZSEEG or PZClin are first recruited. In these cases,
the analysis on topological properties has revealed that nodes
are easily recruited whenever they show strong connections
to the EZ or too early recruited areas and that are closer to
the EZ in terms of the shortest path length. Therefore, nodes
belonging to the PZSEEG (PZClin), that are not identified by
the simulations as first recruited nodes, are characterized by
intermediate values of connection strength and shortest path.
Predictions are particularly not good for those patients whose
EZ has not been correctly identified, as results from the relative
surgical outcomes reported in Supplementary Table 3. For these
patients, the incorrect identification of the origin of seizure-
like events may lead to a misleading identification of the PZ,
since we are not able to identify, numerically, the recruitment of
nodes not directly connected with the real EZ. Finally, comparing
the results obtained for epileptic patients with those for healthy
subjects, we infer a strong correlation between fast recruitment
events and node strength, which is due to the fact that structural
connectomes, both for healthy subjects and epileptic patients,
are characterized by a log-normal distribution of the weights,
where some connections, for each node, have a much stronger
weight than the others. Moreover, the strong correlation between
fast recruitment and clustering coefficient/shortest path suggests
that we are in the presence of hierarchical connectivities, which
are important for the spreading of activity (Kaiser et al., 2007;
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Luccioli et al., 2014) and the enhancement of the network
susceptibility to seizure activity (Morgan and Soltesz, 2008).

Most computational models of seizure propagation focus on
small continuous spatial scales (Ursino and La Cara, 2006; Kim
et al., 2009; Hall and Kuhlmann, 2013) or population of neurons
(Miles et al., 1988; Golomb and Amitai, 1997; Compte et al., 2003;
Bazhenov et al., 2008; Chouzouris et al., 2018; Lopes et al., 2019;
Gerster et al., 2020), while only small networks are commonly
used to investigate the role of the topology and localization
of the EZ (Terry et al., 2012). However, functional, volumetric
and electrographic data suggest a broad reorganization of the
networks in epileptic patients (Lieb et al., 1987, 1991; Cassidy
and Gale, 1998; Rosenberg et al., 2006; Bettus et al., 2009),
thus laying the foundations for a different approach based on
large-scale connectomes to identify the recruitment networks.
The large-scale character of partial seizure propagation in the
human brain has been only recently investigated, using patient-
specific dMRI data to systematically test the relevance of the
large-scale network modeling, in predicting seizure recruitment
networks (Proix et al., 2014, 2017, 2018; Olmi et al., 2019).
In this framework of large-scale network modeling we can
also place the results presented in this study, since we have
confirmed the importance of patient-specific connectomes to
identify the recruitment process. As shown above, the topological
characteristics of connection strength and shortest path play
a non-trivial role in determining the spreading of seizure-
like events, together with the localization of the EZ, while
the next-generation neural mass model, employed for the first
time to study seizure spreading, allows us to construct patient-
specific brain models via a multiscale approach: the variability
of brain regions, as extracted from the human brain atlas, can
be introduced in the mean-field parameters, thanks to the exact
correspondence between microscopic and macroscopic scales
guaranteed by the model itself. The possibility to exactly move
through the scales has not been fully exploited in this study, since
we have focused the analysis on the extension of the single neural
mass model to a multipopulation model, without adding other
relevant features to the original model. However, it is possible
to easily introduce, in the multipopulation model, biologically
relevant characteristics, keeping intact the exact correspondence
between microscopic and macroscopic scales, such as short-term
synaptic plasticity (Taher et al., 2020), synaptic delays (Devalle
et al., 2018), electrical coupling via gap junctions (Montbrió
and Pazó, 2020), chemical synapses (Coombes and Byrne, 2019),
and extrinsinc and endogenous noise (Goldobin et al., 2021).
By adding short-term synaptic plasticity we expect to be able
to reproduce the emergence of self-sustained activity in the
high-activity state and, therefore, to describe a fully developed
seizure. The introduction of synaptic delays and noise guarantees
the possibility to observe chaotic dynamics, therefore, allowing
for the reproduction of more complex signals, like depth-EEG
epileptic signals. Improving the predictive power of the model
by the means of more biologically relevant characteristics and
anatomical data (3D T1-weighted images, high angular and
spatial dMRI data, ion, and energetic and neurotransmitter
measurements available e.g., in the BigBrain and human brain
atlas) will be the scope of further research.
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