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Global agriculture is under threat due to the rapid evolution and spread of pathogenic fungi

that cause rust diseases. For instance, the recently evolved races of wheat stem rust (Puccinia
graminis f. sp. tritici) and stripe rust (P. striiformis f. sp. tritici) fungus in parts of Africa, Asia,

and Europe are a menace to food security due to their ability to spread rapidly and overcome

resistance in common wheat varieties [1]. Similarly, new variants of Asian soybean rust (Pha-
kopsora pachyrhizi) detected in Brazil and the United States pose a major constraint to soybean

cultivation [2]. Since genetic resistance can provide effective and chemical-free disease control,

many efforts are directed towards isolating rust-resistance genes in crop plants and under-

standing how to best deploy them for durable resistance [3]. In addition, related nonhost

species are increasingly being utilised to identify new sources of resistance [4, 5]. Here, we

summarise current knowledge of rust resistance, focussing on race-specific, non–race-specific,

and nonhost resistance mechanisms.

Race-specific resistance

Race-specific resistance genes are effective against some but not all races of a rust pathogen

and generally conform to the classical gene-for-gene model, where resistance depends on a

specific genetic interaction between host-resistance (R) genes and pathogen avirulence (Avr)
genes. R genes in plants predominantly encode nucleotide-binding and leucine-rich repeat

(NLR) proteins, which act as immune receptors to recognise pathogen effector proteins deliv-

ered into host cells during infection [6]. Much of our understanding of this mode of rust resis-

tance comes from the flax rust pathosystem, in which 19 NLR-encoding R genes and 6

corresponding Avr gene families have been identified [7, 8]. The flax rust (Melampsora lini)
Avr genes encode small secreted proteins that are expressed in haustoria and recognised inside

the host cell (Fig 1C). For at least 2 cases, the recognition event leading to resistance occurs by

direct interaction between the flax NLR protein and the M. lini Avr protein [8]. For the L6

resistance protein, binding to its corresponding effector, AvrL567, favours the active signalling

state of the protein in which the nucleotide-binding domain is bound to adenosine triphos-

phate (ATP) rather than adenosine diphosphate (ADP) [9]. In this state, the N-terminal Toll-

interleukin receptor (TIR) signalling domain is thought to be available for oligomerisation

events necessary for signalling [10].

Many race-specific rust-resistance genes have been defined genetically in wheat and other

crops and are now being cloned in increasing numbers. The recent development of NLR gene

capture approaches promises to rapidly expand the repertoire of cloned rust-resistance genes
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[11]. To date, 9 wheat genes conferring resistance to leaf (Lr1, Lr21, and Lr10), stem (Sr22,

Sr33, Sr35, Sr45, and Sr50), and stripe or yellow (Yr10) rust pathogens have been cloned and all

encode NLR receptor proteins [3, 11, 12]. The barley resistance to P. graminis 4/5 (rpg4/Rpg5)

stem rust-resistance locus encodes 2 NLRs, which function together as a pair [13], and 1 of

these contains an integrated kinase domain, which may act as an effector decoy [14]. Likewise,

the wheat Lr10 locus also includes 2 NLR-encoding genes required for resistance [15]. How-

ever, the barley Rpg1 gene, which confers race-specific resistance to the Puccinia stem rust,

encodes a protein kinase. Functional studies of Sr33 and Sr50 proteins identified the minimal

defense signalling component as the N-terminal coiled-coil domain and showed that dimerisa-

tion of this domain is required for signalling [16], similar to observations for the TIR signalling

domain in flax NLRs. Knowledge of Avr genes outside M. lini is still limited, but genomics

studies are focussing on identifying haustorial or in planta expressed secreted effectors and

this approach recently identified the first Avr gene from coffee leaf rust [17].

Non–race-specific and multipathogen resistance

As implied, non–race-specific resistance is defined as operating against all races of a pathogen

species and is sometimes effective against multiple pathogens [3,12]. Such resistance is gener-

ally quantitative, involving a partial resistance phenotype in which the pathogen growth is

Fig 1. Host and nonhost mechanisms of rust resistance. Race-specific and non–race-specific resistances can be phenotypically quite different (A

versus B). (A) Strong resistance is conferred by NLR proteins such as stem rust resistance 45 (Sr45) and is associated with a hypersensitive response.

(B) Non–race-specific resistance may be characterised by partial resistance or slowed fungal growth coupled to leaf-tip necrosis in the presence of

genes such as leaf rust resistance 67 (Lr67). (C) Adapted pathogens deliver effectors that can subvert pathogen-associated molecular patterns

(PAMP)-triggered immunity (PTI), but which may be detected in the plant cell by nucleotide-binding and leucine-rich repeat (NLR) proteins, leading to

effector-triggered immunity (ETI). (D) PTI can operate in nonhost resistance in response to nonadapted pathogens, and ETI can also occur for

pathogens that are more compatible to the host plant. R-gene capture methods may be used to detect and identify NLR genes, with the goal of

incorporation of these NLRs into R-gene cassettes or stacks to provide durable, long-lasting resistance.

https://doi.org/10.1371/journal.ppat.1006380.g001
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slowed without an obvious immune response (Fig 1B). In wheat, this resistance is often mani-

fested only at later stages of development and is therefore referred to as adult plant resistance

(APR). In contrast to most NLR-encoding R genes, some APR genes have proved to be highly

durable, such as Sr2, which has been effective in the field against multiple races of stem rust for

almost 100 years [3]. Recent cloning of several wheat APR genes has provided some insights

into the mechanisms of non–race-specific resistance. For instance, the stripe rust–resistance

gene Yr36 encodes a chloroplast-localised protein with kinase and steroidogenic acute regula-

tory protein-related transfer (START) lipid-binding domains and is proposed to reduce the

detoxification of reactive oxygen species by phosphorylation of a thylakoid-associated ascor-

bate peroxidase, resulting in enhanced defense responses [18]. The Lr34 and Lr67 genes confer

APR to several rust and powdery mildew fungi and encode an ATP-binding cassette (ABC)

transporter [19] and a hexose transporter [20], respectively. The Lr67 resistance allele encodes

a protein that has lost hexose transport function and could therefore disturb the balance of

sugars between the extracellular and intracellular spaces of the leaf. This may reduce the avail-

ability of nutrients inside the host cell, hence the effectiveness of this gene against multiple bio-

trophic fungi. Alternatively, altering apoplastic sugar concentration may induce activation of

defense responses [21]. The basis of Lr34-mediated resistance and the substrates of this ABC

transporter are as yet unknown. In addition to multi-pathogen resistance, both genes also

cause a leaf-tip necrosis phenotype associated with accelerated senescence, traits that are also

shared with the as-yet uncloned Lr46 gene. These phenotypic similarities suggest a common

mechanism, consistent with the lack of additivity observed when these genes are present in

combination. Significantly, genes responsible for race-specific and non–race-specific resis-

tances often do show additivity, supporting their use in concert to achieve stronger protection

[3].

Transgenic expression of the wheat Lr34 or Lr67 genes in other cereal species, such as

durum wheat, barley, rice, and maize, confers resistance to multiple adapted pathogens of

these crops, suggesting that the roles of these genes in infection are conserved across a wide

taxonomic range [22]. Thus, these genes have the potential to be used as new sources of basal/

background resistance in other species, although it remains to be determined whether they can

function in eudicots.

Nonhost resistance

Rust fungi usually have narrow host ranges and poor ability to infect related nonhost species.

Nonhost resistance (NHR), exhibited by plant species that do not support full infection by a

nonadapted pathogen, offers promise as a source of new genes for crop protection [4]. NHR

can result from basic incompatibility when the nonadapted pathogen fails to recognize plant

physical and chemical signals necessary for infection. For instance, the wheat stripe rust fungus

P. striiformis f. sp. tritici shows a reduced ability to locate stomata in broad bean (Vicia faba)

[23] and the flax rust fungus M. lini rarely penetrates rice stomata [24]. In other cases, NHR

occurs as a postpenetration event. For instance, Hemileia vastatrix, the causal agent of coffee

leaf rust, can successfully invade Arabidopsis thaliana leaves via stomata but fails to develop

haustoria [25], while rice exhibits posthaustorial resistance when inoculated with various

cereal rust pathogens (Puccinia sp.) [4, 24].

Current models of NHR mechanisms involve a combination of NLR-mediated effector rec-

ognition and basal immunity mediated by recognition of pathogen-associated molecular pat-

terns (PAMPs) by cell surface receptors (Fig 1) [26]. Basal immunity would be relatively more

important in interactions where the nonhost species is distantly related to the normal host,

and NLR immunity more important in interactions involving a more closely related nonhost
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species. Thus, it is not surprising that many responses associated with NHR overlap those acti-

vated during host resistance [4, 27, 28, 29]. For instance, resistance of Brachypodium distach-
yon to different isolates of P. graminis f. sp. tritici differs in strength and timing (pre- or

posthaustorial), suggesting race specificity and therefore a role of effector recognition in these

phenotypic outcomes [27, 30].

The potential of using NHR as a strategy to identify new rust-resistance traits has been vali-

dated with the cloning of CcRpp1, an NLR-encoding gene from pigeonpea (Cajanus cajan),

which confers resistance to the soybean pathogen P. pachyrhizi [5]. Pigeonpea is closely related

to soybean and CcRpp1 was identified after a screen of accessions displaying phenotypes rang-

ing from partial infection to full immunity. This variation enabled a map-based cloning

approach to identify CcRpp1, whose expression in soybean conferred resistance to P. pachyr-
hizi. Similarly, work towards cloning genetic factors governing NHR against P. striiformis f. sp.

tritici is underway, as the resistance locus Rps6 has now been fine-mapped in barley [31].

Conclusion

With the rapid emergence and spread of rust pathogens, robust and durable resistant crop cul-

tivars are of immediate necessity to safeguard global agriculture and food production. The pro-

pensity of race-specific R genes to break down due to changes in pathogen Avr genes and the

partial resistance conferred by non–race-specific genes means that the most promising deploy-

ment strategies involve generating combinations of such genes to minimise the likelihood of

pathogen virulence evolution and ensure resistance durability [3]. Such resistance gene pyra-

mids could be developed using conventional breeding approaches using marker-assisted selec-

tion based on cloned gene sequences or through the deployment of resistance gene cassettes in

which multiple cloned genes may be combined in a single locus (Fig 1). Understanding the

potential for additive interactions between resistance genes is important to identify the most

effective combinations to pursue, while identifying rust Avr genes is also a priority to monitor

pathogen evolution and prioritise resistance genes for deployment.
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